An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems
Abstract
1. Introduction
- A new greater cane rat optimization algorithm (AGG-GCRA) is introduced, incorporating adaptive mechanisms and global guidance techniques to enhance the algorithm’s convergence rate, solution precision, and stability.
- A comprehensive comparison of AGG-GCRA with 11 mainstream metaheuristic algorithms on 26 benchmark functions shows that AGG-GCRA surpasses the other algorithms in terms of optimization precision, convergence efficiency, and robustness, with its significance confirmed through statistical tests.
- AGG-GCRA was applied to six practical engineering optimization problems, with the algorithm consistently producing high-quality solutions in multiple independent runs, demonstrating its practical value and reliability in engineering applications.
2. Greater Cane Rat Algorithm
2.1. Biological Inspiration and Conceptual Model
2.2. Population Initialization
2.3. Behavioral Modeling and Position Update
2.4. Dominant Male Selection and Fitness Evaluation
3. Adaptive and Global-Guided Greater Cane Rat Algorithm
3.1. Global Optimum Guidance Term
3.2. Adaptive Parameter Adjustment
3.3. Elite Preservation Mechanism
3.4. Local Perturbation Strategy
3.5. Complexity Analysis
3.6. Summary of the AGG-GCRA
Algorithm 1. AGG-GCRA |
Input: Population size M, maximum iterations T_max, parameters α0, γ0, λ, σ12, β, θ1, θ2, ω Output: Optimal solution q_best 1. Initialize population positions qₘ (m = 1, 2, …, M) 2. Evaluate fitness f(qₘ) for each individual 3. Set q_best as the global best solution 4. For t = 1 to T_max do 4.1 Adaptive Parameter Adjustment — (Equation (12)) Compute σ(t) = α0 × (1 - t / T_max) × (1 − δ) (12) 4.2 For m = 1 to M do If σ(t) > 0.5 then // Exploration Phase Global Optimum Guidance Term — (Equation (11)) qₘ,ₖⁿᵉʷ = qₘ,ₖ + λ × (q_best,ₖ − qₘ,ₖ) (11) Else // Exploitation Phase Elite Preservation Mechanism — (Equation (13)–(14)) Find top 20% individuals → elite set E Compute elite mean position q̄_E Adaptive learning rate: γ = γ0 × (1 − t / T_max) (14) Update position: qₘ,ₖⁿᵉʷ = qₘ,ₖ + γ × (q̄_E,ₖ − qₘ,ₖ) (13) End If Local Perturbation Strategy—(Equation (15)–(16)) Generate perturbation: Δ = θ1 × N(0, σ12) + θ2 × Lévy(β) (16) Apply perturbation: qₘ,ₖⁿᵉʷ = qₘ,ₖⁿᵉʷ + ω × Δ (15) Evaluate fitness of qₘⁿᵉʷ and update qₘ if better End For Update elite set E and global best q_best End For Input: Population size M, maximum iterations T_max, parameters α0, γ0, λ, σ12, β, θ1, θ2, ω |
4. Results and Analytical Evaluation of the Experiment
4.1. Tests on 26 Benchmark Functions
- Unimodal Functions—These functions have a single global optimum and are primarily used to evaluate the convergence speed and local exploitation ability of the algorithm.Examples from the selected set: F1 (Sphere), F2 (Schwefel 2.22), F3 (Schwefel 1.2), F4 (Schwefel 2.21), F5 (Step), F6 (Quartic), F7 (Exponential), F8 (Sum Power), F9 (Sum Square), F10 (Rosenbrock), F11 (Zakharov), F12 (Trid), F13 (Elliptic), and F14 (Cigar).
- Multimodal Functions—These functions have multiple local optima, allowing for the assessment of the algorithm’s global search capability and its ability to escape from local optima.Examples from the selected set: F15 (Rastrigin), F16 (NCRastrigin), F17 (Ackley), F18 (Griewank), F19 (Alpine), F20 (Penalized 1), F21 (Penalized 2), F23 (Lévy), F24 (Weierstrass), F25 (Solomon), and F26 (Bohachevsky).
- Separable and Non-separable Functions—These functions are used to test the algorithm’s adaptability in handling problems with either independent variables or strong inter-variable coupling.Examples from the selected set:
- ·
- Separable: F1, F2, F3, F5, F8, F9, and F16.
- ·
- Non-separable: F10, F12, F17, F18, F20, F23, and F24.
- Ill-conditioned and Anisotropic Functions—These functions exhibit large variations in gradient magnitude across different search directions, testing the algorithm’s stability in highly non-uniform search spaces.Examples from the selected set: F10 (Rosenbrock), F13 (Elliptic), and F14 (Cigar).
- Non-differentiable/Discontinuous Functions—These functions are used to evaluate the robustness of the algorithm under conditions where gradient information is unavailable or the function is non-smooth.Examples from the selected set: F5 (Step) and F16 (NCRastrigin).
- Scalable Functions—These functions allow the dimensionality to be adjusted, enabling the analysis of the algorithm’s computational efficiency and performance trends in high-dimensional spaces.
- Examples from the selected set: F1, F2, F3, F4, F7, F8, F9, F10, F11, F12, F13, F15, F16, F17, F18, F20, and F24.
4.1.1. Performance Indicators
4.1.2. Numerical Results Analysis
4.1.3. Convergence Curve Analysis
4.1.4. Friedman Ranking Scores and Wilcoxon Signed-Rank Analysis Results
4.2. Application on Six Practical Engineering Problems
4.2.1. Weight Minimization of a Speed Reducer
4.2.2. Tension/Compression Spring Design Problem
4.2.3. Welded Beam Design Problem
4.2.4. Gas Transmission Compressor Design (GTCD) Problem
4.2.5. Three-Bar Truss Design Problem
4.2.6. Multiple-Disk Clutch Brake Design Problem
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source and Implementation of the Compared Algorithms
References
- Rajwar, K.; Deep, K.; Das, S. An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges. Artif. Intell. Rev. 2023, 56, 13187–13257. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dehrashid, A.A.; Zhang, B.; Chen, Z.; Le, B.N.; Moayedi, H. A novel swarm intelligence: Cuckoo optimization algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2023, 37, 1717–1743. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56 (Suppl. S2), 1919–1979. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous optimization domains. Complex Intell. Syst. 2022, 8, 65–82. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Zhou, M.C.; Fan, Y.; Xia, Y. Multi-swarm co-evolution based hybrid intelligent optimization for bi-objective multi-workflow scheduling in the cloud. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 2183–2197. [Google Scholar] [CrossRef]
- Shen, B.; Khishe, M.; Mirjalili, S. Evolving Marine Predators Algorithm by dynamic foraging strategy for real-world engineering optimization problems. Eng. Appl. Artif. Intell. 2023, 123, 106207. [Google Scholar] [CrossRef]
- Tao, S.; Liu, S.; Zhou, H.; Mao, X. Research on inventory sustainable development strategy for maximizing cost-effectiveness in supply chain. Sustainability 2024, 16, 4442. [Google Scholar] [CrossRef]
- Hao, H.; Yao, E.; Pan, L.; Chen, R.; Wang, Y.; Xiao, H. Exploring heterogeneous drivers and barriers in MaaS bundle subscriptions based on the willingness to shift to MaaS in one-trip scenarios. Transp. Res. Part A Policy Pract. 2025, 199, 104525. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior. Sci. Rep. 2023, 13, 8775. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, Z.; Lin, H.; Lu, H. An improve crested porcupine algorithm for UAV delivery path planning in challenging environments. Sci. Rep. 2024, 14, 20445. [Google Scholar] [CrossRef]
- Mei, M.; Zhang, S.; Ye, Z.; Wang, M.; Zhou, W.; Yang, J.; Zhang, J.; Yan, L.; Shen, J. A cooperative hybrid breeding swarm intelligence algorithm for feature selection. Pattern Recognit. 2026, 169, 111901. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, P.; Lin, Y.; Cai, S.; Bian, Z.; Yan, J.; Zhu, X. Crowdvlm-r1: Expanding r1 ability to vision language model for crowd counting using fuzzy group relative policy reward. arXiv 2025, arXiv:2504.03724. [Google Scholar]
- Zhou, Y.; Xia, H.; Yu, D.; Cheng, J.; Li, J. Outlier detection method based on high-density iteration. Inf. Sci. 2024, 662, 120286. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Wang, T.; Zhang, K.; Jiang, X.; Zhao, H. Visual style prompt learning using diffusion models for blind face restoration. Pattern Recognit. 2025, 161, 111312. [Google Scholar] [CrossRef]
- Feng, P.; Peng, X. A note on Monge–Kantorovich problem. Stat. Probab. Lett. 2014, 84, 204–211. [Google Scholar] [CrossRef]
- Cai, H.; Wu, W.; Chai, B.; Zhang, Y. Relation-Fused Attention in Knowledge Graphs for Recommendation. In Proceedings of the International Conference on Neural Information Processing, Auckland, New Zealand, 2–6 December 2024; Springer Nature: Singapore, 2024; pp. 285–299. [Google Scholar]
