A Brief Review on Biomimetics 3D Printing Design
Abstract
1. Introduction
2. Materials for Biomedical and Biomimetic Applications
2.1. Metals
2.2. Polymers
2.3. Composite Materials
3. Additive Manufacturing Techniques and Printed Model Geometries
Biomimetic Prototype | 3D Printing Technique | Materials | Properties | Applications | Refs |
---|---|---|---|---|---|
Xylem with aligned channels | SLM | Metal powder | High power density, open-circuit voltage | Zinc–air battery | [27,28] |
Lung | DMLS | Stainless steel powder | Uniform reactant distribution across the electrodes | Fuel cell | [29] |
Honeycombs | FFF | PLA | Stiffness | Energy absorption/biomedical applications | [30] |
Voronoi Tessellations | SLM | Grade II titanium | Lightweight macrostructures | Cranial prostheses | [31] |
Mandibular Models | SLS | PA 2200 | RMS values from STL data and 3D-printed models | Accuracy/trueness | [32] |
3.1. Mechanical Testing and Its Relevance to Human Prosthetics
3.1.1. Compression Testing
3.1.2. Tensile Testing
3.1.3. Shear Testing
3.1.4. Limitations of AM Materials
3.2. Biocompatibility of 3D-Printed Metallic Specimens
3.2.1. Wear Resistance and Tribocorrosion
3.2.2. Cytotoxicity and Ion Release
3.2.3. Surface Roughness and Topography
3.2.4. Additional Bioperformance Metrics
4. Sample Geometries: Tension, Compression, and Shear Testing in Biomimetic 3D-Printed Metals
4.1. Tensile Testing
4.2. Compression Testing
4.3. Shear Testing
Test Type | Standard | Specimen Geometry | References Link | Application/Notes |
---|---|---|---|---|
Tension | ASTM E8/E8M, ISO 6892-1 | Dog bone (flat or round) | [64,65,66] | Measures tensile strength, elastic modulus, ductility |
Compression | ASTM E9 | Cylindrical or cubic (e.g., lattice) | [64,67] | Used for lattice structures under load; avoids buckling |
Shear | ASTM D5379, ASTM D3410 (composites) | V-notched beam or pure shear flat plate | [61,62,63] | For implant–bone interface or modular component stress; adapted for metals |
Lattice mechanics study | Non-existent standard | 10 mm3 lattice cubes (compression) and pin-loaded tensile specimens | [67] | Application to Ti-6Al-4V biomimetic implants manufactured by LPBF |
5. Three-Dimensionally Printed Biomimetic for Biomedical Application
6. Heat Treatment
7. Honeycombs
7.1. Tensile
7.2. Compression
MetallicPrinting of Honeycombs
8. Plant Stem Profiles
9. Voronoi Diagrams
10. Microsctrutures and Biocomposites–Beetle Shell, Nacre, and Enamel
11. Organic Lattice Structures in Orthopedics
12. Biomimetics/Organic Shapes in Design, Architecture, and Automotive Industry
12.1. Biomimetics in Design
12.2. Biomimetics in Architecture
12.3. Organic Shapes with 3D Printing in Automotive Industry
13. Discussion
13.1. General Discussion
13.2. Further Research Opportunities
Challenge | Description | References |
---|---|---|
Multi-material/multi-function printing | Difficulty with printing multi-material structures like nacre-inspired composites exist, as well as scale and alignment challenges. | [144] |
Residual stress | Rapid thermal gradients during printing induce significant internal stresses, potentially leading to part distortion and cracking. | [145] |
Geometric fidelity | Complex natural geometries are hard to replicate with high accuracy due to defects, thermal distortion, and resolution limits. | [146,147] |
Vascularization and internal channel replication | Reproducing internal biomimetic channels (e.g., for flow or implants) is challenging in metal AM. | [148] |
Limits of printing volume | Maximum volume is usually in centimeters | [144] |
Lack of fusion (LoF) | Inadequate or lack of energy input and excessive scan speed cause incomplete melting and weak bonding between layers or tracks. | [149] |
Keyhole porosity/uncontrolled porosity | Excessive laser energy creates unstable vapor cavities (keyholes) that collapse and trap pores during solidification. Random porosity (LoF, gas) weakens parts; this contrasts with functional porosity in nature (like bone). | [150,151,152] |
Gas-induced porosity | Entrapped gas within the melt pool or powder feedstock results in small, spherical pores affecting tensile and fatigue resistance. | [153,154,155,156,157] |
Microstructural anisotropy | Directional solidification leads to columnar grain growth, resulting in anisotropic mechanical behavior. | [158] |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
3D | Three-Dimensional |
ABS | Acrylonitrile Butadiene Styrene |
AM | Additive Manufacturing |
CAD | Computer-Aided Design |
CoCrMo | Cobalt–Chromium–Molybdenum Alloy |
DMLS | Direct Metal Laser Sintering |
DLIP | Direct Laser Interference Patterning |
ETFE | Ethylene Tetrafluoroethylene |
FEA | Finite Element Analysis |
FFF | Fused Filament Fabrication |
LPBF | Laser Powder Bed Fusion |
MF-3DP | Magnetic Field-Assisted 3D Printing |
NIH 3T3 | Fibroblast Cell Line Derived from Embryonic Mouse |
OTS | Off The Shelf |
PA | Polyamide |
PETG | Polyethylene Terephthalate Glycol |
PLA | Polylactic Acid |
RMS | Root Mean Square |
SEM | Scanning Electron Microscope |
SLA | Stereolithography |
SLM | Selective Laser Melting |
SLS | Selective Laser Sintering |
Ti6Al4V | Titanium Alloy with 6% Aluminum and 4% Vanadium |
TPMS | Triply Periodic Minimal Surface |
References
- Chaturvedi, I.; Jandyal, A.; Wazir, I.; Raina, A.; Ul Haq, M.I. Biomimetics and 3D printing—Opportunities for design applications. Sensors Int. 2022, 3, 100191. [Google Scholar] [CrossRef]
- Vincent, J.F.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its Practice and Theory. J. R. Soc. 2006, 3, 471–482. [Google Scholar] [CrossRef]
- Vajda, S. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications; Courier Corporation: North Chelmsford, MA, USA, 2008. [Google Scholar]
- Posamentier, A.S.; Lehmann, I. The Fabulous Fibonacci Numbers; Prometheus Books: New York, NY, USA, 2010. [Google Scholar]
- Wittkower, R. The changing concept of proportion. Daedalus 1960, 89, 199–215. [Google Scholar]
- Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bixler, G.D.; Bhushan, B. Rice and butterfly wing effect inspired low drag and antifouling surfaces: A review. Crit. Rev. Solid State Mater. Sci. 2015, 40, 1–37. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 2013, 5, 7685–7710. [Google Scholar] [CrossRef]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Bhushan, B. Adhesion of multi-level hierarchical attachment systems in gecko feet. J. Adhes. Sci. Technol. 2007, 21, 1213–1258. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285. [Google Scholar] [CrossRef]
- Geckskin, a UMass-born Technology, Inspires Innovative Applications from the Home to Outer Space. 2024. Available online: https://www.umass.edu/natural-sciences/news/geckskin (accessed on 9 September 2025).
