Biocomposite-Based Biomimetic Plate for Alternative Fixation of Proximal Humerus Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PVA/BCF and PLA/BCF Composites
2.3. Chemical Characterization
2.4. Mechanical, Thermal and Rheological Test
- Isothermal hold at 25 °C for 5 min
- Heating from 25 °C to 220 °C at 10 °C/min
- Cooling from 220 °C to 25 °C at −10 °C/min
- Isothermal hold at 25 °C for 5 min
- Reheating from 25 °C to 220 °C at 10 °C/min
2.5. Cell Viability Assay
2.6. Segmentation of the Proximal Humerus
2.7. Osteosynthesis Plate Design
2.8. Finite Element Method (FEM) Simulation
Cortical Bone [45] | Cancellous Bone [14] | PLA10 | |
---|---|---|---|
Density [kg/m3] | 2000 | 1180 | 1240 |
Young’s Modulus [GPa] | 15 | 1.18 | 2.71 |
Poisson’s Ratio | 0.3 | 0.39 | 0.3 |
Tensile Yield Strength [MPa] | 114 | 15 | 54.2 |
Tensile Ultimate Strength [MPa] | 133 | 20 | 59.37 |
3. Results and Discussion
3.1. Compositional Analyses
3.2. Mechanical, Thermal, and Rheological Tests
3.3. Cell Viability Assay
3.4. FEM Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BCF | BBCFiller® |
BET | Brunauer–Emmett–Teller surface area (m2/g) |
CAD | Computer-Aided Design |
CT | Computed Tomography |
D | Apparent density (kg/m3) |
DICOM | Digital Imaging and Communication in Medicine |
DSC | Differential Scanning Calorimetry |
E | Young’s modulus (MPa) |
EDX/EDS | Energy Dispersive X-ray Spectroscopy |
εb | Elongation at maximum strain (%) |
FEM | Finite Element Method |
FFF | Fused Filament Fabrication |
FTIR | Fourier Transform Infrared Spectroscopy |
GCI | Grid Convergence Index |
HA | Hydroxyapatite |
Hcpolymer | Crystallinity enthalpy of the pure polymer (100% crystallinity) |
Hcbiocomp | Crystallinity enthalpy of the biocomposite |
hFOB | Human fetal osteoblastic cells |
Jc | Impact strength (kJ/m2) |
MAH | Maleic anhydride |
MFI | Melt Flow Index (g/10 min) |
PLA | Polylactic acid |
PLA10 | PLA with 10% BCF |
PLA20 | PLA with 20% BCF |
PLA103D | 3D-printed PLA10 |
PVA | Polyvinyl alcohol |
PVA10 | PVA with 10% BCF |
PVA20 | PVA with 20% BCF |
SEM | Scanning Electron Microscopy |
σb | Stress at break (MPa) |
TCP | Tricalcium phosphate (general term; see β-TCP) |
Tm | Melting temperature (°C) |
Wpolymer | Polymer mass fraction in the biocomposite |
XRD | X-ray Diffraction |
β-TCP | Beta-tricalcium phosphate |
ΔH | Crystallization enthalpy (J/g) |
χc | Degree of crystallinity (%) |
References
- Ziegler, P.; Maier, S.; Stuby, F.; Histing, T.; Ihle, C.; Stöckle, U.; Gühring, M. Clinical Outcome of Carbon Fiber Reinforced Polyetheretherketone Plates in Patients with Proximal Humeral Fracture: One-Year Follow-Up. J. Clin. Med. 2023, 12, 6881. [Google Scholar] [CrossRef]
- Schöbel, T.; Gemkow, M.; Wendler, T.; Schleifenbaum, S.; Löffler, S.; Theopold, J.; Hepp, P. Primary stability in locking plate fixation for proximal humeral fractures may be increased by using an additional nail osteosynthesis in combination with locking plate osteosynthesis—A biomechanical comparison. Clin. Biomech. 2024, 114, 106235. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Quintero, A.; Fernández-Domínguez, J.; López-Sorroche, E. Resultados funcionales tras hemiartroplastía de hombro por fractura de húmero proximal: Experiencia en nuestro centro. Acta Ortopédica Mex. 2022, 36, 359–366. [Google Scholar] [CrossRef]
- Theopold, J.; Schleifenbaum, S.; Müller, M.; Werner, M.; Hammer, N.; Josten, C.; Hepp, P. Biomechanical evaluation of hybrid double plate osteosynthesis using a locking plate and an inverted third tubular plate for the treatment of proximal humeral fractures. PLoS ONE 2018, 13, e0206349. [Google Scholar] [CrossRef]