- Beşkirli, A. An efficient binary Harris hawks optimization based on logical operators for wind turbine layout according to various wind scenarios. Eng. Sci. Technol. Int. J. 2025, 66, 102057. [Google Scholar] [CrossRef]
- Sun, L.; Shi, W.; Tian, X.; Li, J.; Zhao, B.; Wang, S.; Tan, J. A plane stress measurement method for CFRP material based on array LCR waves. NDT E Int. 2025, 151, 103318. [Google Scholar] [CrossRef]
- Ismail, W.N.; PP, F.R.; Ali, M.A.S. A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics 2023, 11, 957. [Google Scholar] [CrossRef]
- Yuan, F.; Zuo, Z.; Jiang, Y.; Shu, W.; Tian, Z.; Ye, C.; Yang, J.; Mao, Z.; Huang, X.; Gu, S.; et al. AI-Driven Optimization of Blockchain Scalability, Security, and Privacy Protection. Algorithms 2025, 18, 263. [Google Scholar] [CrossRef]
- Beşkirli, A. Improved Chef-Based Optimization Algorithm with Chaos-Based Fitness Distance Balance for Frequency-Constrained Truss Structures. Gazi Univ. J. Sci. Part A Eng. Innov. 2025, 12, 377–402. [Google Scholar] [CrossRef]
- Yuan, F.; Lin, Z.; Tian, Z.; Chen, B.; Zhou, Q.; Yuan, C.; Sun, H.; Huang, Z. Bio-inspired hybrid path planning for efficient and smooth robotic navigation: F. Yuan et al. Int. J. Intell. Robot. Appl. 2025, 1–31. [Google Scholar] [CrossRef]
- Beşkirli, A.; Dağ, İ.; Kiran, M.S. A tree seed algorithm with multi-strategy for parameter estimation of solar photovoltaic models. Appl. Soft Comput. 2024, 167, 112220. [Google Scholar] [CrossRef]
- Bolotbekova, A.; Hakli, H.; Beskirli, A. Trip route optimization based on bus transit using genetic algorithm with different crossover techniques: A case study in Konya/Türkiye. Sci. Rep. 2025, 15, 2491. [Google Scholar] [CrossRef]
- Wu, D.; Rao, H.; Wen, C.; Jia, H.; Liu, Q.; Abualigah, L. Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems. Mathematics 2022, 10, 4350. [Google Scholar] [CrossRef]
- Beşkirli, A.; Dağ, İ. Parameter extraction for photovoltaic models with tree seed algorithm. Energy Rep. 2023, 9, 174–185. [Google Scholar] [CrossRef]
- Yao, Z.; Zhu, Q.; Zhang, Y.; Huang, H.; Luo, M. Minimizing Long-Term Energy Consumption in RIS-Assisted UAV-Enabled MEC Network. IEEE Internet Things J. 2025, 12, 20942–20958. [Google Scholar] [CrossRef]
- Beşkirli, A.; Özdemir, D.; Temurtaş, H. A comparison of modified tree–seed algorithm for high-dimensional numerical functions. Neural Comput. Appl. 2020, 32, 6877–6911. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2007, 1, 28–39. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Hamad, R.K.; Rashid, T.A. GOOSE algorithm: A powerful optimization tool for real-world engineering challenges and beyond. Evol. Syst. 2024, 15, 1249–1274. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, L.; Hei, X. A global-best guided phase based optimization algorithm for scalable optimization problems and its application. J. Comput. Sci. 2018, 25, 38–49. [Google Scholar] [CrossRef]
- Yang, H.; Tao, S.; Zhang, Z.; Cai, Z.; Gao, S. Spatial information sampling: Another feedback mechanism of realising adaptive parameter control in meta-heuristic algorithms. Int. J. Bio-Inspired Comput. 2022, 19, 48–58. [Google Scholar] [CrossRef]
- Wu, M.; Yang, D.; Liu, T. An improved particle swarm algorithm with the elite retain strategy for solving flexible jobshop scheduling problem. J. Phys. Conf. Ser. 2022, 2173, 012082. [Google Scholar] [CrossRef]
- Öztaş, T.; Tuş, A. A hybrid metaheuristic algorithm based on iterated local search for vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl. 2022, 202, 117401. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Saha, A.K.; Pal, J.; Abualigah, L.; Mirjalili, S. Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems. Heliyon 2024, 10, e31629. [Google Scholar] [CrossRef]
- Vediramana Krishnan, H.G.; Chen, Y.T.; Shoham, S.; Gurfinkel, A. Global guidance for local generalization in model checking. Form. Methods Syst. Des. 2024, 63, 81–109. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, H.; Gu, J.; Chen, H.; Deng, W. Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism. Eng. Appl. Artif. Intell. 2022, 114, 105139. [Google Scholar] [CrossRef]
- Xie, L.; Han, T.; Zhou, H.; Zhang, Z.-R.; Han, B.; Tang, A. Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y. T-Friedman test: A new statistical test for multiple comparison with an adjustable conservativeness measure. Int. J. Comput. Intell. Syst. 2022, 15, 29. [Google Scholar] [CrossRef]
- Kitani, M.; Murakami, H. One-sample location test based on the sign and Wilcoxon signed-rank tests. J. Stat. Comput. Simul. 2022, 92, 610–622. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Wei, M.; Guo, Y.; Yu, Z.; Wang, H.; Li, Z.; Fan, H. A novel index of functional connectivity: Phase lag based on Wilcoxon signed rank test. Cogn. Neurodynamics 2021, 15, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Karaboğa, D.; Ökdem, S. A simple and global optimization algorithm for engineering problems: Differential evolution algorithm. Turk. J. Electr. Eng. Comput. Sci. 2004, 12, 53–60. [Google Scholar]
- Öztürk, H.T.; Kahraman, H.T. Metaheuristic search algorithms in frequency constrained truss problems: Four improved evolutionary algorithms, optimal solutions and stability analysis. Appl. Soft Comput. 2025, 171, 112854. [Google Scholar] [CrossRef]
- Khosla, T.; Verma, O.P. An adaptive hybrid particle swarm optimizer for constrained optimization problem. In Proceedings of the 2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT), Bhubaneswar, India, 8–10 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Bakır, H.; Duman, S.; Guvenc, U.; Kahraman, H.T. Improved adaptive gaining-sharing knowledge algorithm with FDB-based guiding mechanism for optimization of optimal reactive power flow problem. Electr. Eng. 2023, 105, 3121–3160. [Google Scholar] [CrossRef]
- Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150–194. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, F.; Jiang, Y.; Mao, Z.; Zuo, Z.; Peng, Y. A Particle Swarm Optimization-Guided Ivy Algorithm for Global Optimization Problems. Biomimetics 2025, 10, 342. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, S.; Ye, Z.; Zhou, W.; Wang, M.; He, Q.; Chen, Z.; Bai, W. Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory. Sci. Rep. 2024, 14, 28876. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J. A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 2022, 55, 59–110. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Zhang, S.; Zhang, S. A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength. Biomimetics 2025, 10, 515. [Google Scholar] [CrossRef]
- Kwakye, B.D.; Li, Y.; Mohamed, H.H.; Baidoo, E.; Asenso, T.Q. Particle guided metaheuristic algorithm for global optimization and feature selection problems. Expert Syst. Appl. 2024, 248, 123362. [Google Scholar] [CrossRef]
- Beiranvand, V.; Hare, W.; Lucet, Y. Best practices for comparing optimization algorithms. Optim. Eng. 2017, 18, 815–848. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Metaheuristics should be tested on large benchmark set with various numbers of function evaluations. Swarm Evol. Comput. 2025, 92, 101807. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Choice of benchmark optimization problems does matter. Swarm Evol. Comput. 2023, 83, 101378. [Google Scholar] [CrossRef]
- Tilahun, S.L.; Matadi, M.B. Weight minimization of a speed reducer using prey predator algorithm. Int. J. Manuf. Mater. Mech. Eng. 2018, 8, 19–32. [Google Scholar] [CrossRef]
- Tzanetos, A.; Blondin, M. A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction. Eng. Appl. Artif. Intell. 2023, 118, 105521. [Google Scholar] [CrossRef]
- Kamil, A.T.; Saleh, H.M.; Abd-Alla, I.H. A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem. J. Phys. Conf. Ser. 2021, 1804, 012012. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, L.; Chen, Z. GrS Algorithm for Solving Gas Transmission Compressor Design Problem. In Proceedings of the 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Niagara Falls, ON, Canada, 17–20 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 842–846. [Google Scholar]
- Yildirim, A.E.; Karci, A. Application of three bar truss problem among engineering design optimization problems using artificial atom algorithm. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Multiple-Disk Clutch Brake Design Problem. Available online: https://desdeo-problem.readthedocs.io/en/latest/problems/multiple_clutch_brakes.html (accessed on 12 July 2025).
