Bioinspired Functional Design for Wearable Environmental Sensors
Abstract
1. Introduction
2. Functional Classification of Biological Mechanisms and Biomimetic Application
2.1. Adhesion Mechanisms: Nature’s Strategies Tailored to Skin and Environment
2.2. Color Change Mechanisms: Harnessing Light and Environment for Passive Sensing
2.3. Antifouling and Antibacterial Mechanisms: Anti-Contamination and Microbes
2.4. Flexible Protective Architectures: Natural Armor That Balances Stiffness and Compliance
3. Proposed Integrated Sensor Architecture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Synthesis Report of the IPCC Sixth Assessment Report (AR6); Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services. Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- CBD. Kunming–Montreal Global Biodiversity Framework; Convention on Biological Diversity: Montreal, QC, Canada, 2022. [Google Scholar]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Yang, C.; Tochikura, S.; Uzarski, J.R.; Morse, D.E.; Sepunaru, L.; Gordon, M.J. Electrochemically driven optical dynamics of reflectin protein films. Adv. Mater. 2025, 37, 2411005. [Google Scholar] [CrossRef] [PubMed]
- Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [Google Scholar] [CrossRef]
- Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2021, 27, 73–77. [Google Scholar] [CrossRef]
- Natarajan, A.; Su, H.-W.; Heneghan, C. Assessment of physiological signs associated with COVID-19 measured using wearable devices. NPJ Digit. Med. 2020, 3, 156. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A. 2009, 367, 1445–1486. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Hasan, J.; Webb, H.K.; Gervinskas, G.; Juodkazis, S.; Truong, V.K.; Wu, A.H.F.; Lamb, R.N.; Baulin, V.A.; Watson, G.S.; et al. Bactericidal activity of black silicon. Nat. Commun. 2013, 4, 2838. [Google Scholar] [CrossRef]
- Shawkey, M.D.; Morehouse, N.I.; Vukusic, P. A protean palette: Colour materials and mixing in birds and butterflies. J. R. Soc. Interface 2009, 6 (Suppl. S2), S221–S231. [Google Scholar] [CrossRef]
- Mäthger, L.M.; Denton, E.J.; Marshall, N.J.; Hanlon, R.T. Mechanisms and behavioural functions of structural coloration in cephalopods. J. R. Soc. Interface 2009, 6 (Suppl. S2), S149–S163. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; Sherman, V.R.; Meyers, M.A. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016, 41, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.H.; Kiang, J.H.; Correa, V.; Lopez, M.I.; Chen, P.-Y.; McKittrick, J.; Meyers, M.A. Armadillo armor: Mechanical testing and micro-structural evaluation. J. Mech. Behav. Biomed. Mater. 2011, 4, 713–722. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Zhang, L.; Zhou, X.; Wang, S.; Jiang, L.; Chen, H. From dry to wet, the nature inspired strong attachment surfaces and their medical applications. ACS Nano 2025, 19, 9684–9708. [Google Scholar] [CrossRef] [PubMed]
- Al-Amri, A.M. Printed sensors for environmental monitoring: Advancements, challenges, and future directions. Chemosensors 2025, 13, 285. [Google Scholar] [CrossRef]
- Albu, C.; Chira, A.; Radu, G.-L.; Eremia, S.A.V. Advances in cost-effective chemosensors for sustainable monitoring in food safety and processing. Chemosensors 2025, 13, 113. [Google Scholar] [CrossRef]
