Orientation-Dependent Reflection of Structurally Coloured Butterflies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Butterfly Sample Selection
2.2. Butterfly Sample Preparation
2.3. Imaging
2.4. Microspectrometry
2.5. Ultrastructure
2.6. Statistics
3. Results
3.1. Simple Structured, Pigmented Scales
3.2. Ridge Multilayers
3.3. Photonic Crystals
3.4. Comparative Analysis of the Orientation-Dependent Reflectance
4. Discussion
4.1. Orientation-Dependent Reflection
4.2. Measurement Method
4.3. Bio-Inspired Applications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghiradella, H. Hairs, Bristles, and Scales: Insecta. In Microscopic Anatomy of Invertebrates; Harrison, W., Locke, M., Eds.; Wiley: New York, NY, USA, 1998; pp. 257–287. [Google Scholar]
- Gentil, K. Beiträge zur Kenntnis schillernder Schmetterlingsschuppen auf Grund Polarisationsoptischer Untersuchung. Z. Morphol. Ökol. Tiere 1941, 37, 591–612. [Google Scholar] [CrossRef]
- Gentil, K. Elektronenmikroskopische Untersuchung des Feinbaues Schillernder Leisten von Morpho-Schuppen. Z. Morphol. Ökol. Tiere 1942, 38, 344–355. [Google Scholar] [CrossRef]
- Onslow, H. On a periodic structure in many insect scales and the cause of their iridescent colours. Philos. Trans. R. Soc. B 1920, 211, 382–390. [Google Scholar]
- Mason, C.W. Structural Colors in Insects. I. J. Phys. Chem. 1925, 30, 383–395. [Google Scholar] [CrossRef]
- Ghiradella, H.; Radigan, W. Development of butterfly scales. II. Struts, lattices and surface tension. J. Morphol. 1976, 150, 279–297. [Google Scholar] [CrossRef]
- Peters, W. Integument. In Lehrbuch der Entomologie, 2. Auflage (Unveränderter Nachdruck 2003); Dettner, K., Peters, W., Bauer, T., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; pp. 1–39. ISBN 3-8274-1102-5. [Google Scholar]
- Neville, A.C. Chitin Crystalites. In Biology of the Integument; Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 614–625. [Google Scholar]
- Stavenga, D.G. Thin Film and Multilayer Optics Cause Structural Colors of Many Insects and Birds. Mater. Today Proc. 2014, 1, 109–121. [Google Scholar] [CrossRef]
- Yoshioka, S.; Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. R. Soc. B 2004, 271, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Vukusic, P.; Sambles, J.R.; Lawrence, C.R.; Wootton, R.J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. B 1999, 266, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Wilts, B.D.; Matsushita, A.; Arikawa, K.; Stavenga, D.G. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales. J. R. Soc. Interface 2015, 12, 20150717. [Google Scholar] [CrossRef] [Green Version]
- Wilts, B.D.; Leertouwer, H.L.; Stavenga, D.G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 2009, 6 (Suppl. 2), S185–S192. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S. Structural Colors in the Realm of Nature; World Scientific Pub. Co.: Singapore, 2008; ISBN 978-981-270-783-3. [Google Scholar]
- Prum, R.O.; Quinn, T.; Torres, R.H. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J. Exp. Biol. 2006, 209, 748–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebeshuber, I.C.; Lee, D.W. Nanostructures for Coloration: Orgasnisms other than Animals. In Encyclopedia of Nanotechnology; Bushan, B., Ed.; Springer: Heidelberg, Germany, 2012; pp. 1790–1803. [Google Scholar]
- Zobl, S. Strukturfarben im Brennpunkt der Bionik: Zwischen Kunst und Naturwissenschaften; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; ISBN 978-3-658-20802-8. [Google Scholar]
- Vukusic, P. Structural colour in Lepidoptera. Curr. Biol. 2006, 16, R621–R623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biró, L.P.; Vigneron, J.P. Photonic nanoarchitectures in butterflies and beetles: Valuable sources for bioinspiration. Laser Photonics Rev. 2011, 5, 27–51. [Google Scholar] [CrossRef]
- Parker, A.R. 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2000, 2, R15–R28. [Google Scholar] [CrossRef]
- Srinivasarao, M. Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. Chem. Soc. Rev. 1999, 99, 1935–1962. [Google Scholar] [CrossRef]
- Yoshioka, S.; Kinoshita, S. Polarization-sensitive color mixing in the wing of the Madagascan sunset moth. Opt. Express 2007, 15, 2691–2701. [Google Scholar] [CrossRef]
- Imafuku, M.; Ogihara, N. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera). Zool. Sci. 2016, 33, 616–622. [Google Scholar] [CrossRef]