Algorithm | Parameter | Algorithm | Parameter |
---|---|---|---|
ALL | Max iteration = 500, Agents = 30, Runs = 30, dim = 30 | PSO | |
AGG-GCRA | ) | DE | |
GCRA | ACO | ||
BOA | NSM-BO | ||
WOA | PSOBOA | ||
GOOSE | FDB-AGSK | ||
AOA |
s/n | Category | Function Name | Formula | Range | |
---|---|---|---|---|---|
F1 | Unimodal | Sphere | 0 | [−100, 100] | |
F2 | Unimodal | Schwefel 2.22 | 0 | [−10, 10] | |
F3 | Unimodal | Schwefel 1.2 | 0 | [−100, 100] | |
F4 | Unimodal | Schwefel 2.21 | 0 | [−100, 100] | |
F5 | Unimodal | Step | 0 | [−100, 100] | |
F6 | Unimodal | Quartic | 0 | [−1.28, 1.28] | |
F7 | Unimodal | Exponential | 0 | [−10, 10] | |
F8 | Unimodal | Sum power | 0 | [−1, 1] | |
F9 | Unimodal | Sum square | 0 | [−10, 10] | |
F10 | Unimodal | Rosenbrock | 0 | [−5, 10] | |
F11 | Unimodal | Zakharov | 0 | [−5, 10] | |
F12 | Unimodal | Trid | 0 | [−5, 10] | |
F13 | Unimodal | Elliptic | 0 | [−100, 100] | |
F14 | Unimodal | Cigar | 0 | [−100, 100] | |
F15 | Fixed | Rastrigin | 0 | [−5.12, 5.12] | |
F16 | Multimodal | NCRastrigin | 0 | [−5.12, 5.12] | |
F17 | Multimodal | Ackley | 0 | [−50, 50] | |
F18 | Multimodal | Griewank | 0 | [−600, 600] | |
F19 | Fixed | Alpine | 0 | [−10, 10] | |
F20 | Multimodal | Penalized 1 | 0 | [−100, 100] | |
F21 | Multimodal | Penalized 2 | 0 | [−100, 100] | |
F22 | Fixed | Schwefel | 0 | [−100, 100] | |
F23 | Multimodal | Lévy | 0 | [−10, 10] | |
F24 | Multimodal | Weierstrass | 0 | [−0.5, 0.5] | |
F25 | Fixed | Solomon | 0 | [−100,100] | |
F26 | Fixed | Bohachevsky | 0 | [−10,10] |
Function /Metric | AGG-GCRA | GCRA | FDB-AGSK | PSOBOA | WOA | AOA | BOA | NSM-BO | PSO | Pattern Search | GOOSE | LHS-PLS | DE | ACO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.9399 × 10−6 | 1.0903 | 14229.3021 | 5.4495 × 10−3 | 20,167.2263 | 23,191.3365 | 36,233.1474 |
F1 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.1685 | 2.2113 | 19416.8255 | 20.3028 | 26,421.7687 | 35,676.6206 | 42,226.9578 |
F1 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.0127 | 1.0358 | 2973.2959 | 84.1605 | 4064.5578 | 5066.4294 | 2908.8408 |
F1 Time(s) | 0.0247 | 0.0174 | 5.3131 × 10−3 | 1.6310 × 10−2 | 0.0096 | 1.9274 × 10−2 | 1.4206 × 10−2 | 0.2248 | 0.0147 | 0.2968 | 1.9789 × 10−2 | 4.2188 | 0.0018 | 0.5168 |
F1 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 9 | 11 | 10 | 12 | 13 | 14 |
F2 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5375 × 10−4 | 2.4146 | 38.3829 | 0.533 | 1637.2499 | 78.1018 | 90.4445 |
F2 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 2.1331 × 10−8 | 3.2326 × 10−3 | 4.4176 | 42.7817 | 2,788,028.52 | 285,787,973 | 1,302,772.22 | 1,468,718.161 |
F2 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.7095 × 10−3 | 1.2688 | 4.7118 | 15,269,285.3 | 603,192,774 | 6,926,041.50 | 2,437,197.031 |
F2 Time(s) | 2.6266 × 10−2 | 1.8048 × 10−2 | 5.9280 × 10−3 | 1.7815 × 10−2 | 0.0109 | 2.0043 × 10−2 | 1.4920 × 10−2 | 0.2256 | 0.0151 | 0.1487 | 2.0100 × 10−2 | 0.0441 | 1.2786 × 10−3 | 0.5427 |
F2 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 8 | 9 | 10 | 13 | 14 | 11 | 12 |
F3 Best | 0 | 0 | 141.6436 | 0 | 69.6426 | 0 | 0 | 0.3834 | 48.6593 | 386.6074 | 0.7112 | 349.8473 | 436.6124 | 349.3299 |
F3 Mean | 0 | 0 | 426.2177 | 0 | 445.8555 | 0 | 0 | 4.1764 | 83.3512 | 525.225 | 2.3813 | 416.7211 | 802.3345 | 491.1673 |
F3 Std | 0 | 0 | 123.8602 | 0 | 151.7218 | 0 | 0 | 3.3173 | 21.6652 | 150.5365 | 0.9656 | 58.5605 | 158.7745 | 64.7969 |
F3 Time(s) | 0.3612 | 0.3123 | 5.3404 × 10−2 | 0.1123 | 5.7816 × 10−2 | 6.6523 × 10−2 | 0.1103 | 0.2804 | 6.1761 × 10−2 | 0.2264 | 6.8623 × 10−2 | 0.0377 | 2.9051 × 10−3 | 0.6103 |
F3 Rank | 1 | 1 | 10 | 1 | 11 | 1 | 1 | 7 | 8 | 13 | 6 | 9 | 14 | 12 |
F4 Best | 0 | 0 | 0 | 0 | 0.2523 | 0 | 2.0495 × 10−8 | 1.4193 | 1.5195 | 2.2582 × 10−4 | 0.1236 | 6.0889 | 7.8501 | 6.181 |
F4 Mean | 0 | 0 | 3.9441 | 0 | 5.053 | 0 | 2.6646 × 10−8 | 2.5733 | 1.9559 | 5.3745 × 10−4 | 0.2763 | 6.2894 | 8.5353 | 7.095 |
F4 Std | 0 | 0 | 3.8346 | 0 | 3.1573 | 0 | 0 | 0.5715 | 0.2275 | 2.5594 × 10−4 | 0.205 | 0.2028 | 0.3507 | 0.3177 |
F4 Time(s) | 2.66 × 10−2 | 0.0183 | 5.3560 × 10−3 | 1.6477 × 10−2 | 1.0274 × 10−2 | 1.9173 × 10−2 | 1.4509 × 10−2 | 0.2212 | 1.4931 × 10−2 | 0.1415 | 1.9799 × 10−2 | 0.034 | 1.1742 × 10−3 | 0.5586 |
F4 Rank | 1 | 1 | 10 | 1 | 11 | 1 | 5 | 9 | 8 | 6 | 7 | 12 | 14 | 13 |
F5 Best | 0 | 0 | 5.3031 × 10−2 | 4.7444 | 2.0897 × 10−2 | 3.9269 | 4.5202 | 6.5048 × 10−8 | 0.8884 | 3.1374 × 10−7 | 3.7242 × 10−3 | 280.2907 | 248.8288 | 294.9828 |
F5 Mean | 0 | 0 | 0.4956 | 6.2109 | 0.1035 | 5.3097 | 5.3559 | 1.1256 × 10−2 | 2.7373 | 4.7814 × 10−6 | 0.0101 | 305.505 | 343.4264 | 409.294 |
F5 Std | 0 | 0 | 0.3105 | 0.4049 | 7.3053 × 10−2 | 0.5538 | 0.4732 | 3.7013 × 10−2 | 1.6766 | 6.5110 × 10−6 | 0.0039 | 25.8801 | 51.6753 | 41.9994 |
F5 Time(s) | 2.3279 × 10−2 | 0.0182 | 0.0052 | 1.5982 × 10−2 | 1.0183 × 10−2 | 1.8761 × 10−2 | 1.3310 × 10−2 | 0.2223 | 1.4530 × 10−2 | 0.14 | 0.0196 | 0.0243 | 1.1875 × 10−3 | 0.5453 |
F5 Rank | 1 | 1 | 7 | 11 | 6 | 9 | 10 | 5 | 8 | 3 | 4 | 12 | 13 | 14 |
F6 Best | 0 | 4.3524 × 10−7 | 3.9866 × 10−6 | 1.1820 × 10−5 | 4.0721 × 10−5 | 2.6791 × 10−5 | 6.1079 × 10−4 | 4.4489 × 10−2 | 4.0649 | 0.1879 | 0.0521 | 15.8893 | 20.5087 | 26.1925 |
