Impact Resistance Behaviors of Carbon Fiber Fabric Reinforced Composite Laminates with Bio-Inspired Helicoidal Layups
Abstract
1. Introduction
2. Experiment
2.1. Bio-Inspired Helicoidal Composite Laminate Design
2.2. Materials and Processing
2.3. Low-Velocity Impact Test
3. Numerical Model
3.1. Finite Element Modeling
3.2. Damage Model for the Composite Laminate
3.2.1. Intralaminar Damage Model
- Mode 1: R1T for tension failure in the warp direction:
- Mode 2: R1C for compression failure in the warp direction:
- Mode 3: R2T for tension failure in the weft direction:
- Mode 4: R2C for compression failure in the weft direction:
- Mode 5: R3C for compression failure in the out-of-plane direction:
- Mode 6: R12 for in-plane shear failure:
3.2.2. Interlaminar Damage Using Cohesive Surfaces
4. Results and Discussion
4.1. Impact Load Response
4.2. Energy Absorption
4.3. Impact Resistance and Damage Mechanism
5. Conclusions
- The numerical simulation results of impact force–time response, absorbed energy–time response, and damage characteristics are in good agreement with the experimental test results.
- With the increase in impact energy, the maximum values of impact force are increased. Under all impact energy conditions, the maximum value of impact force for specimen HL2 (rotation angle of 12.8°) is higher than that of the other rotation angle specimens, while the maximum value of impact force for specimen QI1 (rotation angle of 0°) is the lowest.
- With the increase in impact energy, the absorbed energy for all specimens is increased, as well as the energy absorption ratio. Under the low impact energy of 5 J, the energy absorption ratio is ranked in the order: HL1 > QI2 > HL3 > QI1 > HL2, while the energy absorption ratio is ranked in the order: QI1 > HL3 > HL1 > QI2 > HL2 under the high impact energies of 10 J and 15 J.
- Under all impact energies, the impact damage of specimens with helicoidal layups are lower than that of specimen QI1 (rotation angle of 0°), indicating that the helicoidal layup of carbon fiber fabric can sufficiently enhance the impact resistance of the composite material. Furthermore, the impact resistance of specimen HL2 (rotation angle of 12.8°) is the best, because of its lowest impact damage and highest impact force under all energies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential fabric-reinforced composites: A comprehensive review. J. Mater. Sci. 2021, 56, 14381–14415. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. Part B-Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Chen, Y.; Aliabadi, M. Micromechanical modelling of the overall response of plain woven polymer matrix composites. Int. J. Eng. Sci. 2019, 145, 103163. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, J.; Du, K.; Guo, Q.; Hou, Y.; Dong, C. A Multiscale modeling and experimental study on the tensile strength of plain-woven composites with hybrid bonded–bolted Joints. Polymers 2024, 16, 2074. [Google Scholar] [CrossRef]
- Djordjevic, N.; Vignjevic, R.; Hughes, K.; De Vuyst, T. Modelling of high-velocity impact on woven carbon fibre-reinforced plastic laminate. Appl. Sci. 2025, 15, 555. [Google Scholar] [CrossRef]
- Zhao, Z.; Dang, H.; Zhang, C.; Yun, G.; Li, Y. A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Compos. Part A-Appl. Sci. Manuf. 2018, 110, 113–125. [Google Scholar] [CrossRef]
