Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques
Abstract
1. Introduction
2. Datasets and Processing
3. Preliminaries
4. SED-xLSTM
4.1. Overview
4.2. Detailed Structure
4.3. Model with Filter Bank
4.4. Training Settings
5. Performance Analysis
5.1. Baseline Methods
5.2. Comparison Experiment
5.3. Ablation Study
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, S.; Singh, S. Systematic review of spell-checkers for highly inflectional languages. Artif. Intell. Rev. 2020, 53, 4051–4092. [Google Scholar] [CrossRef]
- Yan, Z.; Chang, Y.; Yuan, L.; Wei, F.; Wang, X.; Dong, X.; Han, H. Deep Learning-Driven Robot Arm Control Fusing Convolutional Visual Perception and Predictive Modeling for Motion Planning. J. Organ. End User Comput. (JOEUC) 2024, 36, 1–29. [Google Scholar] [CrossRef]
- Ramadan, R.A.; Altamimi, A.B. Unraveling the potential of brain-computer interface technology in medical diagnostics and rehabilitation: A comprehensive literature review. Health Technol. 2024, 14, 263–276. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C.; Welke, S.; Rötting, M. Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In Foundations of Augmented Cognition, Neuroergonomics and Operational Neuroscience, Proceedings of the 5th International Conference, FAC 2009 Held as Part of HCI International, San Diego, CA, USA, 19–24 July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 759–771. [Google Scholar]
- Wu, J.; Wang, J. An Analysis of Traditional Methods and Deep Learning Methods in SSVEP-Based BCI: A Survey. Electronics 2024, 13, 2767. [Google Scholar] [CrossRef]
- Chen, X.; Huang, X.; Wang, Y.; Gao, X. Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3140–3147. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 2006, 53, 2610–2614. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, S.; Jung, T.P.; Gao, X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. J. Neural Eng. 2015, 12, 046008. [Google Scholar] [CrossRef]
- Nakanishi, M.; Wang, Y.; Chen, X.; Wang, Y.-T.; Gao, X.; Jung, T.-P. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 2017, 65, 104–112. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Z.; Xu, R.; Liu, C.; Wang, X.; Cichocki, A. Robust similarity measurement based on a novel time filter for SSVEPs detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 4096–4105. [Google Scholar] [CrossRef]
- Deng, Y.; Ji, Z.; Wang, Y.; Zhou, S.K. OS-SSVEP: One-shot SSVEP classification. Neural Netw. 2024, 180, 106734. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Shi, N.; Wang, Y.; Gao, S.; Gao, X. Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1998–2007. [Google Scholar] [CrossRef] [PubMed]
- Cherloo, M.N.; Amiri, H.K.; Daliri, M.R. Spatio-spectral CCA (SS-CCA): A novel approach for frequency recognition in SSVEP-based BCI. J. Neurosci. Methods 2022, 371, 109499. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, S.; Ming, D. Enhancing ssvep identification with less individual calibration data using periodically repeated component analysis. IEEE Trans. Biomed. Eng. 2023, 71, 1319–1331. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; McAlpine, D.; Zhang, Y. A survey on deep learning-based non-invasive brain signals: Recent advances and new frontiers. J. Neural Eng. 2021, 18, 031002. [Google Scholar] [CrossRef]
- Xu, D.; Tang, F.; Li, Y.; Zhang, Q.; Feng, X. An analysis of deep learning models in SSVEP-based BCI: A survey. Brain Sci. 2023, 13, 483. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Zhang, Y.; Zhang, Y. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition. J. Neural Eng. 2022, 19, 056014. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Shan, J.; Fang, B.; Wang, C.; Sun, F.; Li, X. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2615–2624. [Google Scholar] [CrossRef]