- Li, M.; Mao, A.; Guan, Q.; Saiz, E. Nature-inspired adhesive systems. Chem. Soc. Rev. 2024, 53, 8240–8305. [Google Scholar] [CrossRef]
- Song, J.H.; Baik, S.; Kim, D.W.; Yang, T.-H.; Pang, C. Wet soft bio-adhesion of insect-inspired polymeric oil-loadable perforated microcylinders. Chem. Eng. J. 2021, 423, 130194. [Google Scholar] [CrossRef]
- Lai, J.H.; del Alamo, J.C.; Rodríguez-Rodríguez, J.; Lasheras, J.C. The mechanics of the adhesive locomotion of terrestrial gastropods. J. Exp. Biol. 2010, 213 Pt 22, 3920–3933. [Google Scholar] [CrossRef]
- Kang, M.; Sun, K.; Seong, M.; Hwang, I.; Jang, H.; Park, S.; Choi, G.; Lee, S.-H.; Kim, J.; Jeong, H.E. Applications of bioinspired reversible dry and wet adhesives: A review. Front. Mech. Eng. 2021, 7, 668262. [Google Scholar] [CrossRef]
- Baik, S.; Lee, J.; Jeon, E.J.; Park, B.-y.; Kim, D.W.; Song, J.H.; Lee, H.J.; Han, S.Y.; Cho, S.-W.; Pang, C. Diving beetle–like miniaturized plungers with reversible, rapid biofluid capturing for machine learning–based care of skin disease. Sci. Adv. 2021, 7, eabf5695. [Google Scholar] [CrossRef] [PubMed]
- Federle, W. Why are so many adhesive pads hairy? J. Exp. Biol 2006, 209 Pt 14, 2611–2621. [Google Scholar] [CrossRef]
- Dirks, J.-H.; Federle, W. Fluid-based adhesion in insects—Principles and challenges. Soft Matter 2011, 7, 11047–11053. [Google Scholar] [CrossRef]
- Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603–10606. [Google Scholar] [CrossRef]
- Peisker, H.; Michels, J.; Gorb, S.N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 2013, 4, 1661. [Google Scholar] [CrossRef]
- Kovalev, A.E.; Filippov, A.E.; Gorb, S.N. Insect wet steps: Loss of fluid from insect feet adhering to a substrate. J. R. Soc. Interface 2013, 10, 20120639. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Steinhart, M.; Gorb, S.N. Bio-inspired adhesion control with liquids. iScience 2022, 25, 103864. [Google Scholar] [CrossRef]
- Denny, M. The role of gastropod pedal mucus in locomotion. Nature 1980, 285, 160–161. [Google Scholar] [CrossRef]
- Smith, A.M. The structure and function of adhesive gels from invertebrates. Integr. Comp. Biol 2002, 42, 1164–1171. [Google Scholar] [CrossRef]
- Deng, T.; Gao, D.; Song, X.; Zhou, Z.; Zhou, L.; Tao, M.; Jiang, Z.; Yang, L.; Luo, L.; Zhou, A.; et al. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 2023, 14, 396. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, D.; Liu, Q.; Meng, F.; Zhu, B.; Xue, L. Tree frog-inspired nanopillar arrays for enhancement of adhesion and friction. Biointerphases 2021, 16, 021001. [Google Scholar] [CrossRef]
- Hou, C.; He, W.; Yao, X. Mucus-inspired supramolecular adhesives: Exploring the synergy between dynamic networks and functional liquids. ACS Nano 2025, 19, 14540–14556. [Google Scholar] [CrossRef]
- Wong, S.H.D.; Deen, G.R.; Bates, J.S.; Maiti, C.; Lam, C.Y.K.; Pachauri, A.; AlAnsari, R.; Bělský, P.; Yoon, J.; Dodda, J.M. Smart skin-adhesive patches: From design to biomedical applications. Adv. Funct. Mater. 2023, 33, 2213560. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Z.; Liu, M.; Zhang, F.; Wang, S. Bioinspired structural adhesives: A decades-old science but emerging materials. Matter 2024, 7, 1710–1723. [Google Scholar] [CrossRef]
- Tripathi, D.; Ray, P.; Singh, A.V.; Kishore, V.; Singh, S.L. Durability of slippery liquid-infused surfaces: Challenges and advances. Coatings 2023, 13, 1095. [Google Scholar] [CrossRef]