- Rischen, R.; Köppe, J.; Stolberg-Stolberg, J.; Freistühler, M.; Faldum, A.; Raschke, M.J.; Katthagen, J.C. Treatment Reality of Proximal Humeral Fractures in the Elderly-Trending Variants of Locking Plate Fixation in Germany. J. Clin. Med. 2023, 12, 1440. [Google Scholar] [CrossRef]
- Sonderegger, J.; Grob, K.R.; Kuster, M.S. Dynamic plate osteosynthesis for fracture stabilization: How to do it. Orthop. Rev. 2010, 2, e4. [Google Scholar] [CrossRef]
- Li, J.; Qin, L.; Yang, K.; Ma, Z.; Wang, Y.; Cheng, L.; Zhao, D. Materials evolution of bone plates for internal fixation of bone fractures: A review. J. Mater. Sci. Technol. 2020, 36, 190–208. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Adeoye, A.O.M. 3D printing of bone scaffolds with hybrid biomaterials. Compos. Part B Eng. 2019, 158, 428–436. [Google Scholar] [CrossRef]
- Suffo, M.; Revenga, C. Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis. Materials 2021, 14, 5951. [Google Scholar] [CrossRef]
- Miclau, T.; Martin, R.E. The evolution of modern plate osteosynthesis. Injury 1997, 28, A3–A6. [Google Scholar] [CrossRef]
- Badhe, R.V.; Akinfosile, O.; Bijukumar, D.; Barba, M.; Mathew, M.T. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices—A mini review. Toxicol. Lett. 2021, 350, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Ude, C.C.; Esdaille, C.J.; Ogueri, K.S.; Ho-Man, K.; Laurencin, S.J.; Nair, L.S.; Laurencin, C.T. The Mechanism of Metallosis After Total Hip Arthroplasty. Regen. Eng. Transl. Med. 2021, 7, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Dahms, K.; Sharkova, Y.; Heitland, P.; Pankuweit, S.; Schaefer, J.R. Cobalt intoxication diagnosed with the help of Dr House. Lancet 2014, 383, 574. [Google Scholar] [CrossRef] [PubMed]
- Suffo, M.; López-Marín, C.; Revenga, C.; Andrés-Cano, P. Polyetherimide in 3D printing: Pioneering non-metallic solutions for personalized orthopedic and traumatology hip prosthetics. Results Eng. 2024, 23, 102372. [Google Scholar] [CrossRef]
- Wendler, T.; Fischer, B.; Schleifenbaum, S.; Theopold, J.; Hepp, P. Dynamic biomechanical investigation of a novel sulcus bicipitalis plate in combination with a conventional locking plate for the treatment of complex proximal humerus fractures. Clin. Biomech. 2023, 105, 105984. [Google Scholar] [CrossRef]
- Suffo, M.; Mata, M.D.L.; Molina, S.I. A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. J. Clean. Prod. 2020, 257, 120382. [Google Scholar] [CrossRef]
- Ng, W.L.; An, J.; Chua, C.K. Process, Material, and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs. Engineering 2024, 36, 146–166. [Google Scholar] [CrossRef]
- Berdugo, L.; Suffo, M. Prototype-Oriented Design Methodology Used in Knee Prosthesis Development. In International conference on the Digital Transformation in the Graphic Engineering; BT—Advances in Design Engineering III; Cavas-Martínez, F., Marín Granados, M.D., Mirálbes Buil, R., de-Cózar-Macías, O.D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 303–312. [Google Scholar]
- Oraa, J.; Fiz, N.; González, S.; Beitia, M.; Sánchez, X.; Delgado, D.; Sánchez, M. Derotation tibial osteotomy with custom cutting guides and custom osteosynthesis plate printed with 3D technology: Case and technical note. Ann. 3D Print. Med. 2023, 9, 100093. [Google Scholar] [CrossRef]
- Dos Santos, T.M.B.K.; Merlini, C.; Aragones, Á.; Fredel, M.C. Manufacturing and characterization of plates for fracture fixation of bone with biocomposites of poly (lactic acid-co-glycolic acid) (PLGA) with calcium phosphates bioceramics. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 103, 109728. [Google Scholar] [CrossRef]
- Lytkina, D.N.; Fedorishin, D.A.; Kalachikova, P.M.; Plyaskina, A.A.; Babeshin, A.R.; Kurzina, I.A. Cryo-Structured Materials Based on Polyvinyl Alcohol and Hydroxyapatite for Osteogenesis. J. Funct. Biomater. 2021, 12, 18. [Google Scholar] [CrossRef]