F6 Mean | 0 | 4.1875 × 10−6 | 8.2589 × 10−4 | 2.2505 × 10−4 | 2.1290 × 10−3 | 6.8253 × 10−4 | 2.0296 × 10−3 | 0.1149 | 15.8092 | 0.3004 | 0.1278 | 22.0865 | 40.4245 | 47.8157 |
F6 Std | 0 | 4.8947 × 10−6 | 2.7612 × 10−3 | 1.5498 × 10−4 | 2.4085 × 10−3 | 5.8479 × 10−4 | 1.0059 × 10−3 | 3.8165 × 10−2 | 10.4808 | 0.1341 | 0.0412 | 4.1589 | 12.7544 | 8.1893 |
F6 Time(s) | 0.2542 | 0.1774 | 4.1547 × 10−2 | 0.0882 | 0.0455 | 5.4340 × 10−2 | 8.6195 × 10−2 | 0.2548 | 0.0498 | 0.1332 | 5.6226 × 10−2 | 0.0282 | 2.4504 × 10−3 | 0.594 |
F6 Rank | 1 | 2 | 5 | 3 | 7 | 4 | 6 | 8 | 11 | 10 | 9 | 12 | 13 | 14 |
F7 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F7 Mean | 0 | 2.0136 × 10−7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F7 Std | 0 | 1.0679 × 10−6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F7 Time(s) | 3.6708 × 10−2 | 0.0267 | 5.1364 × 10−3 | 1.5876 × 10−2 | 9.7843 × 10−3 | 0.0185 | 0.0132 | 0.2171 | 1.4304 × 10−2 | 0.0134 | 1.9878 × 10−2 | 0.0338 | 0.0012 | 0.5516 |
F7 Rank | 1 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F8 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5873 × 10−2 | 0 | 2.8639 × 10−6 | 8.1776 × 10−3 | 8.5020 × 10−2 | 4.2330 × 10−2 |
F8 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2286 | 0 | 1.2779 × 10−5 | 1.5291 × 10−2 | 0.2975 | 0.1015 |
F8 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2233 | 0 | 7.5423 × 10−6 | 5.2097 × 10−3 | 0.1365 | 3.3335 × 10−2 |
F8 Time(s) | 0.033 | 0.0212 | 3.1039 × 10−2 | 0.0764 | 3.8073 × 10−2 | 4.4416 × 10−2 | 7.6715 × 10−2 | 0.2564 | 0.046 | 0.1167 | 0.0494 | 0.0333 | 2.2327 × 10−3 | 0.5852 |
F8 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 10 | 11 | 14 | 12 |
F9 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9706 × 10−6 | 8.9297 | 1538.8794 | 0.2115 | 3276.281 | 3128.3395 | 3870.0176 |
F9 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1068 | 27.353 | 3650.7722 | 0.9561 | 3507.6465 | 4541.3618 | 5647.2092 |
F9 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4034 | 11.5362 | 2527.0202 | 0.934 | 186.6183 | 648.8771 | 509.1589 |
F9 Time(s) | 2.7421 × 10−2 | 1.8986 × 10−2 | 4.9784 × 10−3 | 1.5623 × 10−2 | 9.6762 × 10−3 | 1.8831 × 10−2 | 0.0131 | 0.2201 | 0.0143 | 0.1396 | 1.9342 × 10−2 | 0.0339 | 1.2213 × 10−3 | 0.5506 |
F9 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 10 | 12 | 9 | 11 | 13 | 14 |
F10 Best | 0 | 0 | 28.4817 | 28.9152 | 27.1509 | 28.6782 | 28.8321 | 17.4889 | 312.084 | 27.8329 | 26.2799 | 443,156.311 | 366,499.537 | 776,195.6054 |
F10 Mean | 0 | 0 | 28.712 | 28.9617 | 27.7387 | 28.8545 | 28.9063 | 125.1043 | 824.2823 | 2922.7375 | 84.9944 | 564,518.114 | 1,112,877.96 | 1,294,452.428 |
F10 Std | 0 | 0 | 6.8177 × 10−2 | 2.1486 × 10−2 | 0.4435 | 8.5553 × 10−2 | 3.4005 × 10−2 | 88.9557 | 268.2789 | 5332.3357 | 88.684 | 148,774.305 | 385,312.034 | 186,334.3659 |
F10 Time(s) | 1.8567 | 1.7819 | 1.0809 × 10−2 | 2.7269 × 10−2 | 1.5192 × 10−2 | 2.3847 × 10−2 | 2.4665 × 10−2 | 0.2337 | 0.0197 | 0.1495 | 2.5653 × 10−2 | 0.0263 | 1.4139 × 10−3 | 0.5583 |
F10 Rank | 1 | 1 | 4 | 7 | 3 | 5 | 6 | 9 | 10 | 11 | 8 | 12 | 13 | 14 |
F11 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.1308 × 10−6 | 39.5478 | 1894.5796 | 7.0951 × 10−2 | 5708.8348 | 6581.6436 | 8724.161 |
F11 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.1196 × 10−2 | 120.5195 | 4949.618 | 0.1676 | 7220.6332 | 13817.1965 | 15909.7282 |
F11 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.3861 × 10−2 | 63.209 | 2266.4649 | 4.9575 × 10−2 | 1337.4239 | 4371.8978 | 2421.5444 |
F11 Time(s) | 0.0982 | 8.3352 × 10−2 | 0.0399 | 0.0859 | 0.044 | 0.0536 | 0.0841 | 0.261 | 4.8942 × 10−2 | 0.1893 | 5.4641 × 10−2 | 0.0316 | 2.4947 × 10−3 | 0.5855 |
F11 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 10 | 11 | 9 | 12 | 13 | 14 |
F12 Best | 0 | 0 | 0.6695 | 0.9898 | 0.6667 | 0.6756 | 0.9426 | 0.6744 | 69.4898 | 0.3427 | 0.8492 | 12,142.0846 | 11,518.7959 | 34,151.5626 |
F12 Mean | 0 | 1.9982 × 10−4 | 0.767 | 0.9959 | 0.6669 | 0.8505 | 0.9725 | 3.1722 | 231.0978 | 2.483 | 1.7969 | 22,449.9028 | 43,256.9561 | 44,770.0338 |
F12 Std | 0 | 2.6125 × 10−4 | 0.1199 | 3.1627 × 10−3 | 1.3003 × 10−4 | 0.1075 | 9.3781 × 10−3 | 1.8195 | 139.3265 | 2.5733 | 1.1575 | 7977.6302 | 13097.0083 | 5430.0965 |
F12 Time(s) | 0.0317 | 0.0207 | 0.0052 | 1.5725 × 10−2 | 9.9140 × 10−3 | 1.8636 × 10−2 | 1.3556 × 10−2 | 0.2236 | 0.0146 | 0.1378 | 0.0197 | 0.0292 | 1.1668 × 10−3 | 0.5524 |
F12 Rank | 1 | 2 | 4 | 7 | 3 | 5 | 6 | 10 | 11 | 9 | 8 | 12 | 13 | 14 |
F13 Best | 25.2111 | 1078.4966 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.3514 × 10−7 | 6.9049 × 10−4 | 0.0061 | 4.0105 × 10−2 |
F13 Mean | 137.7624 | 14,589,152.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2301 × 10−3 | 0.1082 | 519.2595 | 93.7392 |
F13 Std | 109.3553 | 32,824,190.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9873 × 10−3 | 0.1624 | 745.2069 | 141.3684 |
F13 Time(s) | 3.8810 × 10−2 | 2.2246 × 10−2 | 3.5922 × 10−2 | 7.7428 × 10−2 | 3.9963 × 10−2 | 0.0496 | 0.0756 | 0.2682 | 4.5103 × 10−2 | 0.0319 | 5.0539 × 10−2 | 0.0359 | 2.6594 × 10−3 | 0.5848 |