- Butt, M.A.; Piramidowicz, R. Integrated photonic sensors for the detection of toxic gasses—A review. Chemosensors 2024, 12, 143. [Google Scholar] [CrossRef]
- Bravo-Yagüe, J.C.; Paniagua-González, G.; Garcinuño, R.M.; García-Mayor, A.; Fernández-Hernando, P. Colorimetric molecularly imprinted polymer-based sensors for rapid detection of organic compounds: A review. Chemosensors 2025, 13, 163. [Google Scholar] [CrossRef]
- Basso, C.R.; Filho, M.V.B.; Gavioli, V.D.; Parra, J.P.R.L.L.; Castro, G.R.; Pedrosa, V.A. Recent advances in nanomaterials for enhanced colorimetric detection of viruses and bacteria. Chemosensors 2025, 13, 112. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, R.; Dong, X.; Wang, Z.; Yu, L. A pH-responsive liquid crystal-based sensing platform for the detection of biothiols. Chemosensors 2025, 13, 291. [Google Scholar] [CrossRef]
- Cheng, T.; Tahouni, Y.; Sahin, E.S.; Ulrich, K.; Lajewski, S.; Bonten, C.; Wood, D.; Rühe, J.; Speck, T.; Menges, A. Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing. Nat. Commun. 2024, 15, 10366. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Mylo, M.D.; Masselter, T.; Scheckenbach, F.; Fischerbauer, S.; Nopens, M.; Flenner, S.; Greving, I.; Hesse, L.; Speck, T. Beyond the bilayer: Multilayered hygroscopic actuation in pine cone scales. Beilstein J. Nanotechnol. 2025, 16, 1695–1710. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, W.; Tian, L.; Li, W.; Zhang, F.; Wang, Y. Investigation of the selective color-changing mechanism of Dynastes tityus beetle (Coleoptera: Scarabaeidae). Sci. Rep. 2021, 11, 808. [Google Scholar] [CrossRef]
- Wei, H.; Chen, C.; Yang, D. Applications of inverse opal photonic crystal hydrogels in the preparation of acid-base color-changing materials. RSC Adv. 2024, 14, 2243–2263. [Google Scholar] [CrossRef]
- Rashid, I.; Hassan, M.U.; Nazim, M.; Elsherif, M.; Dou, Q.; Hu, D.; Kamran, M.; Dai, Q.; Butt, H. Structural colouration in the Himalayan monal, hydrophobicity and refractive index modulated sensing. Nanoscale 2020, 12, 21409–21419. [Google Scholar] [CrossRef] [PubMed]
- Freyer, P.; Wilts, B.D.; Stavenga, D.G. Cortex thickness is key for the colors of iridescent starling feather barbules with a single, organized melanosome layer. Front. Ecol. Evol. 2021, 9, 746254. [Google Scholar] [CrossRef]
- Wolde-Michael, E.; Roberts, A.D.; Heyes, D.J.; Dumanli, A.G.; Blaker, J.J.; Takano, E.; Scrutton, N.S. Design and fabrication of recombinant reflectin-based multilayer reflectors: Bio-design engineering and photoisomerism induced wavelength modulation. Sci. Rep. 2021, 11, 14580. [Google Scholar] [CrossRef]
- Reyssat, E.; Mahadevan, L. Hygromorphs: From pine cones to biomimetic bilayers. J. R. Soc. Interface 2009, 6, 951–957. [Google Scholar] [CrossRef]
- Noh, H.; Liew, S.F.; Saranathan, V.; Mochrie, S.G.J.; Prum, R.O.; Dufresne, E.R.; Cao, H. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 2010, 22, 2871–2880. [Google Scholar] [CrossRef]
