Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates
Abstract
1. Introduction
2. Experiment Section
2.1. Structural Design and Sample Fabrication
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Yu, R.; He, Y.; Zhang, M.; Tian, F.; Wang, L.; Zhao, Y.; Huang, W. 3D printed epoxy/acrylate hybrid polymers with excellent mechanical and shape memory properties via UV and thermal cationic dual-curing mechanism. Addit. Manuf. 2024, 79, 103904. [Google Scholar]
- Chen, L.; Duan, G.; Zhang, C.; Cheng, P.; Wang, Z. 3D printed hydrogel for soft thermo-responsive smart window. Int. J. Extrem. Manuf. 2022, 4, 025302. [Google Scholar]
- Chen, L.; Wang, Z.; Zhan, Z.; Xie, M.; Duan, G.; Cheng, P.; Chen, Y.; Duan, H. 3D printed super-anti-freezing self-adhesive human-machine interface. Mater. Today Phys. 2021, 19, 100404. [Google Scholar]
- Peng, S.; Wang, Z.; Lin, J.; Miao, J.T.; Zheng, L.; Yang, Z.; Weng, Z.; Wu, L. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold. Adv. Funct. Mater. 2021, 31, 2008729. [Google Scholar]
- Chen, L.; Zhang, Y.; Ye, H.; Duan, G.; Duan, H.; Ge, Q.; Wang, Z. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Appl. Mater. Interfaces 2021, 13, 18120–18127. [Google Scholar] [PubMed]
- Azani, M.-R.; Hassanpour, A. UV-Curable Polymer Nanocomposites: Material Selection, Formulations, and Recent Advances. J. Compos. Sci. 2024, 8, 441. [Google Scholar] [CrossRef]
- Liu, S.; Huang, X.; Peng, S.; Zheng, Y.; Wu, L.; Weng, Z. Study on the preparation of long-term stability core–shell particles/epoxy acrylate emulsion and toughening improvement for 3D printable UV-curable resin. J. Polym. Res. 2023, 30, 122. [Google Scholar]
- Yang, Z.; Peng, S.; Wang, Z.; Miao, J.-T.; Zheng, L.; Wu, L.; Weng, Z. UV-curable, low-viscosity resin with a high silica filler content for preparing ultrastiff, 3D-printed molds. ACS Appl. Polym. Mater. 2022, 4, 2636–2647. [Google Scholar]
- Bhanushali, H.; Mestry, S.; Mhaske, S. Castor oil-based UV-curable polyurethane acrylate resins for digital light processing (DLP) 3D printing technology. J. Appl. Polym. Sci. 2023, 140, e53817. [Google Scholar]
- Wang, Z.; Chen, L.; Chen, Y.; Liu, P.; Duan, H.; Cheng, P. 3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research 2020, 2020, 1426078. [Google Scholar] [CrossRef] [PubMed]
- Moradkhani, G.; Profili, J.; Robert, M.; Laroche, G.; Elkoun, S.; Mighri, F. Surface Modification of Flax Fibers with TMCTS-Based PECVD for Improved Thermo-Mechanical Properties of PLA/Flax Fiber Composites. Polymers 2024, 16, 360. [Google Scholar] [CrossRef] [PubMed]
- Paulo, A.; Santos, J.; da Rocha, J.; Lima, R.; Ribeiro, J. Mechanical properties of PLA specimens obtained by additive manufacturing process reinforced with flax fibers. J. Compos. Sci. 2023, 7, 27. [Google Scholar] [CrossRef]
- Mohammed, A.; Rao, D.N. Investigation on mechanical properties of flax fiber/expanded polystyrene waste composites. Heliyon 2023, 9, e13310. [Google Scholar] [CrossRef] [PubMed]
- Stamboulis, A.; Baillie, C.; Peijs, T. Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1105–1115. [Google Scholar]
- More, A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022, 5, 1–20. [Google Scholar] [CrossRef]
- Li, H.; Tang, R.; Dai, J.; Wang, Z.; Meng, S.; Zhang, X.; Cheng, F. Recent progress in flax fiber-based functional composites. Adv. Fiber Mater. 2022, 4, 171–184. [Google Scholar] [CrossRef]
- Nepal, D.; Kang, S.; Adstedt, K.M.; Kanhaiya, K.; Bockstaller, M.R.; Brinson, L.C.; Buehler, M.J.; Coveney, P.V.; Dayal, K.; El-Awady, J.A. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35. [Google Scholar] [CrossRef]
- Naleway, S.E.; Porter, M.M.; McKittrick, J.; Meyers, M.A. Structural design elements in biological materials: Application to bioinspiration. Adv. Mater. 2015, 27, 5455–5476. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Yu, T. Dynamic behaviors of bio-inspired structures: Design, mechanisms, and models. Eng. Struct. 2022, 265, 114490. [Google Scholar] [CrossRef]
