A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller
Abstract
:1. Introduction
- This approach pioneeringly combines the fuzzy logic module for estimating the stiffness of grasped objects with the dynamic compliant primitives based self-adaptive regulation of impedance stiffness coefficient, in the context of teleoperated hand manipulation. This integration enables adaptive impedance control that closely mimics human muscle behavior, enhancing the system’s ability to handle objects of different stiffness safely and effectively.
- The approach integrates compliant adaptive grasping methods into the teleoperation framework for hand manipulation, incorporating finger-to-finger force feedback and vibrotactile feedback on the master side. By integrating force and vibrotactile feedback, the operator gains enhanced situational awareness and operational judgment, leading to better operator confidence and reduced cognitive load. Not only does it increase the success rate of teleoperation and reduce operator fatigue, but it also provides a more immersive and realistic interaction experience.
2. Methodology
2.1. Hand Teleoperation Framework Based on Shared Control
2.2. Fuzzy Logic Module
- It maintains robust performance during input saturation without requiring an extra anti-windup structure [32].
- It can effectively protect against impulse signals without the need for additional filtering mechanisms.
2.3. Adaptive Impedance Control Based on Dynamic Compliant Primitives
2.3.1. Impedance Control
2.3.2. The Definition and Derivation of Dynamic Compliant Primitives
2.4. Fuzzy Logic-Dynamic Compliant Primitives Controller
3. Experimental Evaluation
3.1. Object Stiffness Identification
3.2. Comparison of Different Control Methods for the Dexterous Robotic Hand
3.3. Robotic Arm and Hand Teleoperation Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbink, D.A.; Carlson, T.; Mulder, M.; De Winter, J.C.; Aminravan, F.; Gibo, T.L.; Boer, E.R. A topology of shared control systems—Finding common ground in diversity. IEEE Trans. Hum.-Mach. Syst. 2018, 48, 509–525. [Google Scholar] [CrossRef]
- Rakita, D.; Mutlu, B.; Gleicher, M.; Hiatt, L.M. Shared control–based bimanual robot manipulation. Sci. Robot. 2019, 4, eaaw0955. [Google Scholar] [PubMed]
- Marcano, M.; Díaz, S.; Pérez, J.; Irigoyen, E. A review of shared control for automated vehicles: Theory and applications. IEEE Trans. Hum.-Mach. Syst. 2020, 50, 475–491. [Google Scholar]
- Gottardi, A.; Tortora, S.; Tosello, E.; Menegatti, E. Shared control in robot teleoperation with improved potential fields. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 410–422. [Google Scholar]
- Hu, H.; Shi, D.; Yang, C.; Si, W.; Li, Q. A Novel Shared Control Framework Based on Imitation Learning. In Proceedings of the 2024 IEEE International Conference on Industrial Technology (ICIT), Bristol, UK, 25–27 March 2024; pp. 1–6. [Google Scholar]
- Luo, J.; Lin, Z.; Li, Y.; Yang, C. A teleoperation framework for mobile robots based on shared control. IEEE Robot. Autom. Lett. 2019, 5, 377–384. [Google Scholar]
- Zhuang, K.Z.; Sommer, N.; Mendez, V.; Aryan, S.; Formento, E.; D’Anna, E.; Artoni, F.; Petrini, F.; Granata, G.; Cannaviello, G.; et al. Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 2019, 1, 400–411. [Google Scholar]
- Wang, F.; Qian, Z.; Lin, Y.; Zhang, W. Design and rapid construction of a cost-effective virtual haptic device. IEEE/ASME Trans. Mechatronics 2020, 26, 66–77. [Google Scholar]
- Latreche, A.; Kelaiaia, R.; Chemori, A.; Kerboua, A. A new home-based upper-and lower-limb telerehabilitation platform with experimental validation. Arab. J. Sci. Eng. 2023, 48, 10825–10840. [Google Scholar]
- Qin, Y.; Su, H.; Wang, X. From one hand to multiple hands: Imitation learning for dexterous manipulation from single-camera teleoperation. IEEE Robot. Autom. Lett. 2022, 7, 10873–10881. [Google Scholar]
