Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization
Abstract
:1. Introduction
- An improved MGO algorithm is proposed, which integrates a (CC) strategy and dynamic grouping parameters to enhance search efficiency and solution quality.
- CCMGO’s performance is rigorously evaluated against nine classic metaheuristic algorithms using the CEC2017 benchmark suite [31]. Statistical validation of the experimental results is conducted using the Wilcoxon and Friedman tests;
- CCMGO is applied to the practical problem of reservoir production optimization, utilizing a three-phase numerical simulation model. The net present value (NPV) achieved by CCMGO is compared to that of other optimization algorithms to demonstrate its efficacy in a real-world scenario.
2. The Original MGO
3. Proposed CCMGO
3.1. Crisscross Strategy
3.1.1. Horizontal Crossover Search
3.1.2. Vertical Crossover Search
3.2. Dynamic Population Divisions Parameter
3.3. The Proposed CCMGO
Algorithm 1 Pseudo-code of the CCMGO |
Set parameters: the maximum evaluation number , the problem dimension , and the population size Initialize population = 0 For Evaluate the fitness value of Find the global min and fitness End While ( Calculate the by Equation (15) /* Dynamic Divisions Parameter */ Calculate the wind direction by Equation (3) For Create the new search agent equals Update the by Equation (4) If Update by Equation (9) End if If End if End for For Update using the cryptobiosis mechanism End for For /*CC*/ Perform Horizontal crossover search to update Perform Vertical crossover search to update Update End End While Return End |
4. Experimental Results and Analysis
4.1. Benchmark Functions Overview
4.2. Performance Comparison with Other Algorithms
5. Application to Production Optimization
5.1. Three-Channel Model
5.2. Analysis and Discussion of the Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [Google Scholar] [CrossRef]
- Shan, W.; Hu, H.; Cai, Z.; Chen, H.; Liu, H.; Wang, M.; Teng, Y. Multi-Strategies Boosted Mutative Crow Search Algorithm for Global Tasks: Cases of Continuous and Discrete Optimization. J. Bionic Eng. 2022, 19, 1830–1849. [Google Scholar] [CrossRef]
- Huang, X.; Hu, H.; Wang, J.; Yuan, B.; Dai, C.; Ablameyk, S.V. Dynamic Strongly Convex Sparse Operator with Learning Mechanism for Sparse Large-Scale Multi-Objective Optimization. In Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), Hangzhou, China, 16–18 August 2024; pp. 121–127. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Meza, J.C. Steepest Descent. WIREs Comput. Stat. 2010, 2, 719–722. [Google Scholar] [CrossRef]
- Polyak, B.T. The Conjugate Gradient Method in Extremal Problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 2018, 60, 223–311. [Google Scholar] [CrossRef]
- Garg, T.; Kaur, G.; Rana, P.S.; Cheng, X. Enhancing Road Traffic Prediction Using Data Preprocessing Optimization. J. Circuits Syst. Comput. 2024, 2550045. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Tang, Y.; Heidari, A.A.; Chen, H.; Liu, H.; Wang, M.; Escorcia-Gutierrez, J.; Mansour, R.F.; Chen, J. Horizontal and Vertical Crossover of Sine Cosine Algorithm with Quick Moves for Optimization and Feature Selection. J. Comput. Des. Eng. 2022, 9, 2524–2555. [Google Scholar] [CrossRef]
- Dréo, J.; Pétrowski, A.; Siarry, P.; Taillard, E. Metaheuristics for Hard Optimization: Methods and Case Studies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-30966-6. [Google Scholar]
- Janga Reddy, M.; Nagesh Kumar, D. Evolutionary Algorithms, Swarm Intelligence Methods, and Their Applications in Water Resources Engineering: A State-of-the-Art Review. H2Open J. 2021, 3, 135–188. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Chen, J.; Xing, L.; Heidari, A.A.; Chen, H.; He, X.; Wang, M. Dynamic Individual Selection and Crossover Boosted Forensic-Based Investigation Algorithm for Global Optimization and Feature Selection. J. Bionic Eng. 2023, 20, 2416–2442. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tang, D. Spherical Evolution for Solving Continuous Optimization Problems. Appl. Soft Comput. 2019, 81, 105499. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Akay, B.; Karaboga, D. Artificial Bee Colony Algorithm for Large-Scale Problems and Engineering Design Optimization. J. Intell. Manuf. 2012, 23, 1001–1014. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Hu, H.; Wang, J.; Huang, X.; Ablameyko, S.V. An Integrated Online-Offline Hybrid Particle Swarm Optimization Framework for Medium Scale Expensive Problems*. In Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), Hangzhou, China, 16–18 August 2024; pp. 25–32. [Google Scholar]
- Foroud, T.; Baradaran, A.; Seifi, A. A Comparative Evaluation of Global Search Algorithms in Black Box Optimization of Oil Production: A Case Study on Brugge Field. J. Petrol. Sci. Eng. 2018, 167, 131–151. [Google Scholar] [CrossRef]
- Yu, J.; Jafarpour, B. Active Learning for Well Control Optimization with Surrogate Models. SPE J. 2022, 27, 2668–2688. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, K.; Xue, X.; Zhang, L.; Yao, J.; Sun, H.; Fan, L.; Yang, Y. Surrogate-Assisted Evolutionary Algorithm with Dimensionality Reduction Method for Water Flooding Production Optimization. J. Petrol. Sci. Eng. 2020, 185, 106633. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, K.; Zhang, L.; Xue, X.; Ji, D.; Yao, C.; Yao, J.; Yang, Y. Global and Local Surrogate-Model-Assisted Differential Evolution for Waterflooding Production Optimization. SPE J. 2020, 25, 105–118. [Google Scholar] [CrossRef]