- Kushner, A.M.; Guan, Z. Modular design in natural and biomimetic soft materials. Angew. Chem. Int. Ed. 2011, 50, 9026–9057. [Google Scholar] [CrossRef]
- Lazarus, B.S.; Velasco-Hogan, A.; Gómez-del Río, T.; Meyers, M.A.; Jasiuk, I. A review of impact resistant biological and bioinspired materials and structures. J. Mater. Res. Technol. 2020, 9, 15705–15738. [Google Scholar] [CrossRef]
- Ning, H.; Monroe, C.; Gibbons, S.; Gaskey, B.; Flater, P. A review of helicoidal composites: From natural to bio-inspired damage tolerant materials. Int. Mater. Rev. 2024, 69, 181–228. [Google Scholar] [CrossRef]
- Wang, D.; Zaheri, A.; Russell, B.; Espinosa, H.; Zavattieri, P. Fiber reorientation in hybrid helicoidal composites. J. Mech. Behav. Biomed. Mater. 2020, 110, 103914. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Q.; Lv, J.; Xu, L.; Zhu, Z.; Liu, S.; Liu, X.; Qin, J. Bioinspired 3D helical fibers toughened thermosetting composites. Compos. Part B Eng. 2021, 216, 108855. [Google Scholar] [CrossRef]
- Zhang, X.; Luan, Y.; Li, Y.; Wang, Z.; Li, Z.; Xu, F.; Guo, Z. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure. Compos. Struct. 2021, 276, 114575. [Google Scholar] [CrossRef]
- Suksangpanya, N.; Yaraghi, N.A.; Kisailus, D.; Zavattieri, P. Twisting cracks in Bouligand structures. J. Mech. Behav. Biomed. Mater. 2017, 76, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, H.; Wang, B.; Zhang, S.; Huang, Z.; Yin, S. Sinusoidally architected helicoidal composites inspired by the dactyl club of mantis shrimp. Int. J. Smart Nano Mater. 2023, 14, 321–336. [Google Scholar] [CrossRef]
- Behera, R.P.; Le Ferrand, H. Impact-resistant materials inspired by the mantis shrimp’s dactyl club. Matter 2021, 4, 2831–2849. [Google Scholar] [CrossRef]
- Yang, J.; Gu, D.; Lin, K.; Yuan, L.; Guo, M.; Zhang, H.; Liu, H. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp. Int. J. Mech. Sci. 2022, 231, 107573. [Google Scholar] [CrossRef]
- Tan, T.; Ribbans, B. A bioinspired study on the compressive resistance of helicoidal fibre structures. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170538. [Google Scholar] [CrossRef]
- Suksangpanya, N.; Yaraghi, N.A.; Pipes, R.B.; Kisailus, D.; Zavattieri, P. Crack twisting and toughening strategies in Bouligand architectures. Int. J. Solids Struct. 2018, 150, 83–106. [Google Scholar] [CrossRef]






| Samples | Matrix | Fiber | Fiber Orientation |
|---|---|---|---|
| Sample S1 | Standard Resin | N/A | N/A |
| Sample S2 | Standard Resin | Flax fiber | 15° |
| Sample S3 | Standard Resin | Flax fiber | 30° |
| Sample S4 | Standard Resin | Flax fiber | 45° |
| Sample S5 | Standard Resin | Flax fiber | 60° |
| Sample S6 | Standard Resin | Flax fiber | 75° |
| Sample S7 | Standard Resin | Flax fiber | 90° |
| Control Group (CG) | 15° | 30° | 45° | 60° | 75° | 90° | |
|---|---|---|---|---|---|---|---|
| Max Force (N) | 191.64 | 384.48 | 464.09 | 513.13 | 569.14 | 630.26 | 700.22 |
| Fracture energy (KJ/m2) | 1.67 | 5.43 | 7.78 | 15.41 | 13.64 | 10.06 | 9.91 |
| Work of fracture (J) | 60.10 | 129.70 | 279.96 | 554.74 | 491.04 | 361.98 | 356.79 |
| Ultimate tensile strength (MPa) | 5.32 | 10.68 | 12.89 | 14.25 | 15.81 | 17.51 | 19.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ou, M.; Li, H.; Tan, D.; Peng, Y.; Zhong, H.; Wu, L.; Shan, W. Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates. Biomimetics 2026, 11, 71. https://doi.org/10.3390/biomimetics11010071
Ou M, Li H, Tan D, Peng Y, Zhong H, Wu L, Shan W. Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates. Biomimetics. 2026; 11(1):71. https://doi.org/10.3390/biomimetics11010071
Chicago/Turabian StyleOu, Mingwen, Huan Li, Dequan Tan, Yizhen Peng, Hao Zhong, Linmei Wu, and Wubin Shan. 2026. "Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates" Biomimetics 11, no. 1: 71. https://doi.org/10.3390/biomimetics11010071
APA StyleOu, M., Li, H., Tan, D., Peng, Y., Zhong, H., Wu, L., & Shan, W. (2026). Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates. Biomimetics, 11(1), 71. https://doi.org/10.3390/biomimetics11010071