- DeMartini, D.G.; Krogstad, D.V.; Morse, D.E. Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system. Proc. Natl. Acad. Sci. USA 2013, 110, 2552–2556. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, A.; Demartini, D.G.; Eck, E.; Morse, D.E. Optical parameters of the tunable Bragg reflectors in squid. J. R. Soc. Interface 2013, 10, 20130386. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-H.; Lee, H.T.; Park, M.J.; Lim, B.; Park, B.C.; Jung, Y.J.; Kong, H.; Hwang, D.-H.; Lee, H.-i.; Park, J.M. Precisely tunable humidity color indicator based on photonic polymer films. Macromolecules 2021, 54, 621–628. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, J.H.; Lee, S.-Y.; Park, J. Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl. Phys. Lett. 2010, 97, 103701. [Google Scholar] [CrossRef]
- Qin, J.; Wang, W.; Cao, L. Photonic hydrogel sensing system for wearable and noninvasive cortisol monitoring. ACS Appl. Polym. Mater. 2023, 5, 7079–7089. [Google Scholar] [CrossRef]
- Xu, W.; Ma, Z.; Tian, Q.; Chen, Y.; Jiang, Q.; Fan, L. A review of fluorescent pH probes: Ratiometric strategies, extreme pH sensing, and multifunctional utility. Chemosensors 2025, 13, 280. [Google Scholar] [CrossRef]
- Ko, B.; Jeon, N.; Kim, J.; Kang, H.; Seong, J.; Yun, S.; Badloe, T.; Rho, J. Hydrogels for active photonics. Microsyst. Nanoeng. 2024, 10, 1. [Google Scholar] [CrossRef]
- Choe, A.; Yeom, J.; Shanker, R.; Kim, M.P.; Kang, S.; Ko, H. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 2018, 10, 912–922. [Google Scholar] [CrossRef]
- Vasilescu, A.; Gáspár, S.; Gheorghiu, M.; Polonschii, C.; Banciu, R.M.; David, S.; Gheorghiu, E.; Marty, J.-L. Promising solutions to address the non-specific adsorption in biosensors based on coupled electrochemical-surface plasmon resonance detection. Chemosensors 2025, 13, 92. [Google Scholar] [CrossRef]
- Xiao, G.; Li, J.; Zhao, B.; Yue, Z. Photoelectrochemical aptasensors for biosensing: A review. Chemosensors 2025, 13, 344. [Google Scholar] [CrossRef]
- Tu, W.; Luo, Y.; Shen, J.; Ran, X.; Yu, Z.; Wang, C.; Cai, C.; Bi, H. Lotus leaf-inspired corrosion-resistant and robust superhydrophobic coating for oil-water separation. Biomimetics 2025, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Song, H.; Wang, F.; Su, X.; Zhang, D.; Xu, J. Biomimetic superhydrophobic surfaces: From nature to application. Materials 2025, 18, 2772. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, Q.; Xu, L.P.; Zhang, X. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front. Bioeng. Biotechnol. 2022, 10, 1032640. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, Y.; Cai, X.; Zhang, H. Recent developments in slippery liquid-infused porous surface coatings for biomedical applications. ACS Biomater. Sci. Eng. 2024, 10, 3655–3672. [Google Scholar] [CrossRef]
- Pogodin, S.; Hasan, J.; Baulin, V.; Webb, H.; Truong, V.K.; Nguyen, H.P.; Boshkovikj, V.; Fluke, C.; Watson, G.; Watson, J.; et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 2013, 104, 835–840. [Google Scholar] [CrossRef]
- Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun. 2020, 11, 1626. [Google Scholar] [CrossRef]
- Jin, E.; Lv, Z.; Zhu, Y.; Zhang, H.; Li, H. Nature-inspired micro/nano-structured antibacterial surfaces. Molecules 2024, 29, 1906. [Google Scholar] [CrossRef]
- Eichler-Volf, A.; Xue, L.; Kovalev, A.; Gorb, E.V.; Gorb, S.N.; Steinhart, M. Nanoporous monolithic microsphere arrays have anti-adhesive properties independent of humidity. Molecules 2016, 9, 373. [Google Scholar] [CrossRef]