F13 Rank | 12 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 10 | 13 | 11 |
F14 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3861 | 5.2395 | 5.7217 | 0.783 |
F14 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1947.8304 | 27.0739 | 1077.7608 | 705.1322 |
F14 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2008.2646 | 14.897 | 1412.7496 | 708.58 |
F14 Time(s) | 0.0261 | 0.0198 | 5.0980 × 10−3 | 1.5748 × 10−2 | 0.0097 | 0.0187 | 1.3206 × 10−2 | 0.2302 | 0.0147 | 0.0357 | 1.9516 × 10−2 | 0.0293 | 0.0012 | 0.5495 |
F14 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 14 | 11 | 13 | 12 |
F15 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.5099 × 10−7 | 3.2750 × 10−7 | 1.8192 × 10−2 | 4.7326 × 10−3 | 0.6389 |
F15 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.5054 × 10−6 | 6.3075 × 10−3 | 0.1467 | 14.6566 | 29.034 |
F15 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.6659 × 10−6 | 1.0058 × 10−2 | 0.1302 | 28.8666 | 43.1852 |
F15 Time(s) | 2.9519 × 10−2 | 0.02 | 3.6948 × 10−2 | 0.0797 | 4.1501 × 10−2 | 0.0507 | 7.7772 × 10−2 | 0.2596 | 4.5894 × 10−2 | 0.0358 | 5.1558 × 10−2 | 0.0297 | 2.3669 × 10−3 | 0.6228 |
F15 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | 11 | 12 | 13 | 14 |
F16 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.9833 | 91.1099 | 70.3276 | 109.4377 | 251.0689 | 297.7145 | 297.6154 |
F16 Mean | 0 | 0 | 0 | 0 | 0 | 21.4477 | 44.8648 | 9.0016 | 169.7599 | 122.5299 | 161.6984 | 259.8313 | 337.4773 | 344.6979 |
F16 Std | 0 | 0 | 0 | 0 | 0 | 54.8148 | 82.7902 | 3.2511 | 32.5259 | 32.9449 | 41.9444 | 6.5579 | 17.8172 | 17.3044 |
F16 Time(s) | 3.6488 × 10−2 | 2.1836 × 10−2 | 6.5039 × 10−3 | 2.4299 × 10−2 | 0.0118 | 2.1001 × 10−2 | 0.0256 | 0.2331 | 2.1004 × 10−2 | 0.1421 | 2.5895 × 10−2 | 0.0245 | 1.4741 × 10−3 | 0.5664 |
F16 Rank | 1 | 1 | 1 | 1 | 1 | 7 | 8 | 6 | 11 | 9 | 10 | 12 | 13 | 14 |
F17 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.0287 | 70.4744 | 21 | 155.0034 | 258.3868 | 257.7023 | 248.8714 |
F17 Mean | 0 | 0 | 0 | 1.0507 × 10−8 | 11.1028 | 49.2463 | 115.955 | 9.4965 | 176.7935 | 42.1495 | 206.8601 | 281.0974 | 311.2447 | 305.4808 |
F17 Std | 0 | 0 | 0 | 3.6072 × 10−8 | 43.3103 | 60.8974 | 77.7255 | 2.8768 | 38.4849 | 18.079 | 30.806 | 15.6325 | 26.6802 | 18.2432 |
F17 Time(s) | 0.0301 | 0.0221 | 6.8767 × 10−3 | 3.2395 × 10−2 | 1.3646 × 10−2 | 2.3441 × 10−2 | 3.1329 × 10−2 | 0.2307 | 2.3152 × 10−2 | 0.1318 | 0.0276 | 0.0352 | 0.0016 | 0.5648 |
F17 Rank | 1 | 1 | 1 | 4 | 6 | 8 | 9 | 5 | 10 | 7 | 11 | 12 | 14 | 13 |
F18 Best | 0 | 0 | 0 | 0 | 0 | 0 | 1.9024 × 10−8 | 1.9620 × 10−3 | 1.211 | 7.7482 | 5.2772 × 10−2 | 17.3383 | 15.0377 | 16.5686 |
F18 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 2.7516 × 10−8 | 0.756 | 2.4328 | 12.5622 | 6.3955 | 17.592 | 16.2281 | 17.2635 |
F18 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7139 | 0.4835 | 2.8488 | 7.4417 | 0.2121 | 0.6602 | 0.2797 |
F18 Time(s) | 3.9665 × 10−2 | 2.4574 × 10−2 | 6.8717 × 10−3 | 2.0754 × 10−2 | 0.0122 | 2.0866 × 10−2 | 1.9857 × 10−2 | 0.2399 | 0.0216 | 0.1509 | 0.0262 | 0.026 | 1.6078 × 10−3 | 0.5749 |
F18 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 8 | 9 | 11 | 10 | 14 | 12 | 13 |
F19 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.7373 × 10−2 | 5.5459 × 10−2 | 44.4994 | 9.7781 × 10−4 | 251.4396 | 217.33 | 276.6861 |
F19 Mean | 0 | 0 | 6.1988 × 10−2 | 0 | 4.6423 × 10−3 | 5.3737 × 10−3 | 0 | 0.2573 | 0.1391 | 163.32 | 255.7776 | 277.7318 | 316.6874 | 371.6827 |
F19 Std | 0 | 0 | 0.236 | 0 | 2.5427 × 10−2 | 2.9433 × 10−2 | 0 | 0.2165 | 5.3178 × 10−2 | 73.5493 | 216.7762 | 22.1084 | 41.3534 | 34.9386 |
F19 Time(s) | 0.1623 | 0.115 | 0.0116 | 2.7403 × 10−2 | 1.6550 × 10−2 | 0.027 | 2.7819 × 10−2 | 0.2399 | 2.6147 × 10−2 | 0.1536 | 2.9002 × 10−2 | 0.0267 | 0.0017 | 0.5777 |
F19 Rank | 1 | 1 | 7 | 1 | 5 | 6 | 1 | 9 | 8 | 10 | 11 | 12 | 13 | 14 |
F20 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.4821 × 10−5 | 2.0752 | 1.2147 | 4.7314 | 16.8585 | 35.6176 | 35.7455 |
F20 Mean | 0 | 4.1074 × 10−7 | 0 | 0 | 0.6393 | 0 | 0 | 3.2476 × 10−3 | 5.6527 | 6.3539 | 7.2314 | 21.2742 | 46.2738 | 44.1548 |
F20 Std | 0 | 2.1893 × 10−6 | 0 | 0 | 3.5015 | 0 | 1.2303 × 10−8 | 6.5164 × 10−3 | 2.2916 | 5.2892 | 2.0369 | 3.3503 | 4.0218 | 2.973 |
F20 Time(s) | 0.0231 | 0.0198 | 6.4092 × 10−3 | 1.8716 × 10−2 | 1.1262 × 10−2 | 2.0097 × 10−2 | 2.3484 × 10−2 | 0.2325 | 1.9482 × 10−2 | 0.1495 | 2.4172 × 10−2 | 0.0255 | 1.4180 × 10−3 | 0.5768 |
F20 Rank | 1 | 6 | 1 | 1 | 8 | 1 | 5 | 7 | 9 | 10 | 11 | 12 | 14 | 13 |
F21 Best | 0 | 0 | 2.1148 × 10−3 | 0.5079 | 3.0826 × 10−3 | 0.3587 | 0.2319 | 0 | 8.6050 × 10−3 | 0 | 1.7544 | 6.5647 | 8.2759 | 10.3408 |
F21 Mean | 0 | 2.8567 × 10−7 | 2.9429 × 10−2 | 0.9424 | 1.1607 × 10−2 | 0.6078 | 0.4724 | 1.7299 × 10−2 | 4.2368 × 10−2 | 1.3318 × 10−6 | 3.9486 | 8.8072 | 13.4582 | 12.6119 |
F21 Std | 0 | 4.3539 × 10−7 | 3.0725 × 10−2 | 0.1709 | 8.9169 × 10−3 | 0.1962 | 0.1309 | 6.1369 × 10−2 | 3.1413 × 10−2 | 2.1931 × 10−6 | 1.1765 | 1.4282 | 2.1139 | 1.1492 |
F21 Time(s) | 1.9423 | 1.7516 | 0.0965 | 0.1995 | 0.1 | 0.1084 | 0.1971 | 0.3318 | 0.1064 | 0.2921 | 0.111 | 0.0479 | 0.0045 | 0.6564 |
