An Investigation into the Structure of Wound-Healing Materials, Chemical Materials, Nature-Based Materials, and Wound Monitoring
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure of Wound-Healing Dressings
3.1.1. Film Dressing for Wound Healing
Authors | Title | Main Content |
---|---|---|
Melissa Marques Gonçalves., et al. | Preparation and characterization of a novel antimicrobial film dressing for wound healing application [10] | Film dressing, chitosan, Poly(vinyl alcohol), ε-Polylysine, and semi-occlusive dressing |
Ioana Savencu., et al. | Review of advances in polymeric wound dressing films [18] | Film, wound dressing, hydrogels, hydrocolloids, hydroactives, foams, alginates, and hydrofibers |
H. Xu, F., et al. | Electrospun hierarchical structural films for effective wound healing; [19] | Film, electrospun hierarchical structure, nano- particles, wound healing, antibacterial properties, and cytocompatibility |
I. Garcia-Orue., et al. | Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing [20] | Hydrofilm, agar, gelatin, EGF, Aloe vera, and wound healing |
H. Chopra., et al. | Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application [21] | Hydrogel films, honey, chitosan, PVA, and wound-healing application |
Jhing-Ee Gan., et al. | Formulation and characterisation of alginate hydrocolloid film dressing loaded with gallic acid for potential chronic wound healing [27] | Film, alginate, pectin, gallic acid, wound dressing, and hydrocolloid film |
3.1.2. Foam Dressing for Wound Healing
3.1.3. Gauze for Wound Healing
3.1.4. Electrospun Nanofibers for Wound Healing
3.2. Chemical Materials for Wound Healing
3.3. Natural Materials for Wound Healing
Authors | Title | Main Content |
---|---|---|
El-Ashram, S., et al. | Naturally-derived targeted therapy for wound healing: Beyond classical strategies [14] | Naturally derived, wound healing, hemostasis, inflammatory, plant-derived products, insect-derived products, and marine-derived products |
Yang, W., et al. | Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing [111] | Biomimetic natural biopolymer, wound healing, wet-tissue adhesive, adhesion, seamless sealed, and emergency |
Masri, S. and M.B. Fauzi | Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing [112] | Nature-based bioinks, 3D bioprinting, skin regeneration, wound healing, and physicochemical and mechanical properties |
Naomi, R., et al. | Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review [113] | Nature-based biomaterial, gelatin, collagen, and skin wound healing |
Nichcha Nitthikan., et al. | Exploring the Wound Healing Potential of a Cuscuta chinensis Extract-Loaded Nanoemulsion-Based Gel [114] | Cuscuta chinensis, nanoemulsions, wound care, anti-inflammation, and molecular docking |
Shivani Dogra., et al. | Phytochemical Analysis, Antimicrobial Screening and In Vitro Pharmacological Activity of Artemisia vestita Leaf Extract [115] | Artemisia vestita, antimicrobial, cytotoxicity, anti-inflammatory, antioxidant, and wound healing |
Maite Rodríguez-Díaz., et al. | Antimicrobial Activity and Phytochemical Characterization of Baccharis concava Pers., a Native Plant of the Central Chilean Coast [116] | Baccharis concave, antimicrobial activity, flavonoids, caffeoylquinic acid, and phenolic compounds |
Cao, X., et al. | Animal tissue-derived biomaterials for promoting wound healing [117] | Animal tissue, biomaterials for promoting wound healing, extracellular matrix (ECM), collagen, and chitosan |
Napavichayanun, S., et al. | Effect of animal products and extracts on wound healing promotion in topical applications: a review [118] | Animal extracts, chitosan, collagen, honey, protein-aided steroids, silk sericin, peptides, anti-inflammatory, antibacterial activity, moisturizing effect, and biocompatibility |
Da, L. C., et al. | Progress in development of bioderived materials for dermal wound healing [119] | Amniotic membrane (AAM), collagen, elastin, laminin, fibronectin, and small intestinal submucosa (SIS) |
Chouhan, D., et al. | Trends in bio-derived biomaterials in tissue engineering [120] | Bio-derived biomaterials in tissue engineering, collagen, gelatin, and fibrin |
Esmaeili, A., et al. | Acellular fish skin for wound healing [121] | Acellular fish skin, 3D cell-free support for skin regeneration, and extracellular matrix content |
Zheng, F., et al. | Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model [122] | Porcine skin collagen, Pelvi-col™, Prolene™, and collagen accumulation |
Baldursson, B. T., et al. | Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study [123] | Fish skin ADM, porcine small-intestine submucosa, and pig small submucosal extracellular matrix |
3.4. Wound-Healing Monitoring Sensors
4. Conclusions
- Current status
- The main obstacles to be applied
- Future perspectives
Funding
Conflicts of Interest
References
- Saraiva, M.M.; da Silva Campelo, M.; Camara Neto, J.F.; Lima, A.B.N.; de Almeida Silva, G.; de Freitas Figueredo Dias, A.T.; Ricardo, N.M.P.S.; Kaplan, D.L.; Ribeiro, M.E.N.P. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, A.; Wang, R.; Zhang, J.; Ding, Y.; Pan, D.; Shen, Z. Elastic Janus film for wound dressings: Unidirectional biofluid transport and effectively promoting wound healing. Adv. Funct. Mater. 2021, 31, 2105265. [Google Scholar] [CrossRef]
- Shariatzadeh, F.J.; Currie, S.; Logsetty, S.; Spiwak, R.; Liu, S. Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Prog. Mater. Sci. 2025, 147, 101350. [Google Scholar] [CrossRef]
- Borbolla-Jiménez, F.V.; Peña-Corona, S.I.; Farah, S.J.; Jiménez-Valdés, M.T.; Pineda-Pérez, E.; Romero-Montero, A.; Del Prado-Audelo, M.L.; Bernal-Chávez, S.A.; Magaña, J.J.; Leyva-Gómez, G. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics 2023, 15, 1914. [Google Scholar] [CrossRef]