- Shen, J.; Ou, J.; Lei, S.; Hu, Y.; Wang, F.; Fang, X.; Li, C.; Li, W.; Amirfazli, A. Innovative solid slippery coating: Uniting mechanical durability, optical transparency, anti-Icing, and anti-graffiti traits. Polymers 2023, 15, 3983. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, Z.; Jiao, S.; Quan, Z.; Zhang, C.; Li, B.; Niu, S.; Han, Z.; Ren, L. Bio-inspired anti-glare and self-cleaning surface for optical/tissue residue pollution treatment of medical device surface. Chem. Eng. J. 2025, 506, 160041. [Google Scholar] [CrossRef]
- Etim, I.-I.N.; Zhang, R.; Wang, C.; Khan, S.; Mathivanan, K.; Duan, J. New insights on slippery lubricant-infused porous surfaces technique in mitigating microbial corrosion. NPJ Mater. Degrad. 2025, 9, 34. [Google Scholar] [CrossRef]
- Tan, N.; Im, J.; Neate, N.; Leong, C.-O.; Wildman, R.D.; Marsh, G.E.; Yee, M.S.-L. Mechano-bactericidal activity of two-photon polymerized micro-and nanoscale topographies against Pseudomonas aeruginosa: Surface interactions and antibacterial efficacy. Mater. Today Commun. 2024, 40, 109785. [Google Scholar]
- Machín, A.; Márquez, F. Next-generation chemical sensors: The convergence of nanomaterials, advanced characterization, and real-world applications. Chemosensors 2025, 13, 345. [Google Scholar] [CrossRef]
- Pantano, A.; Baiamonte, V. Mechanics of bio-inspired protective scales. Biomimetics 2025, 10, 75. [Google Scholar] [CrossRef]
- Ghods, S.; Murcia, S.; Ossa, E.A.; Arola, D. Designed for resistance to puncture: The dynamic response of fish scales. J. Mech. Behav. Biomed. Mater. 2019, 90, 451–459. [Google Scholar] [CrossRef]
- Chen, T.; Yang, X.; Zhang, B.; Li, J.; Pan, J.; Wang, Y. Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci. Robot. 2024, 9, eadl0307. [Google Scholar] [CrossRef]
- Lazarus, B.S.; Chadha, C.; Velasco-Hogan, A.; Barbosa, J.D.V.; Jasiuk, I.; Meyers, M.A. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021, 24, 102798. [Google Scholar] [CrossRef]
- Choi, J.; Han, S.; Baliwag, M.; Kim, B.H.; Jang, H.; Kim, J.-T.; Hong, I.; Kim, T.; Kang, S.M.; Lee, K.-T.; et al. Artificial stretchable armor for skin-interfaced wearable devices and soft robotics. Extrem. Mech. Lett. 2022, 50, 101537. [Google Scholar] [CrossRef]
- Teeple, J.B.; Cohen, K.E.; Stankowich, T.; Paig-Tran, E.W.M.; Donatelli, C.M. Tapered tiles modulate flexibility in segmented armadillo-inspired armor. Integr. Comp. Biol. 2025, icaf055. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, D.; He, J.; Zou, L. Armadillo-inspired ultra-sensitive flexible sensor for wearable electronics. Chem. Eng. J. 2023, 475, 146171. [Google Scholar] [CrossRef]
- Liu, Q.; Mao, H.; Niu, L.; Chen, F.; Ma, P. Excellent flexibility and stab-resistance on pangolin-inspired scale-like structure composite for versatile protection. Compos. Commun. 2022, 35, 101266. [Google Scholar] [CrossRef]
- Connors, M.; Yang, T.; Hosny, A.; Deng, Z.; Yazdandoost, F.; Massaadi, H.; Eernisse, D.; Mirzaeifar, R.; Dean, M.N.; Weaver, J.C.; et al. Bioinspired design of flexible armor based on chiton scales. Nat. Commun. 2019, 10, 5413. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Wei, R.; Li, H.; Chen, Z.; Hua, Q.; Shen, G.; Jiang, K. Revolutionizing wearable technology: Advanced fabrication techniques for body-conformable electronics. NPJ Flex. Electron. 2024, 8, 83. [Google Scholar] [CrossRef]