- Learn Biomimicry Team. The Top 10 Best Biomimicry Examples of 2022. 2023. Available online: https://www.learnbiomimicry.com/blog/top-10-biomimicry-examples-2022 (accessed on 23 April 2025).
- Fish, F.E.; Weber, P.W.; Murray, M.M.; Howle, L.E. The Tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology. Integr. Comp. Biol. 2011, 51, 203–213. [Google Scholar] [CrossRef]
- Sharp, C.J. Humpback whale (Megaptera Novaeangliae), French Polynesia. 2024. Available online: https://commons.wikimedia.org/wiki/File:Humpback_whale_(Megaptera_novaeangliae)_calf_Moorea_2.jpg (accessed on 15 August 2015).
- ScienceDirect. 2023. Available online: https://www.sciencedirect.com/ (accessed on 1 February 2024).
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Bhushan, B. Lessons from nature for green science and technology: An overview and bioinspired superliquiphobic/philic surfaces. Philos. Trans. R. Soc. A 2019, 377, 20180274. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Balasubramanian Gayathri, Y.K.; Kumar, R.L.; Ramalingam, V.V.; Priyadharshini, G.S.; Kumar, K.S.; Prabhu, T.R. Additive Manufacturing of Ti-6Al-4V alloy for Biomedical Applications. J. Bio-Tribo-Corros. 2022, 8, 98. [Google Scholar] [CrossRef]
- Bandekian, S.; Baghbaderani, M.Z.; Drelich, J.; Sharif, S.; Ismail, A.; Bakhsheshi-Rad, H. Additive manufacturing of zinc-based biomaterials: Fabrication, performance and property evaluation. J. Mater. Res. Technol. 2025, 36, 5484–5508. [Google Scholar] [CrossRef]
- Shiva, S.; Asuwin Prabu, R.G.; Bajaj, G.; John, A.E.; Chandran, S.; Vijay Kumar, V.; Ramakrishna, S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. J. Mater. Sci. Mater. Med. 2023, 34, 62. [Google Scholar] [CrossRef]
- Xin, X.; Lin, C.; Wang, X.; Liu, F.; Dong, L.; Liu, L.; Liu, Y.; Leng, J. Dynamically customizable 4D printed shape memory polymer biomedical devices: A review. Mater. Futur. 2025, 4, 012402. [Google Scholar] [CrossRef]
- Hegde, A.; Nayak, R.; Bolar, G.; Shetty, R.; Ranjan, R.; Naik, N. Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites. J. Compos. Sci. 2024, 8, 39. [Google Scholar] [CrossRef]
- Cinici, B.; Yaba, S.; Kurt, M.; Yalcin, H.C.; Duta, L.; Gunduz, O. Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications. Biomimetics 2024, 9, 409. [Google Scholar] [CrossRef]
- Acharya, R.; Dutta, S.D.; Patil, T.V.; Ganguly, K.; Randhawa, A.; Lim, K.T. A Review on Electroactive Polymer–Metal Composites: Development and Applications for Tissue Regeneration. J. Funct. Biomater. 2023, 14, 523. [Google Scholar] [CrossRef]
- Men, X.; Li, Z.; Yang, W.; Wang, M.; Liang, S.; Sun, H.; Liu, Z.; Lu, G. 3D-Printed Bio-inspired Multi-channel Cathodes for Zinc–air Battery Applications. J. Bionic Eng. 2022, 19, 1014–1023. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.L.; Fan, S.; Huang, S.; Yan, D.; Liu, L.; Valdivia y Alvarado, P.; Yang, H.Y. 3D-printed functional electrodes towards Zn-Air batteries. Mater. Today Energy 2020, 16, 100407. [Google Scholar] [CrossRef]
- Trogadas, P.; Cho, J.I.S.; Neville, T.P.; Marquis, J.; Wu, B.; Brett, D.J.L.; Coppens, M.O. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 2018, 11, 136–143. [Google Scholar] [CrossRef]
- Hedayati, R.; Sadighi, M.; Mohammadi Aghdam, M.; Zadpoor, A.A. Mechanical Properties of Additively Manufactured Thick Honeycombs. Materials 2016, 9, 613. [Google Scholar] [CrossRef]
- Sharma, N.; Ostas, D.; Rotar, H.; Brantner, P.; Thieringer, F.M. Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram. Front. Physiol 2021, 12, 647923. [Google Scholar] [CrossRef]
- Msallem, B.; Sharma, N.; Cao, S.; Halbeisen, F.S.; Zeilhofer, H.F.; Thieringer, F.M. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J. Clin. Med. 2020, 9, 817. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar]
- Lu, C.; Song, C.; Yu, Y.; Yang, L.; Zheng, W.; Luo, F.; Xiao, Y.; Luo, J.; Xu, J. Biodegradable zinc alloys with high strength and suitable mechanical integrity as bone repair metals. Sci. Rep. 2024, 14, 30558. [Google Scholar] [CrossRef]
- Kennedy, S.M.; Vasanthanathan, A.; Amudhan, K. Exploring the frontiers of metal additive manufacturing in orthopaedic implant development. MethodsX 2024, 13, 103056. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Kou, H.; Huang, T.; Zhou, L. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications. J. Mater. Sci. Mater. Med. 2015, 26, 233. [Google Scholar] [CrossRef]