- Yao, H.; Liu, K.; Deng, X.; Tang, X.; Yu, H. FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection. J. Neurosci. Methods 2022, 379, 109674. [Google Scholar] [CrossRef] [PubMed]
- Ravi, A.; Beni, N.H.; Manuel, J.; Jiang, N. Comparing user-dependent and user-independent training of CNN for SSVEP BCI. J. Neural Eng. 2020, 17, 026028. [Google Scholar] [CrossRef]
- Lin, Y.; Zang, B.; Guo, R.; Liu, Z.; Gao, X. A deep learning method for SSVEP classification based on phase and frequency characteristics. J. Electron. Inf. Technol. 2022, 44, 446–454. [Google Scholar]
- Wang, X.; Cui, X.; Liang, S.; Chen, C. A Fast Recognition Method of SSVEP Signals Based on Time-Frequency Multiscale. J. Electron. Inf. Technol. 2023, 45, 2788–2795. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Xiong, H.; Song, J.; Liu, J.; Han, Y. Deep transfer learning-based SSVEP frequency domain decoding method. Biomed. Signal Process. Control 2024, 89, 105931. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, B.; Yuan, X.; Pan, S.; Tong, H.; Pei, J. Trustworthy graph neural networks: Aspects, methods, and trends. Proc. IEEE 2024, 112, 97–139. [Google Scholar] [CrossRef]
- Jang, S.; Moon, S.E.; Lee, J.S. EEG-based video identification using graph signal modeling and graph convolutional neural network. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3066–3070. [Google Scholar]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef]
- Zhang, S.; An, D.; Liu, J.; Chen, J.; Wei, Y.; Sun, F. Dynamic decomposition graph convolutional neural network for SSVEP-based brain–computer interface. Neural Netw. 2024, 172, 106075. [Google Scholar] [CrossRef]
- Liu, J.; Wang, R.; Yang, Y.; Zong, Y.; Leng, Y.; Zheng, W.; Ge, S. Convolutional Transformer-based Cross Subject Model for SSVEP-based BCI Classification. IEEE J. Biomed. Heal. Inform. 2024, 28, 6581–6593. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Sun, J.; Ma, Z.; Qin, L.; Li, G.; Zhou, H.; Zhan, Y. A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2126–2136. [Google Scholar] [CrossRef]
- Wan, Z.; Li, M.; Liu, S.; Huang, J.; Tan, H.; Duan, W. EEGformer: A transformer–based brain activity classification method using EEG signal. Front. Neurosci. 2023, 17, 1148855. [Google Scholar] [CrossRef]
- Mao, S.; Gao, S. Enhancing SSEVP Classification via Hybrid Convolutional-Transformer Networks. In Proceedings of the 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 26–28 July 2024; pp. 562–570. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998. [Google Scholar]
- Beck, M.; Pöppel, K.; Spanring, M.; Auer, A.; Prudnikova, O.; Kopp, M.; Klambauer, G.; Brandstetter, J.; Hochreiter, S. xlstm: Extended long short-term memory. arXiv 2024, arXiv:2405.04517. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Liu, B.; Huang, X.; Wang, Y.; Chen, X.; Gao, X. BETA: A large benchmark database toward SSVEP-BCI application. Front. Neurosci. 2020, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Wang, Y.; Wang, Y.T.; Jung, T.P. A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials. PLoS ONE 2017, 10, e0140703. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Pan, Y.; Xu, P.; Guan, C. A transformer-based deep neural network model for SSVEP classification. Neural Netw. 2023, 164, 521–534. [Google Scholar] [CrossRef]