- Tenorová, K.; Masteiková, R.; Pavloková, S.; Kostelanská, K.; Bernatonienė, J.; Vetchý, D. Formulation and evaluation of novel film wound dressing based on collagen/microfibrillated carboxymethylcellulose blend. Pharmaceutics 2022, 14, 782. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Nuutila, K.; Eriksson, E. Moist wound healing with commonly available dressings. Adv. Wound Care 2021, 10, 685–698. [Google Scholar] [CrossRef]
- Fu, J.; Wang, D.; Tang, Z.; Xu, Y.; Xie, J.; Chen, R.; Wang, P.; Zhong, Q.; Ning, Y.; Lei, M. NIR-responsive electrospun nanofiber dressing promotes diabetic-infected wound healing with programmed combined temperature-coordinated photothermal therapy. J. Nanobiotechnol. 2024, 22, 384. [Google Scholar] [CrossRef]
- Ghataty, D.S.; Amer, R.I.; Wasfi, R.; Shamma, R.N. Novel linezolid loaded bio-composite films as dressings for effective wound healing: Experimental design, development, optimization, and antimicrobial activity. Drug Deliv. 2022, 29, 3168–3185. [Google Scholar] [CrossRef]
- Gonçalves, M.M.; Carneiro, J.; Justus, B.; Espinoza, J.T.; Budel, J.M.; Farago, P.V.; de Paula, J.P. Preparation and characterization of a novel antimicrobial film dressing for wound healing application. Braz. J. Pharm. Sci. 2021, 56, e18784. [Google Scholar] [CrossRef]
- Wang, Z.; Li, K.; Xu, Q.; Fu, G.; Li, H.; Yang, W. Preparation and evaluation of chitosan-and hyaluronic acid-grafted pullulan succinate films for skin wound healing. Int. J. Biol. Macromol. 2022, 223, 1432–1442. [Google Scholar] [CrossRef]
- Dong, R.; Guo, B. Smart wound dressings for wound healing. Nano Today 2021, 41, 101290. [Google Scholar] [CrossRef]
- Farahani, M.; Shafiee, A. Wound healing: From passive to smart dressings. Adv. Healthc. Mater. 2021, 10, 2100477. [Google Scholar] [CrossRef] [PubMed]
- El-Ashram, S.; El-Samad, L.M.; Basha, A.A.; El Wakil, A. Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacol. Res. 2021, 170, 105749. [Google Scholar] [CrossRef] [PubMed]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound healing: A comprehensive review. In Seminars in Plastic Surgery; Thieme Medical Publishers, Inc.: New York, NY, USA, 2021; Volume 35, pp. 141–144. [Google Scholar]
- Zhang, Y.; Li, T.; Zhao, C.; Li, J.; Huang, R.; Zhang, Q.; Li, Y.; Li, X. An integrated smart sensor dressing for real-time wound microenvironment monitoring and promoting angiogenesis and wound healing. Front. Cell Dev. Biol. 2021, 9, 701525. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, M.; Xu, T.; Zhang, X. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 2022, 433, 134625. [Google Scholar] [CrossRef]
- Savencu, I.; Iurian, S.; Porfire, A.; Bogdan, C.; Tomuță, I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 2021, 168, 105059. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, F.; Wang, M.; Lv, H.; Yu, D.-G.; Liu, X.; Shen, H. Electrospun hierarchical structural films for effective wound healing. Biomater. Adv. 2022, 136, 212795. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Uranga, J.; de la Caba, K.; Guerrero, P.; Igartua, M.; Hernandez, R.M. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing. J. Mater. Chem. B 2023, 11, 6896–6910. [Google Scholar] [CrossRef]
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels 2022, 8, 111. [Google Scholar] [CrossRef]
- Sulastri, E.; Zubair, M.S.; Lesmana, R.; Mohammed, A.F.A.; Wathoni, N. Development and characterization of ulvan polysaccharides-based hydrogel films for potential wound dressing applications. Drug Des. Dev. Ther. 2021, 15, 4213–4226. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Aghbash, M.; Rahimnejad, M.; Adeli, H.; Feizi, F. Wound healing: An overview of wound dressings on health care. Curr. Pharm. Biotechnol. 2023, 24, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Postolović, K.; Ljujić, B.; Kovačević, M.M.; Đorđević, S.; Nikolić, S.; Živanović, S.; Stanić, Z. Optimization, characterization, and evaluation of carrageenan/alginate/poloxamer/curcumin hydrogel film as a functional wound dressing material. Mater. Today Commun. 2022, 31, 103528. [Google Scholar] [CrossRef]
- Mou, C.; Wang, X.; Liu, Y.; Xie, Z.; Zheng, M. A robust carbon dot-based antibacterial CDs-PVA film as a wound dressing for antibiosis and wound healing. J. Mater. Chem. B 2023, 11, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Choudhari, M.; Tomar, Y.; Desai, V.M.; Innani, S.; Dubey, S.K.; Singhvi, G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr. Polym. 2024, 327, 121655. [Google Scholar] [CrossRef]
- Gan, J.-E.; Chin, C.-Y. Formulation and characterisation of alginate hydrocolloid film dressing loaded with gallic acid for potential chronic wound healing. F1000Research 2021, 10, 451. [Google Scholar] [CrossRef]
- Han, H.R.; Chung, S.E.; Park, C.H. Shape memory and breathable waterproof properties of polyurethane nanowebs. Text. Res. J. 2013, 83, 76–82. [Google Scholar] [CrossRef]
- Gefen, A.; Alves, P.; Beeckman, D.; Lázaro-Martínez, J.L.; Lev-Tov, H.; Najafi, B.; Swanson, T.; Woo, K. Mechanical and contact characteristics of foam materials within wound dressings: Theoretical and practical considerations in treatment. Int. Wound J. 2023, 20, 1960–1978. [Google Scholar] [CrossRef]
- Chen, C.-F.; Chen, S.-H.; Chen, R.-F.; Liu, K.-F.; Kuo, Y.-R.; Wang, C.-K.; Lee, T.-M.; Wang, Y.-H. A multifunctional polyethylene glycol/triethoxysilane-modified polyurethane foam dressing with high absorbency and antiadhesion properties promotes diabetic wound healing. Int. J. Mol. Sci. 2023, 24, 12506. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lee, H.-C.; Chen, C.-L.; Kuo, M.-C.; Ramachandran, S.; Chen, R.-F.; Kuo, Y.-R. The effects of silver-releasing foam dressings on diabetic foot ulcer healing. J. Clin. Med. 2021, 10, 1495. [Google Scholar] [CrossRef]