- Turner, C.H.; Wang, T.; Burr, D.B. Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif. Tissue Int. 2001, 69, 373–378. [Google Scholar] [CrossRef]
- Tang, T.; Ebacher, V.; Cripton, P.; Guy, P.; McKay, H.; Wang, R. Shear deformation and fracture of human cortical bone. Bone 2015, 71, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wu, W.; Zhang, R.; Qu, H.; Wang, J.; Xu, K.; Fang, L.; Xu, L.; Jiang, R. Mechanical response and in-situ deformation mechanism of cortical bone materials under combined compression and torsion loads. PLoS ONE 2022, 17, e0271301. [Google Scholar] [CrossRef]
- Kumar, R.; Rezapourian, M.; Rahmani, R.; Maurya, H.S.; Kamboj, N.; Hussainova, I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics 2024, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, R.; Bashiri, B.; Lopes, S.I.; Hussain, A.; Maurya, H.S.; Vilu, R. Sustainable Additive Manufacturing: An Overview on Life Cycle Impacts and Cost Efficiency of Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2025, 9, 18. [Google Scholar] [CrossRef]
- Rahmani, R.; Karimi, J.; Resende, P.R.; Abrantes, J.C.C.; Lopes, S.I. Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologies. Machines 2023, 11, 522. [Google Scholar] [CrossRef]
- Rahmani, R.; Jesus, C.; Lopes, S.I. Implementations of Digital Transformation and Digital Twins: Exploring the Factory of the Future. Processes 2024, 12, 787. [Google Scholar] [CrossRef]
- Rahmani, R.; Antonov, M.; Kollo, L.; Holovenko, Y.; Prashanth, K.G. Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications. Appl. Sci. 2019, 9, 3844. [Google Scholar] [CrossRef]
- Das, A.; Rajkumar, P. Metal 3D printing of biometals for prostheses and implants: A review. Explor. BioMat X 2025, 2, 101338. [Google Scholar] [CrossRef]
- Chmielewska, A.; Dobkowska, A.; Kijeńska-Gawrońska, E.; Jakubczak, M.; Krawczyńska, A.; Choińska, E.; Jastrzębska, A.; Dean, D.; Wysocki, B.; Święszkowski, W. Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF). Int. J. Mol. Sci. 2021, 22, 13209. [Google Scholar] [CrossRef]
- Huang, J.Y.; Chang, C.H.; Wang, W.C.; Chou, M.J.; Tseng, C.C.; Tu, P.W. Systematic evaluation of selective fusion additive manufacturing based on thermal energy source applied in processing of titanium alloy specimens for medical applications. Int. J. Adv. Manuf. Technol. 2020, 109, 2421–2439. [Google Scholar] [CrossRef]
- Dias Corpa Tardelli, J.; Duarte Firmino, A.C.; Ferreira, I.; Cândido dos Reis, A. Influence of the roughness of dental implants obtained by additive manufacturing on osteoblastic adhesion and proliferation: A systematic review. Heliyon 2022, 8, e12505. [Google Scholar] [CrossRef]
- Shaikh, M.; Kahwash, F.; Lu, Z.; Alkhreisat, M.; Mohammad, A.; Shyha, I. Revolutionising orthopaedic implants—A comprehensive review on metal 3D printing with materials, design strategies, manufacturing technologies, and post-process machining advancements. Int. J. Adv. Manuf. Technol. 2024, 134, 1043–1076. [Google Scholar] [CrossRef]
- Morris, D.; Mamidi, S.K.; Kamat, S.; Cheng, K.Y.; Bijukumar, D.; Tsai, P.I.; Wu, M.H.; Orías, A.A.E.; Mathew, M.T. Mechanical, Electrochemical and Biological Behavior of 3D Printed-Porous Titanium for Biomedical Applications. J. Bio-Tribo-Corros. 2021, 7, 39. [Google Scholar] [CrossRef]
- Chen, J.; Dai, J.; Qian, J.; Li, W.; Li, R.; Pang, D.; Wan, G.; Li, P.; Xu, S. Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. Materials 2022, 15, 3991. [Google Scholar] [CrossRef]
- Shevtsov, M.; Pitkin, E.; Combs, S.E.; Yudintceva, N.; Nazarov, D.; Meulen, G.V.D.; Preucil, C.; Akkaoui, M.; Pitkin, M. Biocompatibility Analysis of the Silver-Coated Microporous Titanium Implants Manufactured with 3D-Printing Technology. Nanomaterials 2024, 14, 1876. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Zhu, J.; Jing, Y.; He, S.; Cheng, L.; Shi, Z. A Comprehensive Review of Surface Modification Techniques for Enhancing the Biocompatibility of 3D-Printed Titanium Implants. Coatings 2023, 13, 1917. [Google Scholar] [CrossRef]
- ASTM E8/E8M-24; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024.