- Chen, J.; Wu, Y.; Yao, C.; Huang, X. Robust motion learning for musculoskeletal robots based on a recurrent neural network and muscle synergies. IEEE Trans. Autom. Sci. Eng. 2024, 22, 2405–2420. [Google Scholar]
- Huang, X.; Wang, X.; Zhao, Y.; Hu, J.; Li, H.; Jiang, Z. Guided Model-Based Policy Search Method for Fast Motor Learning of Robots With Learned Dynamics. IEEE Trans. Autom. Sci. Eng. 2024, 22, 453–465. [Google Scholar]
- Darvish, K.; Penco, L.; Ramos, J.; Cisneros, R.; Pratt, J.; Yoshida, E.; Ivaldi, S.; Pucci, D. Teleoperation of humanoid robots: A survey. IEEE Trans. Robot. 2023, 39, 1706–1727. [Google Scholar]
- Kumar, V.; Todorov, E. Mujoco haptix: A virtual reality system for hand manipulation. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015; pp. 657–663. [Google Scholar]
- Fang, B.; Sun, F.; Liu, H.; Liu, C. 3D human gesture capturing and recognition by the IMMU-based data glove. Neurocomputing 2018, 277, 198–207. [Google Scholar]
- Kukliński, K.; Fischer, K.; Marhenke, I.; Kirstein, F.; Maria, V.; Sølvason, D.; Krüger, N.; Savarimuthu, T.R. Teleoperation for learning by demonstration: Data glove versus object manipulation for intuitive robot control. In Proceedings of the 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, Russia, 6–8 October 2014; pp. 346–351. [Google Scholar]
- Ficuciello, F.; Migliozzi, A.; Laudante, G.; Falco, P.; Siciliano, B. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework. Sci. Robot. 2019, 4, eaao4900. [Google Scholar] [PubMed]
- Qin, Y.; Yang, W.; Huang, B.; Van Wyk, K.; Su, H.; Wang, X.; Chao, Y.W.; Fox, D. Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv 2023, arXiv:2307.04577. [Google Scholar]
- Handa, A.; Van Wyk, K.; Yang, W.; Liang, J.; Chao, Y.W.; Wan, Q.; Birchfield, S.; Ratliff, N.; Fox, D. Dexpilot: Vision-based teleoperation of dexterous robotic hand-arm system. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 9164–9170. [Google Scholar]
- He, R.; Zhang, B.; Bi, Z.; Zhang, W. Development of a hybrid haptic device with high degree of motion decoupling. In Proceedings of the 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 16–18 November 2022; pp. 1–5. [Google Scholar]
- Bong, J.H.; Choi, S.; Hong, J.; Park, S. Force feedback haptic interface for bilateral teleoperation of robot manipulation. Microsyst. Technol. 2022, 28, 2381–2392. [Google Scholar]
- Meeker, C.; Rasmussen, T.; Ciocarlie, M. Intuitive hand teleoperation by novice operators using a continuous teleoperation subspace. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5821–5827. [Google Scholar]
- Shintemirov, A.; Taunyazov, T.; Omarali, B.; Nurbayeva, A.; Kim, A.; Bukeyev, A.; Rubagotti, M. An open-source 7-DOF wireless human arm motion-tracking system for use in robotics research. Sensors 2020, 20, 3082. [Google Scholar] [CrossRef]
- Gao, Q.; Ju, Z.; Chen, Y.; Wang, Q.; Chi, C. An efficient RGB-D hand gesture detection framework for dexterous robot hand-arm teleoperation system. IEEE Trans. Hum.-Mach. Syst. 2022, 53, 13–23. [Google Scholar]
- Zeng, C.; Li, S.; Jiang, Y.; Li, Q.; Chen, Z.; Yang, C.; Zhang, J. Learning compliant grasping and manipulation by teleoperation with adaptive force control. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 717–724. [Google Scholar]
- Suomalainen, M.; Calinon, S.; Pignat, E.; Kyrki, V. Improving dual-arm assembly by master-slave compliance. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8676–8682. [Google Scholar]
- Martín Martín, R.; Lee, M.A.; Gardner, R.; Savarese, S.; Bohg, J.; Garg, A. Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1010–1017. [Google Scholar]
- Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Molinari Tosatti, L.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [Google Scholar]
- Li, Z.; Liu, J.; Huang, Z.; Peng, Y.; Pu, H.; Ding, L. Adaptive impedance control of human–robot cooperation using reinforcement learning. IEEE Trans. Ind. Electron. 2017, 64, 8013–8022. [Google Scholar] [CrossRef]