F21 Rank | 1 | 2 | 6 | 10 | 4 | 9 | 8 | 5 | 7 | 3 | 11 | 12 | 14 | 13 |
F22 Best | 0 | 0 | 3.5834 × 10−3 | 2.1566 | 0.048 | 1.6618 | 2.005 | 1.3087 × 10−8 | 0.2014 | 0.011 | 2.6443 × 10−3 | 14.3253 | 9.0591 | 10.2405 |
F22 Mean | 0 | 6.6016 × 10−7 | 0.1033 | 2.8489 | 0.1379 | 2.6876 | 2.7511 | 6.2585 × 10−3 | 0.5728 | 1.0989 × 10−2 | 1.2149 × 10−2 | 17.6382 | 13.679 | 15.704 |
F22 Std | 0 | 1.2625 × 10−6 | 0.1066 | 0.1957 | 7.5121 × 10−2 | 0.3906 | 0.3166 | 1.2020 × 10−2 | 0.2049 | 2.0861 × 10−6 | 1.4515 × 10−2 | 2.4804 | 1.8625 | 1.5966 |
F22 Time(s) | 1.7935 | 1.5898 | 0.0989 | 0.1989 | 0.1018 | 0.1109 | 0.2019 | 0.3374 | 0.1086 | 0.294 | 0.1133 | 0.0371 | 0.0046 | 0.6562 |
F22 Rank | 1 | 2 | 6 | 11 | 7 | 9 | 10 | 3 | 8 | 4 | 5 | 14 | 12 | 13 |
F23 Best | 0 | 0 | 6.2351 × 10−4 | 6.1177 | 1.2115 × 10−2 | 6.0541 | 6.4779 | 0.0124 | 0.6915 | 1.2395 × 10−2 | 0.158 | 2.847 | 8.1607 | 12.1094 |
F23 Mean | 0 | 1.9215 × 10−4 | 0.3656 | 15.9904 | 0.3676 | 10.2128 | 12.6304 | 0.0544 | 5.6636 | 2.3468 × 10−2 | 0.6944 | 4.1375 | 14.715 | 14.6409 |
F23 Std | 0 | 3.3954 × 10−4 | 0.4608 | 4.0057 | 0.4447 | 1.8923 | 2.2726 | 7.6478 × 10−2 | 4.1001 | 1.7110 × 10−2 | 0.5712 | 1.2498 | 2.599 | 1.6099 |
F23 Time(s) | 1.3545 | 1.2704 | 1.2930 × 10−2 | 0.0312 | 0.0182 | 2.6490 × 10−2 | 0.0336 | 0.2377 | 0.0243 | 0.1543 | 0.0295 | 0.0271 | 1.6134 × 10−3 | 0.5618 |
F23 Rank | 1 | 2 | 5 | 14 | 6 | 10 | 11 | 4 | 9 | 3 | 7 | 8 | 13 | 12 |
F24 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3174 × 10−4 | 1.2069 | 0 | 34.7618 | 14.3067 | 39.3755 |
F24 Mean | 0 | 0 | 0 | 7.8268 × 10−5 | 0 | 5.7624 | 1.6588 | 4.9605 × 10−4 | 4.8583 | 1.779 | 7.8172 | 40.0183 | 18.408 | 42.6382 |
F24 Std | 0 | 0 | 0 | 1.7532 × 10−4 | 0 | 8.3353 | 3.0844 | 2.6863 × 10−3 | 3.8653 | 0.6616 | 6.4364 | 3.3385 | 2.2842 | 1.0708 |
F24 Time(s) | 1.5564 | 1.256 | 1.073 | 2.0872 | 1.0772 | 1.0734 | 2.1138 | 1.3639 | 1.106 | 1.7033 | 1.0881 | 0.1989 | 3.8840 × 10−2 | 1.5972 |
F24 Rank | 1 | 1 | 1 | 5 | 1 | 10 | 7 | 6 | 9 | 8 | 11 | 13 | 12 | 14 |
F25 Best | 0 | 0 | 0 | 9.9496 × 10−2 | 0 | 9.9496 × 10−2 | 0.3981 | 2.4874 | 0.8955 | 36.4958 | 0.8955 | 97.7456 | 108.255 | 135.0328 |
F25 Mean | 0 | 0 | 0.1526 | 9.9497 × 10−2 | 0.1658 | 9.9496 × 10−2 | 0.8459 | 5.4163 | 1.716 | 57.7653 | 1.5654 | 129.9475 | 145.4765 | 170.0775 |
F25 Std | 0 | 0 | 0.1425 | 2.3512 × 10−6 | 0.1835 | 7.3556 × 10−7 | 0.1513 | 1.752 | 0.3619 | 29.1443 | 0.4072 | 22.35 | 22.63 | 12.2997 |
F25 Time(s) | 3.5189 × 10−2 | 2.0889 × 10−2 | 6.0106 × 10−3 | 1.8021 × 10−2 | 1.0965 × 10−2 | 1.9399 × 10−2 | 1.5407 × 10−2 | 0.2293 | 1.5514 × 10−2 | 0.1423 | 2.0651 × 10−2 | 0.0271 | 1.2769 × 10−3 | 0.5573 |
F25 Rank | 1 | 1 | 5 | 4 | 6 | 3 | 7 | 10 | 9 | 11 | 8 | 12 | 13 | 14 |
F26 Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5132 × 10−6 | 16.4149 | 63.8909 | 1.4907 | 135.6216 | 186.4904 | 253.5763 |
F26 Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5355 | 24.0663 | 97.2697 | 4.6319 | 234.5143 | 276.4403 | 323.3349 |
F26 Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2113 | 5.0202 | 34.1846 | 2.0569 | 56.6051 | 38.8565 | 25.8319 |
F26 Time(s) | 2.4409 × 10−2 | 1.9670 × 10−2 | 7.4357 × 10−3 | 2.0204 × 10−2 | 1.3020 × 10−2 | 0.0214 | 2.1382 × 10−2 | 0.2312 | 2.6075 × 10−2 | 0.1467 | 2.9143 × 10−2 | 0.033 | 1.7073 × 10−3 | 0.5669 |
F26 Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 10 | 11 | 9 | 12 | 13 | 14 |
Paired rank +/=/− | 8/18/0 | 15/10/1 | 11/14/1 | 10/15/1 | 12/13/1 | 13/12/1 | 21/4/1 | 22/3/1 | 24/1/1 | 24/1/1 | 24/1/1 | 23/2/1 | 25/1/0 | |
Avg. rank | 1.42 | 2.38 | 3.23 | 3.54 | 3.69 | 3.81 | 4.73 | 6.00 | 8.08 | 8.38 | 8.92 | 11.38 | 12.58 | 12.77 |
Overall rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Algorithms | Friedman Scores | Rank |
---|---|---|
AGG-GCRA | 1.7308 | 1 |
GCRA | 3.3077 | 2 |
BOA | 7.7692 | 8 |
WOA | 5.1154 | 4 |
GOOSE | 8.8846 | 11 |
AOA | 5.2308 | 5 |
PSO | 8.8462 | 10 |
DE | 12.8462 | 13 |
ACO | 13.0769 | 14 |
NSM-BO | 6.6538 | 7 |
PSOBOA | 6.5385 | 6 |
FDB-AGSK | 4.9231 | 3 |
LHS-PLS | 11.6154 | 12 |
Patternsearch | 8.4615 | 9 |
Algorithms | Wilcoxon Test p-Value | Significant |
---|---|---|
AGG-GCRA-GCRA | 1.3183 × 10−4 | Yes |
AGG-GCRA-BOA | 9.6755 × 10−5 | Yes |
AGG-GCRA-WOA | 1.5487 × 10−3 | Yes |
AGG-GCRA-GOOSE | 7.0443 × 10−5 | Yes |
AGG-GCRA-AOA | 2.9531 × 10−4 | Yes |
AGG-GCRA-PSO | 7.0443 × 10−5 | Yes |
AGG-GCRA-DE | 9.3386 × 10−6 | Yes |
AGG-GCRA-ACO | 9.3386 × 10−6 | Yes |
AGG-GCRA-NSM-BO | 4.6925 × 10−4 | Yes |
AGG-GCRA-PSOBOA | 3.7291 × 10−4 | Yes |
AGG-GCRA-FDB-AGSK | 2.3556 × 10−3 | Yes |
AGG-GCRA-LHS-PLS | 1.8726 × 10−5 | Yes |
AGG-GCRA-Patternsearch | 4.1000 × 10−5 | Yes |
Algorithm | Optimal Value | X1 | X2 | X3 | X4 | X5 | X6 | X7 | ACTs |
---|---|---|---|---|---|---|---|---|---|
AGG-GCRA | 2994.2343 | 3.499 | 0.7 | 17 | 7.3 | 7.7152 | 3.3505 | 5.2867 | 0.2735 |
GCRA | 2994.2343 | 3.499 | 0.7 | 17 | 7.3 | 7.7152 | 3.3505 | 5.2867 | 0.2276 |
BOA | 3129.3275 | 3.6 | 0.7 | 17 | 8.0137 | 8.056 | 3.3529 | 5.4114 | 0.3277 |
WOA | 3008.3606 | 3.4992 | 0.7 | 17 | 7.3 | 8.067 | 3.3752 | 5.2868 | 0.166 |