- Chen, C.; Ou, Q.; Chen, K.; Liang, C.; Zeng, X.; Lin, D.; Lin, L. Foam dressing and micropower vacuum dressing promote diabetic foot ulcer wound healing by activating the PI3K/AKT/mTOR pathway in rats. J. Biomater. Appl. 2024, 39, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Zou, L.; Xu, Z.; Ou, X.; Guo, W.; Gao, Y.; Gao, G. Alginate foam gel modified by graphene oxide for wound dressing. Int. J. Biol. Macromol. 2022, 223, 391–403. [Google Scholar] [CrossRef]
- Woo, K.; Santamaria, N.; Beeckman, D.; Alves, P.; Cullen, B.; Gefen, A.; Lázaro-Martínez, J.L.; Lev-Tov, H.; Najafi, B.; Sharpe, A. Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: Perspectives from a wound care expert panel. J. Wound Care 2024, 33, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Watson, F.; Chen, R.; Percival, S.L. In vitro prevention and inactivation of biofilms using controlled-release iodine foam dressings for wound healing. Int. Wound J. 2024, 21, e14365. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, J.; Fikhman, D.A.; Dong, K.S.; Monroe, M.B.B. Shape memory polymer foams with phenolic acid-based antioxidant and antimicrobial properties for traumatic wound healing. Front. Bioeng. Biotechnol. 2022, 10, 809361. [Google Scholar] [CrossRef]
- Raepsaet, C.; Alves, P.; Cullen, B.; Gefen, A.; Lázaro-Martínez, J.L.; Lev-Tov, H.; Najafi, B.; Santamaria, N.; Sharpe, A.; Swanson, T. Clinical research on the use of bordered foam dressings in the treatment of complex wounds: A systematic review of reported outcomes and applied measurement instruments. J. Tissue Viability 2022, 31, 514–522. [Google Scholar] [CrossRef]
- Nugroho, S.D. foam dressing on wound healing proses in post fracture operation patients. Int. J. Nurs. Midwifery Sci. 2023, 7, 146–153. [Google Scholar]
- Xu, Y.; Li, Y.; Yu, K.; Chen, Z.; Shen, Y.; Zha, B.; Zhang, H.; Xu, Q.; Zhao, H. Effects of silver foam combined with Dermlin wound healing dressing on inflammation and quality of life in patients with diabetic lower limb ulcers. Am. J. Transl. Res. 2022, 14, 2452. [Google Scholar]
- Patil, P.; Russo, K.A.; McCune, J.T.; Pollins, A.C.; Cottam, M.A.; Dollinger, B.R.; DeJulius, C.R.; Gupta, M.K.; D’Arcy, R.; Colazo, J.M. Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci. Transl. Med. 2022, 14, eabm6586. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Ma, X.; Qiu, S.; Chen, J.; Lu, G.; Jia, Z.; Zhu, J.; Yang, Q.; Chen, J. Antimicrobial lignin-based polyurethane/Ag composite foams for improving wound healing. Biomacromolecules 2022, 23, 1622–1632. [Google Scholar] [CrossRef]
- Gefen, A.; Alves, P.; Beeckman, D.; Cullen, B.; Lázaro-Martínez, J.L.; Lev-Tov, H.; Najafi, B.; Santamaria, N.; Sharpe, A.; Swanson, T. How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs. Adv. Wound Care 2024, 13, 34–52. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Q.; Hu, L.; Zhai, R.; Liu, F.; Tan, L.; Wang, X.; Xie, H. Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chin. Chem. Lett. 2024, 35, 109459. [Google Scholar] [CrossRef]
- Qian, H.; Lei, T.; Hu, Y. Negative pressure wound therapy versus gauze dressings in managing open fracture wound of lower limbs: A meta-analysis of randomized controlled trials. Foot Ankle Surg. 2022, 28, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Qian, H.Y.; Zhang, Y.Y.; Qiu, L.; Wang, F.; Chen, X.L. Comparison of Ba-Hao burn ointment gauze and petrolatum gauze in split graft donor site healing: A randomized, prospective, and self-control study. Health Sci. Rep. 2024, 7, e1988. [Google Scholar] [CrossRef]
- Fang, H.; Li, D.; Xu, L.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing. J. Mater. Sci. 2021, 56, 7598–7612. [Google Scholar] [CrossRef]
- Yang, C.; Liu, G.; Chen, J.; Zeng, B.; Shen, T.; Qiu, D.; Huang, C.; Li, L.; Chen, D.; Chen, J. Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds. Carbohydr. Polym. 2022, 282, 119130. [Google Scholar] [CrossRef]
- Nagarjuna Reddy, V.; Nyamathulla, S.; Abdul Kadir Pahirulzaman, K.; Mokhtar, S.I.; Giribabu, N.; Pasupuleti, V.R. Gallocatechin-silver nanoparticles embedded in cotton gauze patches accelerated wound healing in diabetic rats by promoting proliferation and inhibiting apoptosis through the Wnt/β-catenin signaling pathway. PLoS ONE 2022, 17, e0268505. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Y.; Ye, M.; An, Y.; Wang, K.; Wu, Q.; Song, L.; Zhang, J.; He, H.; Zhang, Q. Freeze-thawing chitosan/ions hydrogel coated gauzes releasing multiple metal ions on demand for improved infected wound healing. Adv. Healthc. Mater. 2021, 10, 2001591. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.; Qiu, L.; Zhang, Y.; Chen, S.; Weng, Y.; Liu, H.; Chen, Q. Amphiphilic Janus cotton gauze with enhanced moisture management and blood coagulation for rapid hemostasis and wound healing. Int. J. Biol. Macromol. 2024, 276, 133826. [Google Scholar] [CrossRef]
- Popescu, V.; Cauni, V.; Petrutescu, M.S.; Rustin, M.M.; Bocai, R.; Turculet, C.R.; Doran, H.; Patrascu, T.; Lazar, A.M.; Cretoiu, D. Chronic Wound Management: From Gauze to Homologous Cellular Matrix. Biomedicines 2023, 11, 2457. [Google Scholar] [CrossRef]