- Olhan, S.; Antil, B.; Behera, B.K. Low-velocity impact and quasi-static post-impact compression analysis of woven structural composites for automotive: Influence of fibre types and architectural structures. Compos. Struct. 2025, 352, 118676. [Google Scholar] [CrossRef]
- Weaver, J.C.; Milliron, G.W.; Miserez, A.; Evans-Lutterodt, K.; Herrera, S.; Gallana, I.; Mershon, W.J.; Swanson, B.; Zavattieri, P.; DiMasi, E.; et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 2012, 336, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shishehbor, M.; Guarin-Zapata, N.; Kirchhofer, N.D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 2020, 19, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, P.; Lin, W.; Tian, J.; Miao, C.; Zhang, X.; Zhang, R.; Peng, J.; Zhang, H.; Gu, P.; et al. Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS Appl. Mater. Interfaces 2021, 13, 17380–17391. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhou, Q.; Peng, H.; Liu, X.; Shao, Z.; Song, P. A review of recent research on bionic structural characteristics and performance mechanisms of biomimetic materials. Compos. Part B-Eng. 2025, 304, 112681. [Google Scholar]
- Ginzburg, D.; Pinto, F.; Iervolino, O.; Meo, M. Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Compos. Struct. 2017, 161, 187–203. [Google Scholar] [CrossRef]
- Grunenfelder, L.K.; Suksangpanya, N.; Salinas, C.; Milliron, G.; Yaraghi, N.; Herrera, S.; Evans-Lutterodt, K.; Nutt, S.; Zavattieri, P.; Kisailus, D. Bio-inspired impact-resistant composites. Acta Biomater. 2014, 10, 3997–4008. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ren, Y.; Liu, Z.; Zhang, S.; Lin, Z. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups. Compos. Struct. 2019, 214, 463–475. [Google Scholar] [CrossRef]
- Han, Q.; Shi, S.; Liu, Z.; Han, Z.; Niu, S.; Zhang, J.; Qin, H.; Sun, Y.; Wang, J. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp. Compos. Part B-Eng. 2020, 191, 107976. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, D. Enhancing impact resistance of fiber-reinforced polymer composites through bio-inspired helicoidal structures: A review. Polym. Compos. 2025, 46, 5823–5856. [Google Scholar] [CrossRef]
- Cheng, L.; Thomas, A.; Glancey, J.L.; Karlsson, A.M. Mechanical behavior of bio-inspired laminated composites. Compos. Part A-Appl. Sci. Manuf. 2011, 42, 211–220. [Google Scholar] [CrossRef]
- Baharvand, A.; Teuwenand, J.J.E.; Verma, A.S. A review of damage tolerance and mechanical behavior of interlayer hybrid fiber composites for wind turbine blades. Materials 2025, 18, 2214. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Chen, L.; Pan, N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Design 2013, 50, 750–756. [Google Scholar] [CrossRef]
- Hart, K.R.; Chia, P.X.L.; Sheridan, L.E.; Wetzel, E.D.; Sottos, N.R.; White, S.R. Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. Compos. Part A-Appl. Sci. Manuf. 2017, 101, 432–443. [Google Scholar] [CrossRef]
- Hou, Y.; Meng, L.; Li, G.; Xia, L.; Xu, Y. A novel multiscale modeling strategy of the low-velocity impact behavior of plain woven composites. Compos. Struct. 2021, 274, 114363. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, H.; Khan, A.N.; Mahajan, P.; Prabhakaran, R.T.D.; Alagirusamy, R. An improved orthotropic elasto-plastic damage model for plain woven composites. Thin-Wall Struct. 2021, 162, 107598. [Google Scholar] [CrossRef]
- Apichattrabrut, T.; Ravi-Chandar, K. Helicoidal Composites. Mech. Adv. Mater. Struct. 2006, 13, 61–76. [Google Scholar] [CrossRef]