- Song, Y.; Lin, K.; He, S.; Wang, C.; Zhang, S.; Li, D.; Wang, J.; Cao, T.; Bi, L.; Pei, G. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int. J. Nanomed. 2018, 13, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Nie, L.; Du, G.; Xiong, X.; Fu, J. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids Surf. B. Biointerfaces 2015, 132, 146–154. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Loutfy, S.A.; Hussein, Y.; Kenawy, E.-R.S. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int. J. Biol. Macromol. 2021, 187, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Requena-Pérez, M.V.; Andrés-Cano, P.; Galán-Romero, L.; Suffo, M. Comparative study of biomodels manufactured using 3D printing techniques for surgical planning and medical training. Expert Rev. Med. Devices 2024, 21, 239–248. [Google Scholar] [CrossRef]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef]
- Suffo, M.; Quiroga-De Castro, M.; Galán-Romero, L.; Andrés-Cano, P. Intra-hospital patient-specific 3D printed surgical guide for patients with thoracic scoliotic deformities, the collaboration between engineer and surgeon. 3D Print. Med. 2025, 11, 40. [Google Scholar] [CrossRef]
- Alizadeh-Osgouei, M.; Li, Y.; Vahid, A.; Ataee, A.; Wen, C. High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Mater. Med. 2021, 2, 15–25. [Google Scholar] [CrossRef]
- Drummer, D.; Cifuentes-Cuéllar, S.; Rietzel, D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp. J. 2012, 18, 500–507. [Google Scholar] [CrossRef]
- Elhattab, K.; Bhaduri, S.B.; Sikder, P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers 2022, 14, 1222. [Google Scholar] [CrossRef]
- Distler, T.; Fournier, N.; Grünewald, A.; Polley, C.; Seitz, H.; Detsch, R.; Boccaccini, A.R. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Front. Bioeng. Biotechnol. 2020, 8, 552. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Montagna, F.; Sannino, A.; Maffezzoli, A. The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Dubinenko, G.; Zinoviev, A.; Bolbasov, E.; Kozelskaya, A.; Shesterikov, E.; Novikov, V.; Tverdokhlebov, S. Highly filled poly(l-lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds. J. Appl. Polym. Sci. 2021, 138, 49662. [Google Scholar] [CrossRef]
- Matsuo, A.; Chiba, H.; Takahashi, H.; Toyoda, J.; Abukawa, H. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology 2010, 98, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Mehrotra, N.; Singh, I.; Pal, K. Development and characterization of PLA nanocomposites reinforced with bio-ceramic particles for orthognathic implants: Enhanced mechanical and biological properties. Int. J. Biol. Macromol. 2024, 282, 136751. [Google Scholar] [CrossRef]
- Lee, H.; Han, G.; Na, Y.; Kang, M.; Bang, S.J.; Kang, H.S.; Jang, T.S.; Park, J.H.; Jang, H.L.; Yang, K.; et al. 3D-Printed Tissue-Specific Nanospike-Based Adhesive Materials for Time-Regulated Synergistic Tumor Therapy and Tissue Regeneration In Vivo. Adv. Funct. Mater. 2024, 34, 2406237. [Google Scholar] [CrossRef]
- Suffo-Pino, M.; Cauqui-López, M.Á.; Pérez-Muñoz, C.; Goma-Jiménez, D.; Fernández-Delgado, N.; Herrera-Collado, M. Biphasic Bioceramic Obtained from Byproducts of Sugar Beet Processing for Use in Bioactive Coatings and Bone Fillings. J. Funct. Biomater. 2023, 14, 499. [Google Scholar] [CrossRef] [PubMed]
- Suffo, M.; Cauqui-López, M.Á.; Pérez-Muñoz, C.; Goma-Jiménez, D. Recubrimiento Adhesivo Orientado a Ingeniería Tisular y Regeneración Ósea. Spain No. Patent P202330826, 2 October 2023. [Google Scholar]
- Williams, D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35, 10009–10014. [Google Scholar] [CrossRef]