- Hozdić, E. Characterization and Comparative Analysis of Mechanical Parameters of FDM- and SLA-Printed ABS Materials. Appl. Sci. 2024, 14, 649. [Google Scholar] [CrossRef]
- Naveed, N. Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts. Polymers 2021, 13, 1487. [Google Scholar] [CrossRef]
- Alkindi, T.; Mozah Alyammahi, R.A.S.; Atatreh, S. The effect of varying specimens’ printing angles to the bed surface on the tensile strength of 3D-printed 17-4PH stainless-steels via metal FFF additive manufacturing. MRS Commun. 2021, 11, 310–316. [Google Scholar] [CrossRef]
- ASTM E9-19(2025)e1; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2025.
- ASTM D5379/D5379M-19e1; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D3410/D3410M-16e1; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading. ASTM International: West Conshohocken, PA, USA, 2016.
- Zhang, H.; Xu, C.; Wu, Q.; Yuan, S.; Song, H.; Huang, G. Deformation and fracture behaviors of Ti6Al4V alloy fabricated by laser powder bed fusion under combined tension and shear loading. J. Alloys Compd. 2024, 1007, 176460. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, T.; Xu, C.; Zhao, L.; Song, H.; Huang, G. Study on the Tensile and Shear Behaviors of Selective Laser Melting Manufactured Ti6Al4V. Met. Mater. Int. 2023, 29, 2852–2864. [Google Scholar] [CrossRef]
- Kuldeep Yadav, V.T. Effects of voids on mechanical response and failure behaviour of additively manufactured Onyx. Prog. Addit. Manuf. 2025. [Google Scholar] [CrossRef]
- Barrionuevo, G.O.; La Fé-Perdomo, I.; Cáceres-Brito, E.; Navas-Pinto, W. Tensile/Compressive Response of 316L Stainless Steel Fabricated by Additive Manufacturing. Ingenius. Rev. Cienc. Tecnol. 2024, 31, 9–18. [Google Scholar] [CrossRef]
- Hosseini, F.; Asad, A.; Yakout, M. Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2024, 8, 288. [Google Scholar] [CrossRef]
- Kovacs, S.E.; Miko, T.; Troiani, E.; Markatos, D.; Petho, D.; Gergely, G.; Varga, L.; Gacsi, Z. Additive Manufacturing of 17-4PH Alloy: Tailoring the Printing Orientation for Enhanced Aerospace Application Performance. Aerospace 2023, 10, 619. [Google Scholar] [CrossRef]
- Papazoglou, D.P.; Neidhard-Doll, A.T.; Pinnell, M.F.; Erdahl, D.S.; Osborn, T.H. Compression and Tensile Testing of L-PBF Ti-6Al-4V Lattice Structures with Biomimetic Porosities and Strut Geometries for Orthopedic Implants. Metals 2024, 14, 232. [Google Scholar] [CrossRef]
- Zhu, Y.; Joralmon, D.; Shan, W.; Chen, Y.; Rong, J.; Zhao, H.; Xiao, S.; Li, X. 3D printing biomimetic materials and structures for biomedical applications. Bio-Des. Manuf. 2021, 4, 405–428. [Google Scholar] [CrossRef]
- Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.P.; Ta, A.H.; et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458–464. [Google Scholar] [CrossRef]
- Li, X.; Shan, W.; Yang, Y.; Joralmon, D.; Zhu, Y.; Chen, Y.; Yuan, Y.; Xu, H.; Rong, J.; Dai, R.; et al. Limpet Tooth-Inspired Painless Microneedles Fabricated by Magnetic Field-Assisted 3D Printing. Adv. Funct. Mater. 2021, 31, 2003725. [Google Scholar] [CrossRef]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chen, Y.W.; Lee, A.; Yao, C.H.; Shie, M.Y. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J. Mater. Sci. Mater. Med. 2019, 30, 78. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, H.; Wang, J.; Zhao, D. Research progress of metal-based additive manufacturing in medical implants. Rev. Adv. Mater. Sci. 2023, 62, 20230148. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Fu, W.; Xuan, F. Laser powder bed fusion (L-PBF) 3D printing thin overhang walls of permalloy for a modified honeycomb magnetic-shield structure. Thin-Walled Struct. 2023, 182, 110185. [Google Scholar] [CrossRef]
- Li, K.; Fang, J.; Zhan, J.; Ma, R.; Wang, S.; Wu, Y.; Gong, N.; Zhang, D.Z.; Liang, X.; Cao, H.; et al. A critical review of biomimetic structures via laser powder bed fusion: Toward multi-functional application. J. Manuf. Process. 2024, 131, 2443–2472. [Google Scholar] [CrossRef]
- Afkhami, S.; Javaheri, V.; Dabiri, E.; Piili, H.; Björk, T. Effects of manufacturing parameters, heat treatment, and machining on the physical and mechanical properties of 13Cr10Ni1.7Mo2Al0.4Mn0.4Si steel processed by laser powder bed fusion. Mater. Sci. Eng. A 2022, 832, 142402. [Google Scholar] [CrossRef]
- Elangeswaran, C.; Gurung, K.; Koch, R.; Cutolo, A.; Van Hooreweder, B. Post-treatment selection for tailored fatigue performance of 18Ni300 maraging steel manufactured by laser powder bed fusion. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2359–2375. [Google Scholar] [CrossRef]
- Kucerova, L.; Burdova, K.; Jenicek, S.; Volkmannova, J. Microstructure and Mechanical Properties of 3D Printed Tool Steel after Various Precipitation Hardening Treatments. Manuf. Technol. J. 2022, 22, 185–191. [Google Scholar] [CrossRef]