- Chen, T.; Ding, C.; Zhu, L.; Xu, T.; Ji, D.; Wang, Y.; Zang, Y.; Li, Z. xlstm-unet can be an effective 2d & 3d medical image segmentation backbone with vision-lstm (vil) better than its mamba counterpart. arXiv 2024, arXiv:2407.01530. [Google Scholar]
- Alkin, B.; Beck, M.; Pöppel, K.; Hochreiter, S.; Brandstetter, J. Vision-lstm: Xlstm as generic vision backbone. arXiv 2024, arXiv:2406.04303. [Google Scholar]
- Zhu, Q.; Cai, Y.; Fan, L. Seg-LSTM: Performance of xLSTM for semantic segmentation of remotely sensed images. arXiv 2024, arXiv:2406.14086. [Google Scholar]
- Ding, L.; Wang, H.; Fu, L. STSE-xLSTM: A Deep Learning Framework for Automated Seizure Detection in Long Video Sequences Using Spatio-Temporal and Attention Mechanisms. In Proceedings of the 2024 10th International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2024; pp. 781–785. [Google Scholar]
- Li, Y.; Sun, Q.; Murthy, S.M.; Alturki, E.; Schuller, B.W. GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations. arXiv 2025, arXiv:2503.20919. [Google Scholar] [CrossRef]
- Dayan, P.; Willshaw, D.J. Optimising synaptic learning rules in linear associative memories. Biol. Cybern. 1991, 65, 253–265. [Google Scholar] [CrossRef]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
Method | 0.5 s | 1 s | 1.5 s | 2 s |
---|---|---|---|---|
TRCA | ||||
CCNN | ||||
SSVERNet | ||||
EEGformer | ||||
PLFA | ||||
EEGNet | ||||
SED-xLSTM | ||||
FBSED-xLSTM | 47.63 ± 0.92 | 82.13 ± 0.68 | 95.97 ± 0.58 | 97.62 ± 0.56 |
Method | 0.5 s | 1 s | 1.5 s | 2 s |
---|---|---|---|---|
TRCA | ||||
CCNN | ||||
SSVERNet | ||||
EEGformer | ||||
PLFA | ||||
EEGNet | ||||
SED-xLSTM | ||||
FBSED-xLSTM | 37.86 ± 1.04 | 69.31 ± 0.79 | 86.54 ± 0.66 | 92.19 ± 0.61 |
Method | 0.5 s | 1 s | 1.5 s | 2 s |
---|---|---|---|---|
TRCA | ||||
CCNN | ||||
SSVERNet | ||||
EEGformer | ||||
PLFA | ||||
EEGNet | ||||
SED-xLSTM | ||||
FBSED-xLSTM | 44.34 ± 1.73 | 77.57 ± 1.43 | 89.92 ± 1.16 | 93.11 ± 0.92 |
Dataset | Time Length (s) | 1st | 2nd | 3rd | 4th | 5th | Average |
---|---|---|---|---|---|---|---|
Benchmark | 1 s | 71.86 | 70.55 | 72.21 | 70.45 | 69.90 | 70.99 |
122.58 | 118.48 | 123.69 | 118.17 | 116.48 | 119.86 | ||
1.5 s | 86.04 | 85.32 | 86.27 | 85.89 | 85.41 | 85.78 | |
114.84 | 112.97 | 115.44 | 114.46 | 113.21 | 114.18 | ||
BETA | 1 s | 60.13 | 59.64 | 60.81 | 60.98 | 59.04 | 60.12 |
88.31 | 86.99 | 90.16 | 90.62 | 85.39 | 88.29 | ||
1.5 s | 77.16 | 76.08 | 76.43 | 75.90 | 76.94 | 76.50 | |
93.28 | 90.86 | 91.64 | 90.45 | 92.79 | 91.81 | ||
UCSD | 1 s | 70.26 | 68.95 | 71.73 | 71.19 | 70.47 | 70.52 |
100.67 | 97.01 | 104.86 | 103.31 | 101.26 | 101.40 | ||
1.5 s | 79.87 | 79.32 | 80.91 | 80.06 | 80.46 | 80.12 | |
86.55 | 85.35 | 88.83 | 86.96 | 87.84 | 87.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Xu, C.; Xie, R.; Wang, X.; Yang, W.; Li, Y. Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques. Biomimetics 2025, 10, 554. https://doi.org/10.3390/biomimetics10080554
Dong L, Xu C, Xie R, Wang X, Yang W, Li Y. Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques. Biomimetics. 2025; 10(8):554. https://doi.org/10.3390/biomimetics10080554
Chicago/Turabian StyleDong, Liuyuan, Chengzhi Xu, Ruizhen Xie, Xuyang Wang, Wanli Yang, and Yimeng Li. 2025. "Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques" Biomimetics 10, no. 8: 554. https://doi.org/10.3390/biomimetics10080554
APA StyleDong, L., Xu, C., Xie, R., Wang, X., Yang, W., & Li, Y. (2025). Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques. Biomimetics, 10(8), 554. https://doi.org/10.3390/biomimetics10080554