- Xu, J.; Su, M.; Jin, Z.; Zhou, W.; Sun, Y.; Jin, Y.; Shi, Z. Effects of Natural Brown Cotton Bleached Gauze on Wound Healing. Materials 2022, 15, 2070. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Wang, C.; Xiao, L.; Yu, L.; Fan, J. Hemostatic and antibacterial calcium–copper zeolite gauze for infected wound healing. RSC Adv. 2024, 14, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Vendidandala, N.R.; Yin, T.P.; Nelli, G.; Pasupuleti, V.R.; Nyamathulla, S.; Mokhtar, S.I. Gallocatechin-silver nanoparticle impregnated cotton gauze patches enhance wound healing in diabetic rats by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Life Sci. 2021, 286, 120019. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Chen, C.; Xiang, J.; Liu, Y.; Li, K.; Hu, Q.; Liu, G. Facile and robust antibacterial functionalization of medical cotton gauze with gallic acids to accelerate wound healing. Ind. Eng. Chem. Res. 2021, 60, 10225–10234. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Saravanakumar, K.; Wang, M.-H. Bimetallic silver-platinum (AgPt) nanoparticles and chitosan fabricated cotton gauze for enhanced antimicrobial and wound healing applications. Int. J. Biol. Macromol. 2022, 220, 1556–1569. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, C.; Zhang, X.; Wen, X.; Xiao, Y.; Li, L.; Xu, Q.; Fu, F.; Diao, H.; Liu, X. Layer-by-layer coating of carboxymethyl chitosan-gelatin-alginate on cotton gauze for hemostasis and wound healing. Surf. Coat. Technol. 2021, 406, 126644. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, R.; Lang, S.; Yan, H.; Liu, G.; Peng, B. Mussel-inspired immobilization of zwitterionic silver nanoparticles toward antibacterial cotton gauze for promoting wound healing. Chem. Eng. J. 2021, 409, 128291. [Google Scholar] [CrossRef]
- Bao, X.; Zhu, Q.; Chen, Y.; Tang, H.; Deng, W.; Guo, H.; Zeng, L. Antibacterial and antioxidant films based on HA/Gr/TA fabricated using electrospinning for wound healing. Int. J. Pharm. 2022, 626, 122139. [Google Scholar] [CrossRef]
- Xu, S.; Lu, T.; Yang, L.; Luo, S.; Wang, Z.; Ye, C. In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats. Int. Wound J. 2022, 19, 1693–1704. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M.; Yu, D.-G. Electrospun medicated nanofibers for wound healing. Membranes 2021, 11, 770. [Google Scholar] [CrossRef]
- Guo, S.; Wang, P.; Song, P.; Li, N. Electrospinning of botanicals for skin wound healing. Front. Bioeng. Biotechnol. 2022, 10, 1006129. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liu, Z.; Cui, T.; Zhang, X.; Wang, C.-F.; Li, G.-X.; Wang, G.; Chen, S. HE@ PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology. ACS Appl. Mater. Interfaces 2023, 15, 46322–46332. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Bedir, T.; Kalkandelen, C.; Başar, A.O.; Şaşmazel, H.T.; Ustundag, C.B.; Sengor, M.; Gunduz, O. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur. Polym. J. 2021, 142, 110158. [Google Scholar] [CrossRef]
- Han, H.R. A Study on Intelligent Wound Healing Materials and Wound Monitoring for Clothing Materials. In Proceedings of the Korea Fashion & Costume Design Association, Republic of Korea, 18 May 2024. [Google Scholar]
- Doodmani, S.M.; Bagheri, A.; Natouri, O.; Nobakht, A.; Saghebasl, S. Electrospinning-netting of spider-inspired polycaprolactone/collagen nanofiber-nets incorporated with Propolis extract for enhanced wound healing applications. Int. J. Biol. Macromol. 2024, 267, 131452. [Google Scholar] [CrossRef]
- Li, T.; Sun, M.; Wu, S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 2022, 12, 784. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.-N.; Peng, Z.-X.; Chen, N.-B.; Liu, C.-B.; Zhang, P.; Zhang, X.; Chen, G.-Q. Multifunctional electrospinning polyhydroxyalkanoate fibrous scaffolds with antibacterial and angiogenesis effects for accelerating wound healing. ACS Appl. Mater. Interfaces 2022, 15, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Chen, Y.; Liao, P.; Wang, F.; Zeng, W.; Liu, S.; Wu, H.; Wang, N.; Moroni, L.; Zhang, M. In situ precision cell electrospinning as an efficient stem cell delivery approach for cutaneous wound healing. Adv. Healthc. Mater. 2023, 12, 2300970. [Google Scholar] [CrossRef]
- He, C.; Yu, B.; Lv, Y.; Huang, Y.; Guo, J.; Li, L.; Chen, M.; Zheng, Y.; Liu, M.; Guo, S. Biomimetic asymmetric composite dressing by electrospinning with aligned nanofibrous and micropatterned structures for severe burn wound healing. ACS Appl. Mater. Interfaces 2022, 14, 32799–32812. [Google Scholar] [CrossRef]
- Zhong, G.; Qiu, M.; Zhang, J.; Jiang, F.; Yue, X.; Huang, C.; Zhao, S.; Zeng, R.; Zhang, C.; Qu, Y. Fabrication and characterization of PVA@ PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int. J. Biol. Macromol. 2023, 234, 123693. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Wang, Y.; Cui, W. Advanced electrospun hydrogel fibers for wound healing. Compos. Part B Eng. 2021, 223, 109101. [Google Scholar] [CrossRef]
- Kumar, M.; Hilles, A.R.; Ge, Y.; Bhatia, A.; Mahmood, S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int. J. Biol. Macromol. 2023, 234, 123696. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Li, Y.; Chen, M.; Xiao, P.; Wu, Y.; Zhou, K.; Zhao, Z.; Tang, B.Z. In situ electrospinning of aggregation-induced emission nanofibrous dressing for wound healing. Small Methods 2022, 6, 2101247. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Feng, Z.; Han, B.; Yu, D.-G.; Wang, K. Advances in the preparation of nanofiber dressings by electrospinning for promoting diabetic wound healing. Biomolecules 2022, 12, 1727. [Google Scholar] [CrossRef]
- Chen, K.; Pan, H.; Ji, D.; Li, Y.; Duan, H.; Pan, W. Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. Mater. Sci. Eng. C 2021, 127, 112245. [Google Scholar] [CrossRef]
- Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Zhou, F. Electrospun chitosan nanofibers for wound healing application. Eng. Regen. 2021, 2, 82–90. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, L.; Wang, J.; Jin, M.; Tang, Q.; Chen, Z.; Cheng, Y.; Yang, R.; Zhao, G. Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. J. Mater. Chem. B 2021, 9, 3106–3130. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Y.; Zhang, J.; Zhang, H.; Guo, B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv. Fiber Mater. 2022, 4, 1027–1057. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Liu, L.; Gao, Y.; Sun, W.; Sun, Y.; Ma, Q. Microfluidic-based functional materials: New prospects for wound healing and beyond. J. Mater. Chem. B 2022, 10, 8357–8374. [Google Scholar] [CrossRef]
- Fu, W.; Sun, S.; Cheng, Y.; Ma, J.; Hu, Y.; Yang, Z.; Yao, H.; Zhang, Z. Opportunities and challenges of nanomaterials in wound healing: Advances, mechanisms, and perspectives. Chem. Eng. J. 2024, 495, 153640. [Google Scholar] [CrossRef]
- Gowda, B.; Mohanto, S.; Singh, A.; Bhunia, A.; Abdelgawad, M.; Ghosh, S.; Ansari, M.; Pramanik, S. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater. Today Chem. 2023, 27, 101319. [Google Scholar] [CrossRef]
- Diao, W.; Li, P.; Jiang, X.; Zhou, J.; Yang, S. Progress in copper-based materials for wound healing. Wound Repair Regen. 2024, 32, 314–322. [Google Scholar] [CrossRef]
- Kharaziha, M.; Baidya, A.; Annabi, N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 2021, 33, 2100176. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, Z.; Feng, R.; Zheng, X.; Yang, N.; Chen, Y.; Dan, N. Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing. Soft Matter 2023, 19, 9478–9488. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, Y.; Wang, Y.; Hou, Y.; Zhang, R.; Zong, M.; Sun, L.; Liu, Y.; Qi, J.; Wu, X. The potential of novel synthesized carbon dots derived resveratrol using one-pot green method in accelerating in vivo wound healing. Int. J. Nanomed. 2023, 18, 6813–6828. [Google Scholar] [CrossRef] [PubMed]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, Y.; Ye, M.; Zhuang, S.; Zhong, A.; Liu, J.; Maduraiveeran, G.; Peng, Y.; Huang, Y. Metal-organic framework-based dressings: Application and opportunities in wound healing. Mater. Today Chem. 2024, 40, 102235. [Google Scholar] [CrossRef]
- Korupalli, C.; Li, H.; Nguyen, N.; Mi, F.L.; Chang, Y.; Lin, Y.J.; Sung, H.W. Conductive materials for healing wounds: Their incorporation in electroactive wound dressings, characterization, and perspectives. Adv. Healthc. Mater. 2021, 10, 2001384. [Google Scholar] [CrossRef]
- Zheng, K.; Tong, Y.; Zhang, S.; He, R.; Xiao, L.; Iqbal, Z.; Zhang, Y.; Gao, J.; Zhang, L.; Jiang, L. Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing. Adv. Funct. Mater. 2021, 31, 2102599. [Google Scholar] [CrossRef]
- Deng, X.; Gould, M.; Ali, M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2542–2573. [Google Scholar] [CrossRef]
- Chen, S.; Lu, J.; You, T.; Sun, D. Metal-organic frameworks for improving wound healing. Coord. Chem. Rev. 2021, 439, 213929. [Google Scholar] [CrossRef]
- Wu, M.; Lu, Z.; Wu, K.; Nam, C.; Zhang, L.; Guo, J. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J. Mater. Chem. B 2021, 9, 7063–7075. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, G.; Huang, H.; Wu, J. Advances and impact of arginine-based materials in wound healing. J. Mater. Chem. B 2021, 9, 6738–6750. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, W.; Wang, W.; Xiao, Y.; Chen, Y.; Wang, X. Antibacterial electrospun nanofibrous materials for wound healing. Adv. Fiber Mater. 2023, 5, 107–129. [Google Scholar] [CrossRef]
- Li, R.; Liu, K.; Huang, X.; Li, D.; Ding, J.; Liu, B.; Chen, X. Bioactive materials promote wound healing through modulation of cell behaviors. Adv. Sci. 2022, 9, 2105152. [Google Scholar] [CrossRef]
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef]
- Hao, R.; Cui, Z.; Zhang, X.; Tian, M.; Zhang, L.; Rao, F.; Xue, J. Rational design and preparation of functional hydrogels for skin wound healing. Front. Chem. 2022, 9, 839055. [Google Scholar] [CrossRef]
- Asadi, N.; Pazoki-Toroudi, H.; Del Bakhshayesh, A.R.; Akbarzadeh, A.; Davaran, S.; Annabi, N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 2021, 170, 728–750. [Google Scholar] [CrossRef]
- Liang, J.; Cui, L.; Li, J.; Guan, S.; Zhang, K.; Li, J. Aloe vera: A medicinal plant used in skin wound healing. Tissue Eng. Part B Rev. 2021, 27, 455–474. [Google Scholar] [CrossRef]
- Mssillou, I.; Bakour, M.; Slighoua, M.; Laaroussi, H.; Saghrouchni, H.; Amrati, F.E.-Z.; Lyoussi, B.; Derwich, E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. J. Ethnopharmacol. 2022, 298, 115663. [Google Scholar] [CrossRef]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef]
- Yazarlu, O.; Iranshahi, M.; Kashani, H.R.K.; Reshadat, S.; Habtemariam, S.; Iranshahy, M.; Hasanpour, M. Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacol. Res. 2021, 174, 105841. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Future J. Pharm. Sci. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.R.; Costa, R.; Amorim, M.; Dias, J.R.; Ramos, O.; Alves, P.; Granja, P.L.; Soares, R. In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Chummun, I.; Bekah, D.; Goonoo, N.; Bhaw-Luximon, A. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds. RSC Med. Chem. 2021, 12, 1476–1490. [Google Scholar] [CrossRef]
- Fu, Y.J.; Shi, Y.F.; Wang, L.Y.; Zhao, Y.F.; Wang, R.K.; Li, K.; Zhang, S.T.; Zha, X.J.; Wang, W.; Zhao, X. All-Natural Immunomodulatory Bioadhesive Hydrogel Promotes Angiogenesis and Diabetic Wound Healing by Regulating Macrophage Heterogeneity. Adv. Sci. 2023, 10, 2206771. [Google Scholar] [CrossRef]
- Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, N.; Salleh, A.; Zawani, M.; Sanyal, A.; Maarof, M.; Fauzi, M.B. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: A critical review. Antioxidants 2023, 12, 787. [Google Scholar] [CrossRef]
- Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022, 290, 120096. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Zhang, D.; Wu, X.; Zhao, Y.; Shang, L.; Ren, J.; Zhao, Y. Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl. Mater. Today 2021, 23, 101000. [Google Scholar] [CrossRef]
- Yang, W.; Kang, X.; Gao, X.; Zhuang, Y.; Fan, C.; Shen, H.; Chen, Y.; Dai, J. Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing. Adv. Funct. Mater. 2023, 33, 2211340. [Google Scholar] [CrossRef]
- Masri, S.; Fauzi, M.B. Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing. Polymers 2021, 13, 1011. [Google Scholar] [CrossRef]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef] [PubMed]
- Nitthikan, N.; Preedalikit, W.; Supadej, K.; Chaichit, S.; Leelapornpisid, P.; Kiattisin, K. Exploring the Wound Healing Potential of a Cuscuta chinensis Extract-Loaded Nanoemulsion-Based Gel. Pharmaceutics 2024, 16, 573. [Google Scholar] [CrossRef]
- Dogra, S.; Koul, B.; Singh, J.; Mishra, M.; Yadav, D. Phytochemical Analysis, Antimicrobial Screening and In Vitro Pharmacological Activity of Artemisia vestita Leaf Extract. Molecules 2024, 29, 1829. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Díaz, M.; Pérez, F.E.; Manosalva, P.M.; Cerda, J.I.; Martínez-Contreras, C.F.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Barriga, A.; Escobar, J. Antimicrobial Activity and Phytochemical Characterization of Baccharis concava Pers., a Native Plant of the Central Chilean Coast. Molecules 2024, 29, 1654. [Google Scholar] [CrossRef]
- Cao, X.; Lin, X.; Li, N.; Zhao, X.; Zhou, M.; Zhao, Y. Animal tissue-derived biomaterials for promoting wound healing. Mater. Horiz. 2023, 10, 3237–3256. [Google Scholar] [CrossRef] [PubMed]
- Napavichayanun, S.; Aramwit, P. Effect of animal products and extracts on wound healing promotion in topical applications: A review. J. Biomater. Sci. Polym. Ed. 2017, 28, 703–729. [Google Scholar] [CrossRef]
- Da, L.C.; Huang, Y.Z.; Xie, H.Q. Progress in development of bioderived materials for dermal wound healing. Regen. Biomater. 2017, 4, 325–334. [Google Scholar] [CrossRef]
- Chouhan, D.; Kaushik, S.; Arora, D. Trends in bio-derived biomaterials in tissue engineering. In Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches; Springer: Singapore, 2021; pp. 163–213. [Google Scholar]
- Esmaeili, A.; Biazar, E.; Ebrahimi, M.; Heidari Keshel, S.; Kheilnezhad, B.; Saeedi Landi, F. Acellular fish skin for wound healing. Int. Wound J. 2023, 20, 2924–2941. [Google Scholar] [CrossRef]
- Zheng, F.; Lin, Y.; Verbeken, E.; Claerhout, F.; Fastrez, M.; De Ridder, D.; Deprest, J. Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am. J. Obstet. Gynecol. 2004, 191, 1961–1970. [Google Scholar] [CrossRef]
- Baldursson, B.T.; Kjartansson, H.; Konrádsdóttir, F.; Gudnason, P.; Sigurjonsson, G.F.; Lund, S.H. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: A noninferiority study. Int. J. Low. Extrem. Wounds 2015, 14, 37–43. [Google Scholar] [CrossRef]
- Han, H.-R. Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review. Chemosensors 2023, 11, 537. [Google Scholar] [CrossRef]
- Hosseini, E.S.; Bhattacharjee, M.; Manjakkal, L.; Dahiya, R. Healing and monitoring of chronic wounds: Advances in wearable technologies. In Digital Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–99. [Google Scholar]
- Jiang, J.; Ding, J.; Wu, X.; Zeng, M.; Tian, Y.; Wu, K.; Wei, D.; Sun, J.; Guo, Z.; Fan, H. Flexible and temperature-responsive hydrogel dressing for real-time and remote wound healing monitoring. J. Mater. Chem. B 2023, 11, 4934–4945. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, M.; He, B.; Gao, B. Intelligent patches for wound management: In situ sensing and treatment. Anal. Chem. 2021, 93, 4687–4696. [Google Scholar] [CrossRef] [PubMed]
- Brugger, M.S.; Schnitzler, L.G.; Nieberle, T.; Wixforth, A.; Westerhausen, C. Shear-horizontal surface acoustic wave sensor for non-invasive monitoring of dynamic cell spreading and attachment in wound healing assays. Biosens. Bioelectron. 2021, 173, 112807. [Google Scholar] [CrossRef] [PubMed]
- El Saboni, Y.; Hunt, J.A.; Stanley, J.; Moffatt, C.; Wei, Y. Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci. Rep. 2022, 12, 7972. [Google Scholar]
- Li, M.; Zhang, Y.; Lian, L.; Liu, K.; Lu, M.; Chen, Y.; Zhang, L.; Zhang, X.; Wan, P. Flexible accelerated-wound-healing antibacterial MXene-based Epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 2022, 32, 2208141. [Google Scholar] [CrossRef]
- Almeida, I.B.; Teixeira, L.G.B.; de Carvalho, F.O.; Silva, É.R.; Nunes, P.S.; Dos Santos, M.R.V.; de Souza Araújo, A.A. Smart dressings for wound healing: A review. Adv. Ski. Wound Care 2021, 34, 1–8. [Google Scholar] [CrossRef]
- Short, W.D.; Olutoye, O.O.; Padon, B.W.; Parikh, U.M.; Colchado, D.; Vangapandu, H.; Shams, S.; Chi, T.; Jung, J.P.; Balaji, S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front. Bioeng. Biotechnol. 2022, 10, 952198. [Google Scholar] [CrossRef]
- Noushin, T.; Hossain, N.I.; Tabassum, S. IoT-enabled integrated smart wound sensor for multiplexed monitoring of inflammatory biomarkers at the wound site. Front. Nanotechnol. 2022, 4, 851041. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Intelligent wearable sensors interconnected with advanced wound dressing bandages for contactless chronic skin monitoring: Artificial intelligence for predicting tissue regeneration. Anal. Chem. 2022, 94, 6842–6852. [Google Scholar] [CrossRef]
- Liu, L.; Li, R.; Liu, F.; Huang, L.; Liu, W.; Wang, J.; Wu, Z.; Reddy, N.; Cui, W.; Jiang, Q. Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 2023, 17, 9600–9610. [Google Scholar] [CrossRef]