- Cui, B.; Chen, K.; Yang, Y.; Lv, Y.; Zheng, H. The effect of biomimetic laser surface treatment on the wear performance of high manganese steel. Mater. Chem. Phys. 2024, 321, 129498. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Chen, X.-S.; Zhang, C.-Y.; Liu, Y.; Wang, J.; Deng, F.-L. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation. Mater. Sci. Eng. C 2016, 68, 229–240. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Dou, W.; Wang, Y.; Yang, Y.; Wang, J.; Chen, J. Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting (SLM). Comput. Model. Eng. Sci. 2020, 124, 1099–1117. [Google Scholar] [CrossRef]
- Diniță, A.; Neacșa, A.; Portoacă, A.I.; Tănase, M.; Ilinca, C.N.; Ramadan, I.N. Additive Manufacturing Post-Processing Treatments, a Review with Emphasis on Mechanical Characteristics. Materials 2023, 16, 4610. [Google Scholar] [CrossRef]
- Gao, S.; Bodunde, O.P.; Qin, M.; Liao, W.H.; Guo, P. Microstructure and phase transformation of nickel-titanium shape memory alloy fabricated by directed energy deposition with in-situ heat treatment. J. Alloys Compd. 2022, 898, 162896. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, R.; Liu, X.; Li, M.; Chen, D. Effect of Heat Treatment on Microstructure and Residual Stress of a Nickel-Cobalt-Based Superalloy Produced by Laser Powder Bed Fusion. Metals 2025, 15, 405. [Google Scholar] [CrossRef]
- Çağlar Kahya; Tunçel, O.; Çavuşoğlu, O.; Tüfekci, K. Thermal annealing optimization for improved mechanical performance of PLA parts produced via 3D printing. Polym. Test. 2025, 144, 108735. [CrossRef]
- Valvez, S.; Reis, P.N.; Ferreira, J.A. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J. Mater. Res. Technol. 2023, 23, 2101–2115. [Google Scholar] [CrossRef]
- Breish, F.; Hamm, C.; Andresen, S. Nature’s Load-Bearing Design Principles and Their Application in Engineering: A Review. Biomimetics 2024, 9, 545. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ahmad, Z.; Petrů, M.; Mazlan, S.A.; Faizal Johari, M.A.; Hatami, H.; Rahimian Koloor, S.S. An insight from nature: Honeycomb pattern in advanced structural design for impact energy absorption. J. Mater. Res. Technol. 2023, 22, 2862–2887. [Google Scholar] [CrossRef]
- Qi, L.; Guo, A.; Li, X.; Qu, P.; Wang, S.; Guo, S.; Liu, C.; Wang, L.; Yin, L.; Chen, Z.; et al. Mechanical characteristics of biomimetic twisted honeycomb structures fabricated by powder bed fusion. J. Mater. Res. Technol. 2024, 32, 347–361. [Google Scholar] [CrossRef]
- Goldmann, T.; Huang, W.C.; Rzepa, S.; Džugan, J.; Sedláček, R.; Daniel, M. Additive Manufacturing of Honeycomb Lattice Structure—From Theoretical Models to Polymer and Metal Products. Materials 2022, 15, 1838. [Google Scholar] [CrossRef]
- Ahmed, A.M.R.M.; Mahdi, E.; Oosterhuis, K.; Dean, A.; Cabibihan, J.J. Mechanical and energy absorption properties of 3D-printed honeycomb structures with Voronoi tessellations. Front. Mech. Eng. 2023, 9, 1204893. [Google Scholar] [CrossRef]
- Silva, R.d.C.; Castro, G.M.d.; Oliveira, A.B.d.S.; Brasil, A.C.d.M. Effect of 3D-Printed Honeycomb Core on Compressive Property of Hybrid Energy Absorbers: Experimental Testing and Optimization Analysis. Materials 2024, 17, 522. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, S.; Amraei, M.; Gardner, L.; Piili, H.; Wadee, M.A.; Salminen, A.; Björk, T. Mechanical performance and design optimisation of metal honeycombs fabricated by laser powder bed fusion. Thin-Walled Struct. 2022, 180, 109864. [Google Scholar] [CrossRef]
- Afkhami, S.; Amraei, M.; Poutiainen, I.; Gardner, L.; Piili, H.; Wadee, M.A.; Salminen, A.; Björk, T. Data related to the manufacturing and mechanical performance of 3D-printed metal honeycombs. Data Brief 2023, 46, 108857. [Google Scholar] [CrossRef]
- Anandan, S.; Hussein, R.M.; Spratt, M.; Newkirk, J.; Chandrashekhara, K.; Misak, H.; Walker, M. Failure In metal honeycombs manufactured by selective laser melting of 304 L stainless steel under compression. Virtual Phys. Prototyp. 2019, 14, 114–122. [Google Scholar] [CrossRef]
- Kaminski, R.; Speck, T.; Speck, O. Biomimetic 3D printed lightweight constructions: A comparison of profiles with various geometries for efficient material usage inspired by square-shaped plant stems. Bioinspiration Biomimetics 2019, 14, 046007. [Google Scholar] [CrossRef] [PubMed]
- Challapalli, A.; Li, G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. Sci. Rep. 2020, 10, 20716. [Google Scholar] [CrossRef]
- Austin, D. Voronoi Diagrams and a Day at the Beach. 2006. Available online: http://www.ams.org/publicoutreach/feature-column/fcarc-voronoi (accessed on 1 April 2025).