- Ning, H.; Monroe, C.; Gibbons, S.; Gaskey, B.; Flater, P. A review of helicoidal composites: From natural to bio-inspired damage tolerant materials. Int. Mater. Rev. 2024, 69, 181–228. [Google Scholar] [CrossRef]
- Shang, J.S.; Ngern, N.H.H.; Tan, V.B.C. Crustacean-inspired helicoidal laminates. Compos. Sci. Technol. 2016, 128, 222–232. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Zhang, Z.; Li, Q.; Fan, F.; Li, X. Simulation and experiment on the low-velocity impact response of flax fabric reinforced composites. Materials 2023, 16, 3489. [Google Scholar] [CrossRef] [PubMed]
- Yen, C. A ballistic material model for continuous-fiber reinforced composites. Inter. J. Impact Eng. 2012, 46, 11–22. [Google Scholar] [CrossRef]
- Matzenmiller, A.; Lubliner, J.; Taylor, R.L. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995, 20, 125–152. [Google Scholar] [CrossRef]
- Rozylo, P.; Debski, H.; Kubiak, T. A model of low-velocity impact damage of composite plates subjected to Compression-After Impact (CAI) testing. Compos. Struct. 2017, 181, 158–170. [Google Scholar] [CrossRef]
- Leroy, A.; Scida, D.; Roux, E.; Toussaint, F.; Ayad, R. Are there similarities between quasi-static indentation and low velocity impact tests for flax-fibre composites? Ind. Crops Prod. 2021, 171, 113840. [Google Scholar] [CrossRef]
- Ramakrishnan, K.R.; Corn, S.; Le Moigne, N.; Ienny, P.; Slangen, P. Experimental assessment of low velocity impact damage inflax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106137. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Ying, Z.; Ke, J.; Hu, X. Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos. Part B Eng. 2020, 196, 108098. [Google Scholar] [CrossRef]
- Zhang, N.; Qian, X.; Zhang, Q.; Zhou, G.; Xuan, S.; Wang, X.; Cai, D. On strain rate effect and high-velocity impact behavior of carbon fiber reinforced laminated composites. Thin-Walled Struct. 2024, 194, 111328. [Google Scholar] [CrossRef]
- Du, C.; Xia, R.; Liu, P.; Wu, W.; Zhao, Z.; Zhang, C. On the impact damage characteristics of spread-tow woven composites: From high velocity to hyper velocity. Eng. Fail. Anal. 2023, 146, 107109. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Li, Z.; Gong, C.; Xue, P.; Xiong, J. Low-velocity impact responses and failure of sandwich structure with carbon fiber composite honeycomb cores. Int. J. Impact. Eng. 2024, 192, 105304. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, W.; Liu, Y.; Hou, Y.; Li, J.; Li, C. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites. Compos. Struct. 2022, 299, 116090. [Google Scholar] [CrossRef]
Designation | No. of Plies | Type | Stacking Sequence |
---|---|---|---|
Quasi-isotropic-1 (QI1) | 16 | Quasi-isotropic | [0°]16 |
Quasi-isotropic-2 (QI2) | 16 | Quasi-isotropic | [−45°/0°/0°/45°]4 |
Helicoidal-linear-1 (HL1) | 16 | Helicoidal (6°) | [0°/6°/12°/…/78°/84°/90°] |
Helicoidal-linear-2 (HL2) | 16 | Helicoidal (12.8°) | [0°/12.8°/25.6°/…/64°/76.8°/90°]2 |
Helicoidal-linear-3 (HL3) | 16 | Helicoidal (30°) | [0°/30°/60°/90°]4 |
Property | Value |
---|---|
Longitudinal modulus, E11 (GPa) | 36.1 |
Transversely modulus, E22 (GPa) | 36.1 |
Out-of-plane modulus, E33 (GPa) | 8.71 |
Shear modulus, G13 = G23 (GPa) | 3.27 |
Shear modulus, G12 (GPa) | 3.65 |
Poisson’s ratio, υ13 = υ23 | 0.33 |
Poisson’s ratio, υ12 | 0.06 |
Longitudinal tensile strength, S1T (MPa) | 460 |