- Lee, D.U.; Kim, S.-C.; Choi, D.Y.; Jung, W.-K.; Moon, M.J. Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects. Biomater. Res. 2023, 27, 14. [Google Scholar] [CrossRef] [PubMed]
- Prakashan, D.; Kaushik, A.; Gandhi, S. Smart sensors and wound dressings: Artificial intelligence-supported chronic skin monitoring–A review. Chem. Eng. J. 2024, 497, 154371. [Google Scholar] [CrossRef]
- Patel, S.; Ershad, F.; Zhao, M.; Isseroff, R.R.; Duan, B.; Zhou, Y.; Wang, Y.; Yu, C. Wearable electronics for skin wound monitoring and healing. Soft Sci. 2022, 2, 1–38. [Google Scholar] [CrossRef]
- Tang, N.; Zheng, Y.; Jiang, X.; Zhou, C.; Jin, H.; Jin, K.; Wu, W.; Haick, H. Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines 2021, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-H.; Samandari, M.; Li, C.; Li, H.; Song, D.; Zhang, Y.; Tamayol, A.; Wang, X. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sens. Actuators Rep. 2022, 4, 100075. [Google Scholar] [CrossRef]
- Cheng, S.; Gu, Z.; Zhou, L.; Hao, M.; An, H.; Song, K.; Wu, X.; Zhang, K.; Zhao, Z.; Dong, Y. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids. Front. Bioeng. Biotechnol. 2021, 9, 765987. [Google Scholar] [CrossRef]
- Youn, S.; Ki, M.-R.; Abdelhamid, M.A.; Pack, S.-P. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics 2024, 9, 278. [Google Scholar] [CrossRef]
- Wang, Z.; Li, N.; Zhang, Z.; Cui, X.; Zhang, H. Hydrogel-based energy harvesters and self-powered sensors for wearable applications. Nanoenergy Adv. 2023, 3, 315–342. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Zhao, P.; Liu, M.; Xie, F.; Ma, X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. Membranes 2023, 13, 802. [Google Scholar] [CrossRef]
- Jin, S.; Newton, M.A.A.; Cheng, H.; Zhang, Q.; Gao, W.; Zheng, Y.; Lu, Z.; Dai, Z.; Zhu, J. Progress of hydrogel dressings with wound monitoring and treatment functions. Gels 2023, 9, 694. [Google Scholar] [CrossRef] [PubMed]
Authors | Title | Main Content |
---|---|---|
Gefen, A., et al. | Mechanical and contact characteristics of foam materials within wound dressings: Theoretical and practical considerations in treatment [29] | Foam materials, wound dressings, mechanical characteristics, and contact characteristics |
Chiu-Fang Chen., et al. | A multifunctional polyethylene glycol/triethoxysilane-modified polyurethane foam dressing with high absorbency and antiadhesion properties promotes diabetic wound healing [30] | Polyethylene glycol/triethoxysilane-modified polyurethane foam, high absorbency, antiadhesion, diabetic wound healing, and porous structure |
Yu-Chi Wang., et al. | The effects of silver-releasing foam dressings on diabetic foot ulcer healing [31] | Silver-releasing foam dressing, diabetic foot ulcers (DFUs), silver sulfadiazine, and wound healing |
Chen, C., et al. | Foam dressing and micropower vacuum dressing promote diabetic foot ulcer wound healing by activating the PI3K/AKT/mTOR pathway in rats [32] | Diabetic foot ulcer wound healing, MVD (micropower vacuum dressing), PI3K, AKT, and mTOR |
Xie, F., et al. | Alginate foam gel modified by graphene oxide for wound dressing [33] | Alginate foam gel, graphene oxide (CG), wound dressing, vascular remodeling, and antibacterial properties |
Woo, K., et al. | Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: perspectives from a wound care expert panel [34] | Hard-to-heal (chronic) wounds, psychosocial issues, local wound care products, wound-related pain, odor, itch, and excessive wound drainage |
Watson, F., et al. | In vitro prevention and inactivation of biofilms using controlled-release iodine foam dressings for wound healing [35] | Controlled-release iodine foam dressings, biofilm, wound healing, P. aeruginosa, and S. aureus |
Du, C., et al. | Shape memory polymer foams with phenolic acid-based antioxidant and antimicrobial properties for traumatic wound healing [36] | Polymer foams, shape memory, phenolic acid, antimicrobial, and antioxidant |
Authors | Title | Main Content |
---|---|---|
Liang, Y., et al. | Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management [43] | Polylysine gauze, environmentally friendly, antimicrobial, minimize wound infections, biodegradable, and biocompatibility |
Qian, H., T. Lei, and Y. Hu | Negative pressure wound therapy versus gauze dressings in managing open fracture wound of lower limbs: A meta-analysis of randomized controlled trials [44] | Gauze dressings, meta-analysis, negative pressure wound therapy (NPWT), randomized controlled trials (RCTs), and infections |
Liu, W.J., et al. | Comparison of Ba-Hao burn ointment gauze and petrolatum gauze in split graft donor site healing: A randomized, prospective, and self-control study [45] | Bahao burn ointment gauze (BHBO), petrolatum gauze, split graft donor site, self-control study, wound-healing time, and Vancouver Scar Scale (VSS) |
Fang, H., et al. | A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing [46] | 1-vinyl-3-butylimidazolium bromide, 3-aminopropyltriethoxysilane, glycidyl methacrylate, butyl acrylate, cotton gauze, reusable ionic liquid grafted, wound dressing, and antibacterial |
Yang, C., et al. | Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds [47] | Dual-functionalized cotton gauze, chitosan, polyhexamethylene guanidine, and chronic wounds |
Nagarjuna Reddy, V., et al. | Gallocatechin-silver nanoparticles embedded in cotton gauze patches accelerated wound healing in diabetic rats by promoting proliferation and inhibiting apoptosis through the Wnt/β-catenin signaling pathway [48] | Cotton gauze, gallocatechin, silver nanoparticles, diabetic rats, proliferation, and wound healing |
Xiao, J., et al. | Freeze-thawing chitosan/ions hydrogel coated gauzes releasing multiple metal ions on demand for improved infected wound healing [49] | Gauzes, freeze-thawing, chitosan, ions hydrogel, multiple metal ions, and infected wound healing |