- Burkhard, M.; Fürnstahl, P.; Farshad, M. Three—Dimensionally printed vertebrae with different bone densities for surgical training. Eur. Spine J. 2019, 28, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Suffo, M.; Pérez-Muñoz, C.; Alba, G.; Villar, P. An Innovative Polypropylene/Waste Cork Composite Material for Spirit and Wine Stopper Caps. Appl. Sci. 2024, 14, 3014. [Google Scholar] [CrossRef]
- Pyda, M.; Bopp, R.C.; Wunderlich, B. Heat capacity of poly(lactic acid). J. Chem. Thermodyn. 2004, 36, 731–742. [Google Scholar] [CrossRef]
- Zhang, C.; Lan, Q.; Zhai, T.; Nie, S.; Luo, J.; Yan, W. Melt crystallization behavior and crystalline morphology of Polylactide/Poly(ε-caprolactone) blends compatibilized by lactide-caprolactone copolymer. Polymers 2018, 10, 1181. [Google Scholar] [CrossRef]
- Suffo, M.; Pérez-Muñoz, C.; Goma-Jiménez, D.; Revenga, C.; Andrés-Cano, P.; Cauqui-López, M.Á. Bioactive Agrocomposite for Tissue Engineering and Bone Regeneration. Inventions 2024, 9, 123. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Wei, H.-W.; Lin, K.-P.; Chen, W.-C.; Tsai, C.-L.; Lin, K.-J. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis. Injury 2016, 47, 1191–1195. [Google Scholar] [CrossRef]
- Akkurt, E.; Yıldırım, M.; Erenler, F.; Tosun, O.M.; Akkurt, M.F.; Akkurt, B.; Şen, Z.; Olçar, A.H. Mechanical evaluation for the finite element analysis of intramedullary nailing and plate screw system used in humerus transverse fractures. J. Orthop. 2025, 61, 66–71. [Google Scholar] [CrossRef]
- UNE-EN ISO 11357-1; Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2023.
- UNE-EN ISO 1133-1; Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. International Organization for Standardization: Geneva, Switzerland, 2012.
- UNE-EN ISO 527-2; Plastics. Determination of Tensile Properties. Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2012.
- UNE-EN ISO179-2; Plastics. Determination of Charpy Impact Properties. Part 2: Instrumented Impact Test. International Organization for Standardization: Geneva, Switzerland, 2000.
- UNE-EN ISO 527-2; Plastics. Determination of Tensile Properties. Part 1: Test Conditions for Moulding and Extrusions Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- Zeng, L.-Q.; Zeng, L.-L.; Jiang, Y.-W.; Wei, H.-F.; Zhang, W.; Chen, Y.-F. Influence of Medial Support Screws on the Maintenance of Fracture Reduction after Locked Plating of Proximal Humerus Fractures. Chin. Med. J. 2018, 131, 1827–1833. [Google Scholar] [CrossRef]
- Suffo, M.; Brey, M.; Orellana, J.P.; García-Morales, J.L. Feasibility of utilization of recycled HDPE in manhole covers for urban traffic areas and industrial zones. J. Clean. Prod. 2023, 425, 138818. [Google Scholar] [CrossRef]
- Negim, E.; Rakhmetullayeva, R.; Yeligbayeva, G.; Urkimbaeva, P.; Primzharova, S.; Kaldybekov, D.; Khatib, J.; Mun, G. Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications. Int. J. Basic Appl. Sci. 2014, 3, 263–273. [Google Scholar] [CrossRef]
- Wu, D.; Spanou, A.; Diez-Escudero, A.; Persson, C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J. Mech. Behav. Biomed. Mater. 2020, 103, 103608. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahruzzaman, M.; Islam, M.S.; Khan, M.N.; Haque, P. Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration. J. Polym. Eng. 2019, 39, 134–142. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, G.; Du, G.; Zhan, D.; Cong, Y.; Cheng, Y.; Fu, J. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids Surf. B. Biointerfaces 2013, 103, 318–325. [Google Scholar] [CrossRef]
- Ultimaker. Available online: https://support.ultimaker.com/s/topic/0TO5b000000Q7S7GAK/ultimaker-285-data-sheets (accessed on 12 September 2025).