- Li, M.; Yin, H.; Tahara, K.; Billard, A. Learning object-level impedance control for robust grasping and dexterous manipulation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6784–6791. [Google Scholar]
- Babuska, R.; Verbruggen, H.B. (Eds.) Fuzzy Logic Control: Advances in Applications; World Scientific: Singapore, 1999; Volume 23. [Google Scholar]
- Duan, X.G.; Li, H.X.; Deng, H. Robustness of fuzzy PID controller due to its inherent saturation. J. Process Control 2012, 22, 470–476. [Google Scholar] [CrossRef]
- Precup, R.E.; Teban, T.A.; Albu, A.; Borlea, A.B.; Zamfirache, I.A.; Petriu, E.M. Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans. Instrum. Meas. 2020, 69, 4625–4636. [Google Scholar] [CrossRef]
- Hogan, N. Impedance control: An approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control 1985, 107, 1–7. [Google Scholar] [CrossRef]
- Hogan, N. Impedance control: An approach to manipulation: Part II—Implementation. J. Dyn. Syst. Meas. Control 1985, 107, 8–16. [Google Scholar] [CrossRef]
- Naceri, A.; Schumacher, T.; Li, Q.; Calinon, S.; Ritter, H. Learning optimal impedance control during complex 3D arm movements. IEEE Robot. Autom. Lett. 2021, 6, 1248–1255. [Google Scholar] [CrossRef]
- Saveriano, M.; Abu-Dakka, F.J.; Kramberger, A.; Peternel, L. Dynamic movement primitives in robotics: A tutorial survey. Int. J. Robot. Res. 2023, 42, 1133–1184. [Google Scholar] [CrossRef]
- Schaal, S.; Mohajerian, P.; Ijspeert, A. Dynamics systems vs. optimal control—A unifying view. Prog. Brain Res. 2007, 165, 425–445. [Google Scholar]
- Ijspeert, A.J.; Nakanishi, J.; Hoffmann, H.; Pastor, P.; Schaal, S. Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Comput. 2013, 25, 328–373. [Google Scholar] [CrossRef]
- Cao, X.; Huang, X.; Zhao, Y.; Sun, Z.; Li, H.; Jiang, Z.; Ceccarelli, M. A method of human-like compliant assembly based on variable admittance control for space maintenance. Cyborg Bionic Syst. 2023, 4, 0046. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, Y.; Cao, X.; Shen, M.; Yin, C.; Liu, H.; Cui, J.; Sun, Z.; Huang, X.; Li, H. FC-EODR: Immersive humanoid dual-arm dexterous explosive ordnance disposal robot. Biomimetics 2023, 8, 67. [Google Scholar] [CrossRef]
- Rakita, D.; Mutlu, B.; Gleicher, M. RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion. In Proceedings of the Robotics: Science and Systems, Pittsburgh, PA, USA, 26–30 June 2018; Volume 14, pp. 26–30. [Google Scholar]
XL | L | M | S | XS | ||
---|---|---|---|---|---|---|
XL | XL | XL | L | M | S | |
L | XL | L | M | M | S | |
M | L | L | M | S | S | |
S | L | M | M | S | XS | |
XS | L | M | S | XS | XS |
Soft Sponge | Soft Bottle | Hard Bottle | |
---|---|---|---|
position control | 2.06 ± 0.22 | 2.71 ± 0.41 | 3.62 ± 0.52 |
fixed gain | 1.56 ± 0.09 | 2.24 ± 0.12 | 3.31 ± 0.13 |
adaptive impedance | 1.19 ± 0.08 | 1.89 ± 0.10 | 3.12 ± 0.13 |
Fatigue Time (s) | |
---|---|
without force and vibrotactile feedback | 21.9 ± 2.2 |
with force and vibrotactile feedback | 46.4 ± 3.6 |
Success Rate | |
---|---|
without feedback & position control | 52% |
without feedback & adaptive impedence | 64% |
with feedback & position control | 68% |
with feedback & adaptive impedence | 82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Huang, X.; Wang, Y.; Li, H.; Jiang, Z. A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller. Biomimetics 2025, 10, 194. https://doi.org/10.3390/biomimetics10040194
Hu P, Huang X, Wang Y, Li H, Jiang Z. A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller. Biomimetics. 2025; 10(4):194. https://doi.org/10.3390/biomimetics10040194
Chicago/Turabian StyleHu, Peixuan, Xiao Huang, Yunlai Wang, Hui Li, and Zhihong Jiang. 2025. "A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller" Biomimetics 10, no. 4: 194. https://doi.org/10.3390/biomimetics10040194
APA StyleHu, P., Huang, X., Wang, Y., Li, H., & Jiang, Z. (2025). A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller. Biomimetics, 10(4), 194. https://doi.org/10.3390/biomimetics10040194