- Tang, J.; Li, R.; Mahmood, S.; Li, J.; Yao, S. Carbon nanotube-based chemical sensors: Sensing mechanism, functionalization and applications. Chemosensors 2025, 13, 367. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.; Shi, X.; Zhu, J.; Xiong, H.; Wen, H. Recent advances in resistive gas sensors: Fundamentals, material and device design, and intelligent applications. Chemosensors 2025, 13, 224. [Google Scholar] [CrossRef]
- Bauer, M.; Duerkop, A.; Baeumner, A.J. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor’s applicability in real samples. Anal. Bioanal. Chem. 2023, 415, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Won, D.; Bang, J.; Choi, S.H.; Pyun, K.R.; Jeong, S.; Lee, Y.; Ko, S.H. Transparent electronics for wearable electronics application. Chem. Rev. 2023, 123, 9982–10078. [Google Scholar] [CrossRef] [PubMed]
- Maan, A.M.C.; Hofman, A.H.; de Vos, W.M.; Kamperman, M. Recent developments and practical feasibility of polymer-based antifouling coatings. Adv. Funct. Mater. 2020, 30, 2000936. [Google Scholar] [CrossRef]
- Ben Halima, H.; Lakard, B.; Jaffrezic-Renault, N. Microneedle-based sensors for wearable diagnostics. Chemosensors 2025, 13, 68. [Google Scholar] [CrossRef]
- Kou, D.; Zhang, S.; Ma, W. Recent advances in 1D photonic crystals: Diverse morphologies and distinctive structural colors for multifaceted applications. Adv. Opt. Mater. 2024, 12, 2400192. [Google Scholar] [CrossRef]
- Bogdanov, G.; Strzelecka, A.A.; Kaimal, N.; Senft, S.L.; Lee, S.; Hanlon, R.T.; Gorodetsky, A.A. Gradient refractive indices enable squid structural color and inspire multispectral materials. Science 2025, 388, 1389–1395. [Google Scholar] [CrossRef]
- Zhou, Z.; Deng, T.; Tao, M.; Lin, L.; Sun, L.; Song, X.; Gao, D.; Li, J.; Wang, Z.; Wang, X.; et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. Biomaterials 2023, 299, 122141. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, D.; Zhang, Y.; Jiang, Y.; Liu, T.; Li, X.; Wang, C.; Chen, X.; Shao, J. Core–shell dry adhesives for rough surfaces via electrically responsive self-growing strategy. Nat. Commun. 2022, 13, 7659. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Lee, S.P.; Huang, I.; Li, W.; Wang, S.; Su, C.J.; Jeang, W.J.; Hang, T.; Mehta, S.; Nyberg, N.; et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 2020, 3, 554–562. [Google Scholar] [CrossRef]
- Song, J.W.; Ryu, H.; Bai, W.; Xie, Z.; Vázquez-Guardado, A.; Nandoliya, K.; Avila, R.; Lee, G.; Song, Z.; Kim, J.; et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 2023, 9, eade4687. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.; Jiao, X.; Guo, Z.; Fu, F. Bioinspired lubricant-infused porous surfaces: A review on principle, fabrication, and applications. Surf. Interfaces 2024, 53, 105037. [Google Scholar] [CrossRef]
- Muneer, M.; Kalappurackal, H.P.; Balachandran, A.; Lone, S. Biological design and inspiration of bactericidal hierarchical interfaces. RSC Appl. Interfaces 2024, 1, 648–666. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, P.; Lu, P.; Qian, K.; Liu, S.; Wang, L. Biomimetic design and impact simulation of Al2O3/Al composite armor based on armadillo shell. Sci. Rep. 2024, 14, 20216. [Google Scholar] [CrossRef] [PubMed]
- Karami Fath, I.; Niknejad, A.; Zare-Zardini, H. Design optimization of pangolin inspired composites for enhanced energy absorption. Sci. Rep. 2025, 15, 4443. [Google Scholar] [CrossRef] [PubMed]