Longitudinal compressive strength, S1C (MPa) | 250 |
Transverse tensile strength, S2T (MPa) | 460 |
Transverse compressive strength, S2C (MPa) | 250 |
Out-of-plane compressive strength, S3C (MPa) | 60 |
Sample Dimensions (mm) | Impact Energy (J) | Impact Velocity (m/s) | Impact Mass (kg) |
---|---|---|---|
120 mm × 120 mm × 3 mm | 5 | 2.24 | 4 |
10 | 3.16 | 4 | |
15 | 3.87 | 4 |
Impact Energy (J) | Sample | Experimental Maximum Values of Impact Force (kN) | Numerical Maximum Values of Impact Force (kN) | Average Error (%) | |||
---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Average | ||||
5 | QI1 | 3.15 | 3.32 | 3.19 | 3.22 | 3.39 | 5.3 |
QI2 | 3.25 | 3.22 | 3.25 | 3.24 | 3.94 | 17.8 | |
HL1 | 2.95 | 2.88 | 2.93 | 2.92 | 3.81 | 23.3 | |
HL2 | 3.33 | 3.28 | 3.32 | 3.31 | 3.97 | 16.7 | |
HL3 | 3.33 | 3.25 | 3.26 | 3.28 | 3.95 | 17.0 | |
10 | QI1 | 3.52 | 3.62 | 3.48 | 3.54 | 3.50 | 1.1 |
QI2 | 4.51 | 4.49 | 4.50 | 4.50 | 4.23 | 6.0 | |
HL1 | 3.83 | 3.83 | 3.92 | 3.86 | 3.61 | 6.5 | |
HL2 | 4.65 | 4.61 | 4.63 | 4.63 | 4.48 | 3.2 | |
HL3 | 4.40 | 4.39 | 4.35 | 4.38 | 4.31 | 1.5 | |
15 | QI1 | 3.55 | 3.54 | 3.56 | 3.55 | 3.92 | 10.4 |
QI2 | 4.43 | 4.52 | 4.58 | 4.51 | 4.64 | 2.9 | |
HL1 | 4.03 | 3.96 | 3.98 | 3.99 | 4.25 | 6.5 | |
HL2 | 5.20 | 5.18 | 5.16 | 5.18 | 4.94 | 4.6 | |
HL3 | 4.55 | 4.46 | 4.52 | 4.51 | 4.49 | 0.2 |
Impact Energy (J) | Sample | Experimental Absorbed Energy (J) | Numerical Absorbed Energy (J) | Average Error (%) | |||
---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Average | ||||
5 | QI1 | 0.96 | 0.95 | 1.03 | 0.98 | 0.82 | 16.3 |
QI2 | 1.12 | 1.21 | 1.21 | 1.18 | 1.38 | 16.9 | |
HL1 | 1.47 | 1.49 | 1.48 | 1.48 | 1.50 | 1.3 | |
HL2 | 0.92 | 0.90 | 0.94 | 0.92 | 0.74 | 19.5 | |
HL3 | 1.01 | 0.99 | 1.12 | 1.04 | 0.86 | 17.3 | |
10 | QI1 | 6.52 | 6.73 | 6.82 | 6.69 | 5.17 | 22.7 |
QI2 | 3.81 | 3.78 | 3.87 | 3.82 | 3.39 | 11.2 | |
HL1 | 3.89 | 3.90 | 3.85 | 3.88 | 3.55 | 8.5 | |
HL2 | 3.13 | 3.01 | 2.98 | 3.04 | 2.85 | 6.2 | |
HL3 | 4.19 | 4.15 | 4.20 | 4.18 | 4.10 | 1.9 | |
15 | QI1 | 12.51 | 12.45 | 12.48 | 12.48 | 11.15 | 10.7 |
QI2 | 11.28 | 11.33 | 11.35 | 11.32 | 9.37 | 17.2 | |
HL1 | 11.59 | 11.59 | 11.56 | 11.58 | 9.58 | 17.3 | |
HL2 | 10.70 | 10.60 | 10.65 | 10.65 | 8.46 | 20.6 | |
HL3 | 11.68 | 11.75 | 11.80 | 11.74 | 9.70 | 17.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Tang, J.; Wang, Z.; Zhou, J.; Xiong, X.; Li, X.; Chen, M. Impact Resistance Behaviors of Carbon Fiber Fabric Reinforced Composite Laminates with Bio-Inspired Helicoidal Layups. Biomimetics 2025, 10, 525. https://doi.org/10.3390/biomimetics10080525
Du L, Tang J, Wang Z, Zhou J, Xiong X, Li X, Chen M. Impact Resistance Behaviors of Carbon Fiber Fabric Reinforced Composite Laminates with Bio-Inspired Helicoidal Layups. Biomimetics. 2025; 10(8):525. https://doi.org/10.3390/biomimetics10080525
Chicago/Turabian StyleDu, Lizhen, Jiaqi Tang, Zisheng Wang, Jiacheng Zhou, Xiaoshuang Xiong, Xiang Li, and Mingzhang Chen. 2025. "Impact Resistance Behaviors of Carbon Fiber Fabric Reinforced Composite Laminates with Bio-Inspired Helicoidal Layups" Biomimetics 10, no. 8: 525. https://doi.org/10.3390/biomimetics10080525
APA StyleDu, L., Tang, J., Wang, Z., Zhou, J., Xiong, X., Li, X., & Chen, M. (2025). Impact Resistance Behaviors of Carbon Fiber Fabric Reinforced Composite Laminates with Bio-Inspired Helicoidal Layups. Biomimetics, 10(8), 525. https://doi.org/10.3390/biomimetics10080525