Authors | Title | Main Content |
---|---|---|
Han, H.R., et al. | Shape memory and breathable waterproof properties of polyurethane nanowebs [28] | Electrospun nanowebs, shape memory polyurethane (SMPU), DSC, pore diameters, breathable, and waterproof |
Bao, X., et al. | Antibacterial and antioxidant films based on HA/Gr/TA fabricated using electrospinning for wound healing [59] | Electrospinning, HA/Gr/TA, antibacterial, antioxidant films, and wound healing |
Xu, S., et al. | In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats [60] | Polyvinyl alcohol (PVA), bone marrow-derived stem cells (BMSCs), in situ cell, wound healing, and handheld electrospinning |
Liu, X., et al. | Electrospun medicated nanofibers for wound healing [61] | Nanofibers, extracellular matrix (ECM), electrospun, wound healing, nanostructure, and nanocomposite |
Guo, S., et al. | Electrospinning of botanicals for skin wound healing [62] | Electrospinning, botanicals, wound healing, loaded drugs, and large-scale manufacturing industry |
Chen, R., et al. | HE@ PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology [63] | Hyaluronic acid-polylysine (HE), polycaprolactone/poly(citric acid)-ε-lysine (PCL/PCE), microfluidics electrospinning, gel nanofiber, self-adhesion, antibacterial, and wound dressing |
Su, S., et al. | Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications [64] | Poly(є-caprolactone)/polyethylene oxide, hyaluronic acid(HA), keratin(KR), coaxial electrospinning, and wound-healing applications |
Authors | Title | Main Content |
---|---|---|
Yongping Liang., et al. | Functional Hydrogels as Wound Dressing to Enhance Wound Healing [6] | Multifunctional hydrogel, bioactive wound dressing, wound healing, tissue engineering, bioactive biomaterials, wound regeneration, skin repair, wound closure, and collagen deposition |
Zhao, W., et al. | Microfluidic-based functional materials: new prospects for wound healing and beyond [80] | Functional materials, wound healing, physiological stages, microfluidics, well-tailored internal structures, and integrated functions |
Fu, W., et al. | Opportunities and challenges of nanomaterials in wound healing: Advances, mechanisms, and perspectives [81] | Nanomaterials, cytotoxicity, side effect, cell damage or death, wound healing, and mechanisms of action |
Gowda, B., et al. | Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art [82] | Nanoparticle, therapeutic approaches, wound healing, physiology, and mechanism in the role of angiogenesis |
Diao, W., et al. | Progress in copper-based materials for wound healing [83] | Chronic wounds, diabetic patients, copper, antibacterial, and anti-inflammatory activities |
Kharaziha, M., A. Baidya, and N. Annabi | Rational design of immunomodulatory hydrogels for chronic wound healing [84] | Immunomodulatory hydrogels, chronic wound healing, injury, macrophages switch, and anti-inflammatory phenotype |
Huang, X., et al. | Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing [85] | Chemical reactivity, wound healing, antimicrobial properties, decellularized dermal matrices, and biocompatibility |
Cheng, H., et al. | The potential of novel synthesized carbon dots derived resveratrol using one-pot green method in accelerating in vivo wound healing [86] | Carbon dots, porcine acellular dermal matrix (pADM), one-pot green method, in vivo, and wound healing |
Authors | Title | Main Content | Bibliographic Source |
---|---|---|---|
Zhang, Y., et al. | An integrated smart sensor dressing for real-time wound microenvironment monitoring and promoting angiogenesis and wound healing | Smart sensor dressing, real-time wound microenvironment monitoring, wound healing, and angiogenesis | [16] |
Sol Youn., et al. | Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin | Biomimetic, wound healing, wound dressing, E-skin, smart bandage, nature inspired, real-time monitoring, nanostructure, and diatom | [142] |
Zhaosu Wang., et al. | Hydrogel-Based Energy Harvesters and Self-Powered Sensors for Wearable Applications | Hydrogel, triboelectric, piezoelectric, thermoelectric, wearable, energy harvester, self-powered, and sensor | [143] |
Hanning Wu., et al. | Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration | Tissue regeneration, 3D printing, sensors, biomaterials, and artificial membrane application | [144] |
Shanshan Jin., et al. | Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions | Wound monitoring, treatment, hydrogel, and wound dressing | [145] |
Lirong Wang., et al. | Multifunctional hydrogel as wound dressing for intelligent wound monitoring | Intelligent wound monitoring, multifunctional hydrogel, wound Ph, and machine learning technology. | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H. An Investigation into the Structure of Wound-Healing Materials, Chemical Materials, Nature-Based Materials, and Wound Monitoring. Biomimetics 2025, 10, 270. https://doi.org/10.3390/biomimetics10050270
Han H. An Investigation into the Structure of Wound-Healing Materials, Chemical Materials, Nature-Based Materials, and Wound Monitoring. Biomimetics. 2025; 10(5):270. https://doi.org/10.3390/biomimetics10050270
Chicago/Turabian StyleHan, HyeRee. 2025. "An Investigation into the Structure of Wound-Healing Materials, Chemical Materials, Nature-Based Materials, and Wound Monitoring" Biomimetics 10, no. 5: 270. https://doi.org/10.3390/biomimetics10050270
APA StyleHan, H. (2025). An Investigation into the Structure of Wound-Healing Materials, Chemical Materials, Nature-Based Materials, and Wound Monitoring. Biomimetics, 10(5), 270. https://doi.org/10.3390/biomimetics10050270