- Thomazthz Diagrama de Voronoi. 2014. Available online: https://commons.wikimedia.org/wiki/File:Diagrama_de_Voronoi.png (accessed on 1 April 2025).
- Bellelli, F.S. The Fascinating World of Voronoi Diagrams. Blog Post. 2021. Available online: https://fbellelli.com/posts/2021-07-08-the-fascinating-world-of-voronoi-diagrams/ (accessed on 1 April 2025).
- Zheng, A.; Bian, S.; Chaudhry, E.; Chang, J.; Haron, H.; You, L.; Zhang, J. Voronoi diagram and Monte-Carlo simulation based finite element optimization for cost-effective 3D printing. J. Comput. Sci. 2021, 50, 101301. [Google Scholar] [CrossRef]
- Efstathiadis, A.; Symeonidou, I.; Tsongas, K.; Tzimtzimis, E.K.; Tzetzis, D. Parametric Design and Mechanical Characterization of 3D-Printed PLA Composite Biomimetic Voronoi Lattices Inspired by the Stereom of Sea Urchins. J. Compos. Sci. 2023, 7, 3. [Google Scholar] [CrossRef]
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Sarikaya, M.; Aksay, I. Biomimetic Design and Processing of Materials; AIP Press: Melville, NY, USA, 1995; p. 11. [Google Scholar]
- Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; OUP Oxford: Oxford, UK, 2001. [Google Scholar]
- Alexander, R.M.; Diskin, A.; Galiano, H. Human Bones: A Scientific and Pictorial Investigation; Pi Press: New York, NY, USA, 2005. [Google Scholar]
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Sun, J.; Bhushan, B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv. 2012, 2, 7617–7632. [Google Scholar] [CrossRef]
- Gao, H.; Ji, B.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597–5600. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Traxel, K.D.; Bose, S. Nature-inspired materials and structures using 3D Printing. Mater. Sci. Eng. R Rep. 2021, 145, 100609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, Y.; Gu, D.; Xi, L.; Dai, D.; Gao, T.; Zhu, J.; Ma, C. Laser Additive Manufacturing of Bio-Inspired Lattice Structure: Forming Quality, Microstructure and Energy Absorption Behavior. Mater. Sci. Eng. A 2020, 773, 138857. [Google Scholar]
- Additive Manufacturing Meets Medical Implants. 2022. Available online: https://volumegraphics.hexagon.com/en/explore-nde/our-stories/additive-manufacturing-meets-medical-implants.html (accessed on 1 August 2025).
- Wu, Y.; Liu, J.; Kang, L.; Tian, J.; Zhang, X.; Hu, J.; Huang, Y.; Liu, F.; Wang, H.; Wu, Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023, 9, e17718. [Google Scholar] [CrossRef]
- de Visser, M. Cocoon: A Brilliant Example of How Generative Technologies Impact the Fixture Design Process. 2015. Available online: https://www.3dprinting.lighting/voxel-studio-cocoon-lamp/ (accessed on 1 August 2025).
- Gruber, P. Biomimetics in Architecture: Architecture of Life and Buildings; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Imhof, B.; Gruber, P.; Badura, J.; Lynn, G. What Is the Architect Doing in the Jungle? Biornametics; Springer: Austria, Germany, 2013. [Google Scholar]
- PLBechly. Large Bubble That Reflects a Streetscape in Ljubljana, Slovenia. 2017. Available online: https://commons.wikimedia.org/wiki/File:A_large_Bubble.jpg (accessed on 1 August 2025).
- Capper, I. Eden Project Biomes. 2017. Available online: https://commons.wikimedia.org/wiki/File:Eden_Project_Biomes_-_geograph.org.uk_-_5664496.jpg (accessed on 1 August 2025).
- Tptw, Y. Agora Tower. 2023. Available online: https://commons.wikimedia.org/wiki/File:Agora_Tower_20230417.jpg (accessed on 1 August 2025).
- Rulsch, M. 2nd Final Run of Freestyle Skiing—Women’s Freestyle Slopestyle at the 2020 Winter Youth Olympics in Lausanne on 18 January 2020. 2020. Available online: https://commons.wikimedia.org/wiki/File:2020-01-18_Freestyle_skiing_at_the_2020_Winter_Youth_Olympics_%E2%80%93_Women’s_Freeski_Slopestyle_%E2%80%93_Final_%E2%80%93_2nd_run_(Martin_Rulsch)_091.jpg (accessed on 1 August 2025).
- Dudva. Durian. 2018. Available online: https://commons.wikimedia.org/wiki/File:Durian_x.jpg (accessed on 1 August 2025).
- Rabich, D. Singapore (SG), Esplanade—Theatres on the Bay—2019—4693. 2019. Available online: https://commons.wikimedia.org/wiki/File:Singapore_(SG),_Esplanade_-_Theatres_on_the_Bay_--_2019_--_4693.jpg (accessed on 1 August 2025).
- Wellcome Library. Line Engraving by A. Gajani After G. Guizzardi, 1814. Bones and Muscles of the Leg. Available online: https://commons.wikimedia.org/wiki/File:Lower_limb;_two_figures,_showing_the_bones_and_muscles_of_th_Wellcome_V0008458.jpg (accessed on 1 August 2025).
- Song, B.L.; Tour Eiffel. n.d. Available online: https://commons.wikimedia.org/wiki/File:Tour_Eiffel_Wikimedia_Commons.jpg (accessed on 1 August 2025).