- Cataldi, A.; Rigotti, D.; Nguyen, V.D.H.; Pegoretti, A. Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application. Mater. Today Commun. 2018, 15, 236–244. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Karuppan, S.; Helaili, S.; Ahmad, I. Structural, mechanical, and in-vitro characterization of hydroxyapatite loaded PLA composites. J. Mol. Struct. 2024, 1306, 137862. [Google Scholar] [CrossRef]
- Tsuji, H.; Muramatsu, H. Blends of aliphatic polyesters: V. Non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). Polym. Degrad. Stab. 2001, 71, 403–413. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sultana, S.; Islam, Z.; Sarker, M.K.U.; Halim, M.E.; Ali Shaikh, M.A. Assessment of green biocomposites based on polyvinyl alcohol and grafted biopolymer tamarind kernel powder with polyacrylic acid. Results Mater. 2024, 23, 100601. [Google Scholar] [CrossRef]
- Pascual-González, C.; Thompson, C.; de la Vega, J.; Biurrun Churruca, N.; Fernández-Blázquez, J.P.; Lizarralde, I.; Herráez-Molinero, D.; González, C.; LLorca, J. Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyp. J. 2022, 28, 884–894. [Google Scholar] [CrossRef]
- Martins, M.H.; De Paoli, M.A. Polypropylene compounding with post-consumer material: II. Reprocessing. Polym. Degrad. Stab. 2002, 78, 491–495. [Google Scholar] [CrossRef]
- Fuad, M.Y.A.; Hanim, H.; Zarina, R.; Ishak, Z.A.M.; Hassan, A. Polypropylene/calcium carbonate nanocomposites—Effects of processing techniques and maleated polypropylene compatibiliser. Express Polym. Lett. 2010, 4, 611–620. [Google Scholar] [CrossRef]
- Pagès, P.; Carrasco, F.; Gámez-Pérez, J.; Santana, O.; Maspoch, M. Procesado del ácido poliláctico (PLA) y de nanocompuestos PLA/montmorillonita en planta piloto: Estudio de sus cambios estructurales y de su estabilidad térmica. Afinidad 2010, LXVI, 107–113. [Google Scholar]
- Greco, R.; Mancarella, C.; Martuscelli, E.; Ragosta, G.; Yin, J. Polyolefin blends: 1. Effect of EPR composition on structure, morphology and mechanical properties of HDPE/EPR alloys. Polymer 1987, 28, 1922–1928. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Wang, G.; Zhu, P.; Gao, C. Recent Progress on 3D-Printed Polylactic Acid and Its Applications in Bone Repair. Adv. Eng. Mater. 2020, 22, 1901065. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Chen, P.C.; Colwell, C.W. Polyethylene contact stresses, articular congruity, and knee alignment. Clin. Orthop. Relat. Res. 2001, 392, 232–238. [Google Scholar] [CrossRef] [PubMed]
PHYSICAL AND MECHANICAL PROPERTIES | PVA | PLA |
---|---|---|
Density (g/cm3) | 1.23 | 1.24 |
Vicat softening temperature at 10 N (°C) | 60.2 | 59 |
Tensile Modulus (MPa) | 3860 | 4635.7 |
Tensile Strength (MPa) | 78 | 55.5 |
Elongation at break (%) | 9.9 | 1.1 |
Resistance to Charpy impact test at 23 °C (kJ/m2) | 1.6 | 7 |
Hydroxyapatite, Ca10 (PO4)6(OH)2, wt % | 75.0 ± 0.5 |
β-Tricalcium phosphate (TCP) | 25.0 ± 0.5 |
Ca/P ratio | 1.45 |
pH | 7.0 ± 0.5 |
BET surface areas, m2/g | 32 |
Specific gravity, g/cm3 | 2.69 ± 0.005 |
Particle size, nm | <50 |
Shelf life, years | 2 |
Physical appearance | white suspension |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suffo, M.; Fernández-Illescas, I.; Simonet, A.M.; Pérez-Muñoz, C.; Andrés-Cano, P. Biocomposite-Based Biomimetic Plate for Alternative Fixation of Proximal Humerus Fractures. Biomimetics 2025, 10, 688. https://doi.org/10.3390/biomimetics10100688
Suffo M, Fernández-Illescas I, Simonet AM, Pérez-Muñoz C, Andrés-Cano P. Biocomposite-Based Biomimetic Plate for Alternative Fixation of Proximal Humerus Fractures. Biomimetics. 2025; 10(10):688. https://doi.org/10.3390/biomimetics10100688
Chicago/Turabian StyleSuffo, Miguel, Irene Fernández-Illescas, Ana María Simonet, Celia Pérez-Muñoz, and Pablo Andrés-Cano. 2025. "Biocomposite-Based Biomimetic Plate for Alternative Fixation of Proximal Humerus Fractures" Biomimetics 10, no. 10: 688. https://doi.org/10.3390/biomimetics10100688
APA StyleSuffo, M., Fernández-Illescas, I., Simonet, A. M., Pérez-Muñoz, C., & Andrés-Cano, P. (2025). Biocomposite-Based Biomimetic Plate for Alternative Fixation of Proximal Humerus Fractures. Biomimetics, 10(10), 688. https://doi.org/10.3390/biomimetics10100688