- Giraldo, M.A.; Yoshioka, S.; Stavenga, D.G. Far field scattering pattern of differently structured butterfly scales. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2008, 194, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Wilts, B.D.; IJbema, N.; Stavenga, D.G. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides). BMC Evol. Biol. 2014, 14, 160. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, S.; Kinoshita, S. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proc. Biol. Sci. 2006, 273, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, M.A.; Stavenga, D.G. Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2016, 202, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, S.; Yoshioka, S.; Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. B 2002, 269, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavenga, D.G.; Leertouwer, H.L.; Pirih, P.; Wehling, M.F. Imaging scatterometry of butterfly wing scales. Opt. Express 2009, 17, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Süffert, F. Morphologie und Optik der Schmetterlingsschuppen, insbesondere die Schillerfarben der Schmetterlinge. Z. Morphol. Ökol. Tiere 1924, 1, 171–308. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Ghiradella, H. Coloration. In Insect Ecology: An Ecosystem Approach, 2nd ed.; Schowalter, T.D., Ed.; Academic Press Elsevier: San Diego, CA, USA, 2009; pp. 214–220. [Google Scholar]
- Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales. J. R. Soc. Interface 2013, 11, 20131029. [Google Scholar] [CrossRef] [Green Version]
- Stavenga, D.G.; Giraldo, M.A.; Leertouwer, H.L. Butterfly wing colors: Glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane. J. Exp. Biol. 2010, 213, 1731–1739. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Yoshioka, S. Photophysical Approach to Blue Coloring in the Morpho Butterflies. In Structural Colours in Biological Systems; Kinoshita, S., Ed.; Osaka University Press: Osaka, Japan, 2005; pp. 113–139. ISBN 9784872591958. [Google Scholar]
- Ingram, A.L.; Parker, A.R. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philos. Trans. R. Soc. B 2008, 363, 2465–2480. [Google Scholar] [CrossRef] [Green Version]
- Poladian, L.; Wickham, S.; Lee, K.; Large, M.C.J. Iridescence from photonic crystals and its suppression in butterfly scales. J. R. Soc. Interface 2009, 6, S233–S242. [Google Scholar] [CrossRef] [Green Version]
- Wilts, B.D.; Michielsen, K.; de Raedt, H.; Stavenga, D.G. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales. J. R. Soc. Interface Focus 2012, 2, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Berthier, S. Iridescences. In The Physical Colors of Insects; Springer: New York, NY, USA, 2007; ISBN 0-387-34119-6. [Google Scholar]
- Kinoshita, S.; Yoshioka, S. Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure. Chem. Phys. Chem. 2005, 6, 1442–1459. [Google Scholar] [CrossRef] [PubMed]
- Ghiradella, H. Structure and Developement of Iridescent Lepidopteran Scales: The Paplionidae as a Showcase Family. Ann. Entomol. Soc. Am. 1985, 78, 252–264. [Google Scholar] [CrossRef]
- Vukusic, P.; Sambles, J.R.; Lawrence, C.R. Structurally assisted blackness in butterfly scales. Proc. R. Soc. B 2004, 271, S237–S239. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, M.A.; Yoshioka, S.; Liu, C.; Stavenga, D.G. Coloration mechanisms and phylogeny of Morpho butterflies. J. Exp. Biol. 2016, 219, 3936–3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukusic, P.; Stavenga, D.G. Physical methods for investigating structural colours in biological systems. J. R. Soc. Interface 2009, 6 (Suppl. 2), S133–S148. [Google Scholar] [CrossRef] [Green Version]
- Zobl, S.; Salvenmoser, W.; Schwerte, T.; Gebeshuber, I.C.; Schreiner, M. Morpho peleides butterfly wing imprints as structural colour stamp. Bioinspir. Biomim. 2016, 11, 16006, Erratum in 2016, 11, 39601. [Google Scholar] [CrossRef]
- Ropars, G.; Gorre, G.; Le Floch, A.; Enoch, J.; Lakshminarayanan, V. A depolarizer as a possible precise sunstone for Viking navigation by polarized skylight. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 671–684. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zobl, S.; Wilts, B.D.; Salvenmoser, W.; Pölt, P.; Gebeshuber, I.C.; Schwerte, T. Orientation-Dependent Reflection of Structurally Coloured Butterflies. Biomimetics 2020, 5, 5. https://doi.org/10.3390/biomimetics5010005
Zobl S, Wilts BD, Salvenmoser W, Pölt P, Gebeshuber IC, Schwerte T. Orientation-Dependent Reflection of Structurally Coloured Butterflies. Biomimetics. 2020; 5(1):5. https://doi.org/10.3390/biomimetics5010005
Chicago/Turabian StyleZobl, Sigrid, Bodo D. Wilts, Willi Salvenmoser, Peter Pölt, Ille C. Gebeshuber, and Thorsten Schwerte. 2020. "Orientation-Dependent Reflection of Structurally Coloured Butterflies" Biomimetics 5, no. 1: 5. https://doi.org/10.3390/biomimetics5010005