- The Top 10 Examples of Biomimicry in Architecture. 2025. Available online: https://www.learnbiomimicry.com/blog/top-10-biomimicry-examples-architecture?srsltid=AfmBOooVqDo2964Us1tMm_UrHqMXxVCGGujtWqiq1cucn3-ENCwwnXjF (accessed on 1 August 2025).
- Neverenougharchitecture. The Bird’s Nest. 2025. Available online: https://neverenougharchitecture.com/project/the-nest/ (accessed on 1 September 2025).
- Shujianyang. Beijing National Stadium July 2008. 2008. Available online: https://commons.wikimedia.org/wiki/File:Beijing_National_Stadium_July_2008.jpg (accessed on 1 September 2025).
- Tor Alva. Digital Building Technologies, Institute of Technology in Architecture, Nova Fundaziun Origen. Available online: https://www.tor-alva.ch/en/ (accessed on 1 September 2025).
- Alyahyaei, M.; Ersozlu, V.; Keith, J.; Chen, X.; Michaud, M. Artificial Reefs in the UAE Coastline: A Sustainable Solution for Marine Biodiversity. 2025. Available online: https://www.iadc-dredging.com/article/artificial-reefs-in-the-uae-coastline-a-sustainable-solution-for-marine-bio-diversity/ (accessed on 1 September 2025).
- Milano, A.; 3D Printed House “Tecla”. Drone Views: Italdron. Sponsored by: Ter Costruzioni, V. 2021. Available online: https://commons.wikimedia.org/wiki/File:Eco-sustainable_3D_printed_house_%22Tecla%22.jpg (accessed on 1 August 2025).
- Bugatti Chiron to Get 3D-Printed Titanium Brake Calipers. 2018. Available online: https://www.autoblog.com/2018/01/23/bugatti-chiron-3d-printed-brake-caliper/ (accessed on 11 September 2025).
- Carney, D. Bugatti 3D Printed Titanium Brakes to Stop Its Million Chiron Supercar. 2019. Available online: https://www.popsci.com/bugatti-chiron-3d-printed-titanium-brakes/ (accessed on 1 August 2025).
- Afkhami, S.; Dabiri, M.; Alavi, S.H.; Björk, T.; Salminen, A. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue 2019, 122, 72–83. [Google Scholar] [CrossRef]
- Lu, L.; Sharf, A.; Zhao, H.; Wei, Y.; Fan, Q.; Chen, X.; Savoye, Y.; Tu, C.; Cohen-Or, D.; Chen, B. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. 2014, 33, 97. [Google Scholar] [CrossRef]
- Golubović, Z.; Tanasković, J.; Milovanović, A.; Bojović, B. Experimental and Numerical Research of 3D DLP-Printed Solid and Voronoi PLA Resin Specimens Under Tensile and Bending Loads. Polymers 2025, 17, 1180. [Google Scholar] [CrossRef]
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 178:2019; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Colamartino, I.; Anghileri, M.; Boniardi, M. Investigation of the compressive properties of three-dimensional Voronoi reticula. Int. J. Solids Struct. 2023, 284, 112501. [Google Scholar] [CrossRef]
- Herath, B.; Suresh, S.; Downing, D.; Cometta, S.; Tino, R.; Castro, N.J.; Leary, M.; Schmutz, B.; Wille, M.L.; Hutmacher, D.W. Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects. Mater. Des. 2021, 212, 110224. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Xu, Z.; He, J.; Wu, L.; Gu, D.; Yang, M.; Chen, P.; Han, X.; Yang, L.; et al. Double-layer coated Csf/SiC composite fabricated by LPBF/LSI with improved mechanical properties through fiber damage prevention and crack propagation inhibition. J. Eur. Ceram. Soc. 2025, 45, 117248. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, S.; Wang, C.; Chen, S.; Sun, D.; Chen, A.; Li, Z.; Yan, C.; Shi, Y. Fabrication and characterization of SiC/Al composites prepared by laser powder bed fusion (LPBF) combined with vacuum pressure infiltration. Mater. Des. 2023, 236, 112495. [Google Scholar] [CrossRef]
- Böhm, M.; Niesłony, A.; Derda, S.; Owsiński, R.; Kepka, M.; Zetkova, I.; Zetek, M.; Houdková, Š.; Prażmowski, M. General Reference and Design S–N Curves Obtained for 1.2709 Tool Steel. Materials 2023, 16, 1823. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, C.; Wang, D.; Wang, H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. J. Mater. Process. Technol. 2022, 299, 117328. [Google Scholar] [CrossRef]
- Yan, X.; Bethers, B.; Chen, H.; Xiao, S.; Lin, S.; Tran, B.; Jiang, L.; Yang, Y. Recent Advancements in Biomimetic 3D Printing Materials With Enhanced Mechanical Properties. Front. Mater. 2021, 8, 518886. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Witherell, P. A Framework for Simulating the Path-level Residual Stress in the Laser Powder Bed Fusion Process. arXiv 2024, arXiv:cs.CE/2407.06293. [Google Scholar]
- Afazov, S.; Denmark, W.A.; Lazaro Toralles, B.; Holloway, A.; Yaghi, A. Distortion prediction and compensation in selective laser melting. Addit. Manuf. 2017, 17, 15–22. [Google Scholar] [CrossRef]