- IUCN. Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling up of NbS; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
Organism | Structure/Material | Functional Characteristic | Implication for Sensor Design | Ref. |
---|---|---|---|---|
Beetle | Microsetae + secreted fluid | Stable adhesion in humid conditions; repeatable attachment | Conformal, low-irritation adhesion on curved skin | [22,23] |
Snail | Glycoprotein–polysaccharide mucus | Tunable viscoelasticity; reversible detachment | Long-term wear with minimal skin damage | [24,25] |
Organism | Mechanism | Key Feature | Sensor Application | Ref. |
---|---|---|---|---|
Pinecone | Hygromorphic expansion/contraction | Passive humidity response | Humidity-responsive indicator | [45,46] |
Beetle | Porous photonic nanostructure | Humidity-dependent structural color shift | Power-free optical humidity sensor | [47,48] |
Swallow feather | Periodic melanosome interference | Hydration-dependent color change | Environmental colorimetric indicator | [49,50] |
Squid | Chromatophores + reflectin-based iridophores | Rapid, reversible color modulation | Intuitive, power-free display | [7,51] |
Organism | Structure | Function | Implication for Sensors | Ref. |
---|---|---|---|---|
Lotus leaf | Micro/nano hierarchical roughness | Self-cleaning superhydrophobicity | Reduced contamination; long-term stability | [64,74] |
Nepenthes | Liquid-infused porous surface | Omniphobic, low adhesion | Resistance to diverse liquid fouling | [68,75] |
Dragonfly wing | Nanoscale pillar arrays | Physical bactericidal action | Hygiene without antibiotics | [71,76] |
Organism | Structure | Feature | Sensor Application | Ref. |
---|---|---|---|---|
Pangolin | Overlapping keratin scales | Impact absorption with flexibility | Shock-resistant, conformal device layer | [81,82] |
Armadillo | Banded osteoderms + cartilaginous joints | Rigidity and compliance | Durable, skin-adaptive protection | [83,84] |
Function | Representative Organisms | Core Feature | Role in Sensor Architecture | Ref. |
---|---|---|---|---|
Adhesion | Beetle; Snail | Stable, repeatable attachment via microsetae and viscoelastic gel | Low-irritation, reversible adhesion maintained in humid conditions | [97,98] |
Color change | Pinecone; Beetle; Swallow feather; Squid | Humidity/temperature/neural control of color | Power-free visual sensing and display | [99,100] |
Antifouling | Lotus; Nepenthes; Dragonfly | Self-cleaning, lubricated omniphobicity, bactericidal nano-topography | Protection from contamination/microbes; stabilized signals | [101,102] |
Flexible protection | Pangolin; Armadillo | Coexistence of rigid plates and compliant joints | Conformal durability; impact resistance | [103,104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, H. Bioinspired Functional Design for Wearable Environmental Sensors. Biomimetics 2025, 10, 698. https://doi.org/10.3390/biomimetics10100698
Bae H. Bioinspired Functional Design for Wearable Environmental Sensors. Biomimetics. 2025; 10(10):698. https://doi.org/10.3390/biomimetics10100698
Chicago/Turabian StyleBae, Haejin. 2025. "Bioinspired Functional Design for Wearable Environmental Sensors" Biomimetics 10, no. 10: 698. https://doi.org/10.3390/biomimetics10100698
APA StyleBae, H. (2025). Bioinspired Functional Design for Wearable Environmental Sensors. Biomimetics, 10(10), 698. https://doi.org/10.3390/biomimetics10100698