GOOSE | 2998.1153 | 3.5007 | 0.7 | 17 | 7.4365 | 7.8026 | 3.3516 | 5.2867 | 0.1863 |
AOA | 3007.0453 | 3.4921 | 0.7 | 17 | 7.3 | 7.7122 | 3.3583 | 5.2867 | 0.1636 |
PSO | 2994.2343 | 3.499 | 0.7 | 17 | 7.3 | 7.7152 | 3.3505 | 5.2867 | 0.1949 |
DE | 3028.0132 | 3.506 | 0.7 | 17 | 8.3 | 8.2652 | 3.3825 | 5.2897 | 0.0066 |
ACO | 3148.4498 | 3.56 | 0.7119 | 17.0492 | 8.1819 | 7.9502 | 3.5407 | 5.2887 | 0.2844 |
NSM-BO | 2994.2343 | 3.499 | 0.7 | 17 | 7.3 | 7.7152 | 3.3505 | 5.2867 | 0.4035 |
PSOBOA | 3067.0392 | 4.5055 | 1.7 | 18 | 8.9677 | 9.0821 | 4.3938 | 6.3556 | 0.3273 |
FDB-AGSK | 2994.2364 | 3.499 | 0.7 | 17 | 7.3 | 7.7152 | 3.3505 | 5.2867 | 0.1024 |
Algorithm | Best | Mean | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 2994.2343 | 2994.2343 | 2994.2343 | 2994.2343 | 0 | 1 |
GCRA | 2994.2343 | 3081.6584 | 3187.6037 | 3068.9192 | 47.2691 | 6 |
BOA | 3129.3275 | 5144.0961 | 24,197.8576 | 3796.02 | 4608.6811 | 11 |
WOA | 3008.3606 | 3330.8251 | 5331.2281 | 3128.3262 | 527.3161 | 9 |
GOOSE | 2998.1153 | 3033.1401 | 3500.4813 | 3007.9772 | 110.0764 | 5 |
AOA | 3007.0453 | 5720.7911 | 13,313.9628 | 4494.0398 | 2918.6664 | 12 |
PSO | 2994.2343 | 3001.0945 | 3033.7004 | 2994.2343 | 14.3376 | 4 |
DE | 3028.0132 | 3112.3207 | 3399.8135 | 3085.2303 | 87.0902 | 7 |
ACO | 3148.4498 | 3281.7124 | 3493.0759 | 3270.6093 | 92.2613 | 8 |
NSM-BO | 2994.2343 | 2994.2343 | 2994.2343 | 2994.2343 | 0 | 1 |
PSOBOA | 3067.0392 | 5036.9274 | 18,460.9648 | 3296.2795 | 4299.0119 | 10 |
FDB-AGSK | 2994.2364 | 2994.5136 | 2996.9713 | 2994.3043 | 0.6662 | 3 |
Algorithm | Optimal Value | d | D | N | ACTs |
---|---|---|---|---|---|
AGG-GCRA | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.239 |
GCRA | 0.0128 | 0.05 | 0.3172 | 14.1083 | 0.2164 |
BOA | 0.0134 | 0.0521 | 0.3671 | 10.7045 | 0.2876 |
WOA | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.1451 |
GOOSE | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.152 |
AOA | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.141 |
PSO | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.1734 |
DE | 0.0132 | 0.05 | 0.3105 | 15 | 0.0058 |
ACO | 0.0138 | 0.0543 | 0.4041 | 9.528 | 0.1868 |
NSM-BO | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.3903 |
PSOBOA | 0.0168 | 0.1259 | 1.3967 | 10.7521 | 0.2882 |
FDB-AGSK | 0.0127 | 0.0521 | 0.3671 | 10.7045 | 0.0886 |
Algorithm | Best | Mean | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 0.0127 | 0.0127 | 0.0127 | 0.0127 | 0 | 1 |
GCRA | 0.0128 | 0.0133 | 0.0156 | 0.0132 | 0.0006 | 6 |
BOA | 0.0134 | 212.8719 | 2251.7441 | 0.0225 | 573.477 | 10 |
WOA | 0.0127 | 0.0132 | 0.0145 | 0.0132 | 0.0005 | 5 |
GOOSE | 0.0127 | 0.013 | 0.0141 | 0.0128 | 0.0004 | 4 |
AOA | 0.0127 | 1387.6809 | 27,743.633 | 0.0135 | 6203.5478 | 11 |
PSO | 0.0127 | 0.0134 | 0.0156 | 0.0131 | 0.0009 | 7 |
DE | 0.0132 | 0.0185 | 0.0344 | 0.0174 | 0.005 | 9 |
ACO | 0.0138 | 0.018 | 0.0237 | 0.0175 | 0.0029 | 8 |
NSM-BO | 0.0127 | 0.0127 | 0.0127 | 0.0127 | 0 | 1 |
PSOBOA | 0.0168 | 26,132.2492 | 82,511.1867 | 17,171.2997 | 30,481.7 | 12 |
FDB-AGSK | 0.0127 | 0.0127 | 0.0128 | 0.0127 | 0 | 1 |
Algorithm | Optimal Value | h | l | t | b | ACTs |
---|---|---|---|---|---|---|
AGG-GCRA | 1.6702 | 0.1988 | 3.3373 | 9.192 | 0.1988 | 0.3286 |
GCRA | 1.6702 | 0.1988 | 3.3373 | 9.192 | 0.1988 | 0.2971 |
BOA | 2.2363 | 0.125 | 6.0015 | 8.3417 | 0.2657 | 0.3357 |
WOA | 1.788 | 0.2012 | 3.4429 | 8.6622 | 0.2248 | 0.1704 |
GOOSE | 1.7436 | 0.2079 | 3.2831 | 8.8037 | 0.2168 | 0.1784 |
AOA | 1.7853 | 0.1356 | 5.1079 | 9.184 | 0.1992 | 0.1663 |
PSO | 1.6702 | 0.1988 | 3.3373 | 9.192 | 0.1988 | 0.2009 |
DE | 2.0497 | 0.2083 | 4.836 | 8.6484 | 0.2319 | 0.0067 |
ACO | 1.8356 | 0.1757 | 3.768 | 9.8449 | 0.2028 | 0.2329 |
NSM-BO | 1.6702 | 0.1988 | 3.3373 | 9.192 | 0.1988 | 0.4244 |
PSOBOA | 2.2385 | 0.875 | 5.7481 | 7.3978 | 1.1241 | 0.3362 |
FDB-AGSK | 1.6703 | 0.1989 | 3.3368 | 9.192 | 0.1988 | 0.0987 |
Algorithm | Best | Mean | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 1.6702 | 1.6718 | 1.7012 | 1.6702 | 0.0511 | 1 |
GCRA | 1.6702 | 1.7347 | 1.782 | 1.7345 | 0.0216 | 5 |
BOA | 2.2363 | 2.8197 | 3.4998 | 2.7493 | 0.3204 | 11 |
WOA | 1.788 | 2.5983 | 4.7071 | 2.3527 | 0.7257 | 8 |
GOOSE | 1.7436 | 2.028 | 2.6252 | 2.0319 | 0.2338 | 6 |
AOA | 1.7853 | 3.0729 | 3.6827 | 3.1841 | 0.5627 | 12 |
PSO | 1.6702 | 1.7068 | 1.9185 | 1.6723 | 0.0681 | 4 |
DE | 2.0497 | 2.6444 | 3.9293 | 2.5199 | 0.4794 | 10 |
ACO | 1.8356 | 2.3162 | 2.8637 | 2.311 | 0.256 | 7 |
NSM-BO | 1.6702 | 1.6849 | 1.8167 | 1.6702 | 0.0451 | 3 |
PSOBOA | 2.2385 | 2.6202 | 3.2595 | 2.6091 | 0.2433 | 9 |
FDB-AGSK | 1.6703 | 1.6723 | 1.6802 | 1.6714 | 0.0025 | 2 |
Algorithm | Optimal Value | L | r | D | ACTs |
---|---|---|---|---|---|
AGG-GCRA | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.1985 |
GCRA | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.1644 |
BOA | 1,677,905.674 | 23.9545 | 1.1382 | 20 | 0.169 |
WOA | 1,677,759.276 | 24.4691 | 1.1587 | 20 | 0.085 |
GOOSE | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.0939 |
AOA | 1,677,762.951 | 24.3611 | 1.1576 | 20 | 0.0828 |
PSO | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.115 |