- Druzgalski, C.; Ashby, A.; Guss, G.; King, W.; Roehling, T.; Matthews, M. Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Silva, B.C.d.S.; Callegari, B.; Seixas, L.F.; Król, M.; Sitek, W.; Matula, G.; Krzemiński, Ł.; Coelho, R.S.; Batalha, G.F. Investigation of Distortion, Porosity and Residual Stresses in Internal Channels Fabricated in Maraging 300 Steel by Laser Powder Bed Fusion. Materials 2025, 18, 1019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Bai, Q. Defect formation mechanisms in selective laser melting: A review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Elkatatny, S.; Sebaey, T.A.; Darwish, M.A.; Abd El-Baky, M.A.; hamada, A. Machine learning for advancing laser powder bed fusion of stainless steel. J. Mater. Res. Technol. 2024, 30, 4986–5016. [Google Scholar] [CrossRef]
- Shrestha, S.; Kevin Chou, Y. A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process. J. Manuf. Sci. Eng. 2019, 141, 101002. [Google Scholar] [CrossRef]
- Rezaeifar, H.; Elbestawi, M. Porosity formation mitigation in laser powder bed fusion process using a control approach. Opt. Laser Technol. 2022, 147, 107611. [Google Scholar] [CrossRef]
- Sinha, S.; Mukherjee, T. Mitigation of Gas Porosity in Additive Manufacturing Using Experimental Data Analysis and Mechanistic Modeling. Materials 2024, 17, 1569. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Attar, H.; Löber, L.; Funk, A.; Calin, M.; Zhang, L.; Prashanth, K.; Scudino, S.; Zhang, Y.; Eckert, J. Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 2015, 625, 350–356. [Google Scholar] [CrossRef]
- Olakanmi, E.; Cochrane, R.; Dalgarno, K. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Murchio, S.; Du Plessis, A.; Luchin, V.; Maniglio, D.; Benedetti, M. Influence of mean stress and building orientation on the fatigue properties of sub-unital thin-strut miniaturized Ti6Al4V specimens additively manufactured via Laser-Powder Bed Fusion. Int. J. Fatigue 2024, 180, 108102. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Vaglio, E.; Totis, G.; Lanzutti, A.; Fedrizzi, L.; Sortino, M. A novel thermo-geometrical model for accurate keyhole porosity prediction in Laser Powder Bed Fusion. Prog. Addit. Manuf. 2024, 9, 247–261. [Google Scholar] [CrossRef]
- Kwon, S.; Hwang, D. Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review. Processes 2025, 13, 1772. [Google Scholar] [CrossRef]
Year | Biomimetic Example |
---|---|
6000 BCE | Rock-Based Architecture |
3000 BCE | Silk |
2470 BCE | Pyramids |
3 CE | Umbrellas |
1500s | Study of Birds’ Flight |
Mid. 1900s | The Crystal Palace |
Year | Biomimetic Example |
---|---|
1903 | Development of Air Planes |
1955 | Velcro |
1966 | Circular Economy |
1986 | Riblets |
2010 | Wind Turbines |
2012 | Gecko Feet |
2014 | Sustainable City Project |
2022 | Nanoscale Surface Texture |
Metal | Strength–Weight Ratio (MPa/g/cm3) | Elastic Modulus (GPa) | Main Applications |
---|---|---|---|
Titanium (Ti) | ∼100–120 | ∼110 | Medical devices for bone support and oral reconstruction |
Magnesium (Mg) | ∼130–150 | ∼45 | Implants designed to degrade naturally after healing, temporary action |
Gold (Au) | ∼5–10 | ∼80 | Electronic systems for nerve interfacing and hearing enhancement |
Stainless steel (316L) | ∼25–30 | ∼200 | Supportive devices for bone stabilization during healing, intended for removal |
Platinum (Pt) | ∼10–20 | ∼170 | Electrodes, specialized implants |
Cobalt–chromium (Co–Cr) | ∼70–90 | ∼200–240 | Load-bearing prostheses for major joint reconstruction |
Study to Be Conducted | Equipment | References |
---|---|---|
S-N Curves with Honeycomb Bone-Shaped Specimens | Fatigue Testing Machine | [90] |
Annealing Specimens | Heat Furnace | [81] |
Tensile Test (Honeycomb Specimens) | Universal Testing Machine | [90,92] |
Tensile Test (Porosity of Bone Structure/Voronoy) | Universal Testing Machine | [32,112] |
Honeycomb Specimens Twisted in Z-Axis | Compression—Universal Testing Machine | [89] |
Compression Testing (Fractal Honeycomb Specimens, Vascular Structures) | Universal Testing Machine | [30,88,91] |
Hybrid Specimens | Universal Testing Machine, SEM, Durometer, Fatigue | [92] |
Voronoi Tessellations | Universal Testing Machine | [31,135,138,139] |
Micrographs with Tensile and Fatigue | Universal Testing Machine | [90] |
Organic Shapes for Compression Testing | Universal Testing Machine | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, R.; Resende, P.R.; Pinto, R.; Rahmani, R.; Abrantes, J.C.C.; Feijoo, I. A Brief Review on Biomimetics 3D Printing Design. Biomimetics 2025, 10, 647. https://doi.org/10.3390/biomimetics10100647
Couto R, Resende PR, Pinto R, Rahmani R, Abrantes JCC, Feijoo I. A Brief Review on Biomimetics 3D Printing Design. Biomimetics. 2025; 10(10):647. https://doi.org/10.3390/biomimetics10100647
Chicago/Turabian StyleCouto, Rúben, Pedro R. Resende, Ricardo Pinto, Ramin Rahmani, João C. C. Abrantes, and Iria Feijoo. 2025. "A Brief Review on Biomimetics 3D Printing Design" Biomimetics 10, no. 10: 647. https://doi.org/10.3390/biomimetics10100647
APA StyleCouto, R., Resende, P. R., Pinto, R., Rahmani, R., Abrantes, J. C. C., & Feijoo, I. (2025). A Brief Review on Biomimetics 3D Printing Design. Biomimetics, 10(10), 647. https://doi.org/10.3390/biomimetics10100647