DE | 1,678,411.336 | 23.5748 | 1.1109 | 20 | 0.0038 |
ACO | 1,911,487.417 | 26.3278 | 1.2053 | 22.5931 | 0.1507 |
NSM-BO | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.3045 |
PSOBOA | 1,685,732.677 | 21 | 1.1129 | 21 | 0.1701 |
FDB-AGSK | 1,677,759.276 | 24.469 | 1.1587 | 20 | 0.0641 |
Algorithm | Mean | Best | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 1677,759.276 | 0 | 1 |
GCRA | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 0 | 1 |
BOA | 1,677,905.674 | 1,684,415.954 | 1,685,732.772 | 1,685,732.68 | 2746.038 | 9 |
WOA | 1,677,759.276 | 1,677,759.276 | 1,677,759.28 | 1,677,759.276 | 0.001 | 1 |
GOOSE | 1,677,759.276 | 1,717,117.313 | 2,342,300.295 | 1,681,853.006 | 147,350.6514 | 1 |
AOA | 1,677,762.951 | 1,705,262.898 | 1,900,901.635 | 1,685,744.13 | 57,901.2131 | 8 |
PSO | 1,677,759.276 | 1,728,464.905 | 2,675,925.065 | 1,677,759.276 | 223,022.4058 | 1 |
DE | 1,678,411.336 | 1,844,361.336 | 2,771,701.929 | 1,738,970.151 | 273,878.2691 | 10 |
ACO | 1,911,487.417 | 2,109,740.559 | 2,392,295.085 | 2,082,094.482 | 136,205.472 | 12 |
NSM-BO | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 0 | 1 |
PSOBOA | 1,685,732.677 | 1,685,733.183 | 1,685,736.165 | 1,685,732.859 | 0.8409 | 11 |
FDB-AGSK | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 1,677,759.276 | 0 | 1 |
Algorithm | Optimal Value | X1 | X2 | ACTs |
---|---|---|---|---|
AGG-GCRA | 263.8523 | 0.7884 | 0.4081 | 0.2554 |
GCRA | 263.8537 | 0.7884 | 0.4081 | 0.218 |
BOA | 265.0689 | 0.7843 | 0.4202 | 0.2835 |
WOA | 265.8775 | 0.789 | 0.4064 | 0.1926 |
GOOSE | 263.8524 | 0.7884 | 0.4081 | 0.4691 |
AOA | 264.4814 | 0.7882 | 0.4087 | 0.1346 |
PSO | 263.8525 | 0.7884 | 0.4081 | 0.1695 |
DE | 264.965 | 0.788 | 0.4096 | 0.0056 |
ACO | 264.2652 | 0.7858 | 0.4153 | 0.1618 |
NSM-BO | 263.8523 | 0.7884 | 0.4081 | 0.3629 |
PSOBOA | 267.1286 | 1.7813 | 1.1281 | 0.282 |
FDB-AGSK | 263.8523 | 0.7884 | 0.4081 | 0.0849 |
Algorithm | Best | Mean | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 263.8523 | 263.8523 | 263.8523 | 263.8523 | 0 | 1 |
GCRA | 263.8523 | 263.8523 | 263.8537 | 263.8523 | 0 | 1 |
BOA | 263.876 | 264.258 | 265.0689 | 264.1948 | 0.3369 | 10 |
WOA | 263.8526 | 264.422 | 265.8775 | 264.0941 | 0.6677 | 11 |
GOOSE | 263.8523 | 263.8524 | 263.8524 | 263.8523 | 0 | 1 |
AOA | 263.8524 | 263.987 | 264.4814 | 263.8798 | 0.2106 | 12 |
PSO | 263.8523 | 263.8524 | 263.8525 | 263.8523 | 0 | 1 |
DE | 263.8605 | 264.0924 | 264.965 | 264.045 | 0.2505 | 9 |
ACO | 263.8651 | 263.9623 | 264.2652 | 263.9431 | 0.0979 | 8 |
NSM-BO | 263.8523 | 263.8523 | 263.8523 | 263.8523 | 0 | 1 |
PSOBOA | 263.9719 | 264.8713 | 267.1286 | 264.5127 | 0.8816 | 7 |
FDB-AGSK | 263.8523 | 263.8523 | 263.8523 | 263.8523 | 0 | 1 |
Algorithm | Optimal Value | X1 | X2 | X3 | X4 | X5 | ACTs |
---|---|---|---|---|---|---|---|
AGG-GCRA | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.3157 |
GCRA | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.2874 |
BOA | 0.2523 | 68.3183 | 90 | 1 | 247.3377 | 2 | 0.7765 |
WOA | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.1887 |
GOOSE | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.1963 |
AOA | 0.2356 | 69.969 | 90 | 1 | 469.3174 | 2 | 0.1883 |
PSO | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.2167 |
DE | 0.2363 | 69.8969 | 90 | 1 | 748.143 | 2 | 0.0074 |
ACO | 0.2444 | 70.2503 | 90.3606 | 1.0113 | 4.3049 | 2.053 | 0.2714 |
NSM-BO | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.4129 |
PSOBOA | 0.2368 | 68.8458 | 91 | 0 | 48.7086 | 1 | 0.3751 |
FDB-AGSK | 0.2352 | 70 | 90 | 1 | 1000 | 2 | 0.1074 |
Algorithm | Best | Mean | Worst | Median | Std | Rank |
---|---|---|---|---|---|---|
AGG-GCRA | 0.2352 | 0.2352 | 0.2352 | 0.2352 | 0 | 1 |
GCRA | 0.2352 | 0.2401 | 0.2617 | 0.2352 | 0.0024 | 7 |
BOA | 0.2523 | 0.3163 | 0.3308 | 0.3308 | 0.0231 | 11 |
WOA | 0.2352 | 0.2352 | 0.2352 | 0.2352 | 0 | 1 |
GOOSE | 0.2352 | 0.2399 | 0.2543 | 0.2352 | 0.0068 | 6 |
AOA | 0.2356 | 0.2562 | 0.3024 | 0.2522 | 0.0209 | 9 |
PSO | 0.2352 | 0.2352 | 0.2352 | 0.2352 | 0 | 1 |
DE | 0.2363 | 0.2433 | 0.2609 | 0.2413 | 0.0064 | 8 |
ACO | 0.2444 | 0.2772 | 0.3 | 0.2772 | 0.0133 | 10 |
NSM-BO | 0.2352 | 0.2352 | 0.2352 | 0.2352 | 0 | 1 |
PSOBOA | 0.2368 | 0.3255 | 0.3308 | 0.3308 | 0.021 | 12 |
FDB-AGSK | 0.2352 | 0.2352 | 0.2352 | 0.2352 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Tian, Z.; Zhang, K.; Zhao, F.; Zhao, A. An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems. Biomimetics 2025, 10, 612. https://doi.org/10.3390/biomimetics10090612
Chen Y, Tian Z, Zhang K, Zhao F, Zhao A. An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems. Biomimetics. 2025; 10(9):612. https://doi.org/10.3390/biomimetics10090612
Chicago/Turabian StyleChen, Yepei, Zhangzhi Tian, Kaifan Zhang, Feng Zhao, and Aiping Zhao. 2025. "An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems" Biomimetics 10, no. 9: 612. https://doi.org/10.3390/biomimetics10090612
APA StyleChen, Y., Tian, Z., Zhang, K., Zhao, F., & Zhao, A. (2025). An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems. Biomimetics, 10(9), 612. https://doi.org/10.3390/biomimetics10090612