- Cuadros Bohorquez, J.F.; Tovar, L.P.; Wolf Maciel, M.R.; Melo, D.C.; Maciel Filho, R. Surrogate-Model-Based, Particle Swarm Optimization, and Genetic Algorithm Techniques Applied to the Multiobjective Operational Problem of the Fluid Catalytic Cracking Process. Chem. Eng. Commun. 2020, 207, 612–631. [Google Scholar] [CrossRef]
- de Oliveira, L.C.; Afonso, S.M.B.; Horowitz, B. Global/Local Optimization Strategies Combined for Waterflooding Problems. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2051–2062. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, X.; Chen, G.; Zhao, M.; Wang, J.; Yao, C.; Sun, H.; Yao, J.; Wang, W.; Zhang, G. A Double-Model Differential Evolution for Constrained Waterflooding Production Optimization. J. Pet. Sci. Eng. 2021, 207, 109059. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, S. A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production. Biomimetics 2024, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Chen, Y.; Wang, C.; Heidari, A.A.; Liu, L.; Chen, H. The Moss Growth Optimization (MGO): Concepts and Performance. J. Comput. Des. Eng. 2024, 11, 184–221. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Meng, A.; Chen, Y.; Yin, H.; Chen, S. Crisscross Optimization Algorithm and Its Application. Knowl.-Based Syst. 2014, 67, 218–229. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A New Method for Stochastic Optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Yang, X.-S.; He, X. Bat Algorithm: Literature Review and Applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [Google Scholar] [CrossRef]
- Yang, X.-S.; He, X. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef]
Name | Summary |
---|---|
SADE-Sammon [24] | Chen et al. proposed a new framework for oil reservoir production optimization, combining surrogate-assisted evolutionary algorithms and Sammon mapping for dimensionality reduction to improve the efficiency of expected NPV maximization. It outperformed classical evolutionary algorithms and other dimensionality reduction methods. |
GLSADE [25] | Chen et al. proposed the global and local surrogate-model-assisted differential volution (GLSADE) for waterflooding production optimization. It refines the surrogate model to focus on promising regions, showing better NPV and faster convergence than traditional methods on benchmarks and real-world applications. |
PSO, GA [26] | Bohorquez et al. used stochastic methods (GA and PSO) with surrogate models for FCCU multi-objective optimization. PSO outperformed GA in naphtha yield (3% increase) with fewer evaluations. Stochastic optimization was better than deterministic optimization for FCCU design and planning, aiding refinery profit and compliance. |
GA-SAO [27] | Oliveira et al. proposed a hybrid optimization strategy for dynamic waterflooding management, maximizing NPV by optimizing well allocation rates and switching times. This approach synergistically combined GA for global search with sequential approximation optimization (SAO) for local refinement, effectively identifying optimal well management strategies and demonstrating that increased operational flexibility enhances NPV. The incorporation of cycle duration variables reduced the dimensionality of the design space while maintaining recovery efficiency. |
CSDE [28] | Zhang et al. proposed CSDE for waterflooding optimization, handling nonlinear inequality constraints. A two-stage method with SVM for feasible solution identification and RBF surrogate model for objective function approximation was used. CSDE improved efficiency and NPV, surpassing traditional and single-model evolutionary algorithms. |
CCWFO [29] | Zhao et al. developed an enhanced water flow optimizer (CCWFO) by incorporating a cross-search strategy to accelerate convergence and improve the accuracy of the original water flow optimizer (WFO). Evaluated against CEC2017 benchmarks, CCWFO demonstrated superior global optimization capabilities compared to other metaheuristic algorithms. The application of CCWFO to a three-channel reservoir model yielded a higher NPV within equivalent evaluation limits, establishing it as a robust alternative to classical evolutionary algorithms for reservoir production optimization. |
Function | Function Name | Class | Optimum |
---|---|---|---|
F1 | Shifted and Rotated Bent Cigar Function | Unimodal | 100 |
F2 | Shifted and Rotated Zakharov Function | Unimodal | 300 |
F3 | Shifted and Rotated Rosenbrock’s Function | Multimodal | 400 |
F4 | Shifted and Rotated Rastrigin’s Function | Multimodal | 500 |
F5 | Shifted and Rotated Expanded Schaffer’s F6 Function | Multimodal | 600 |
F6 | Shifted and Rotated Lunacek Bi-Rastrigin Function | Multimodal | 700 |
F7 | Shifted and Rotated Non-Continuous Rastrigin’s Function | Multimodal | 800 |
F8 | Shifted and Rotated Lévy Function | Multimodal | 900 |
F9 | Shifted and Rotated Schwefel’s Function | Multimodal | 1000 |
F10 | Hybrid Function 1 (N = 3) | Hybrid | 1100 |
F11 | Hybrid Function 2 (N = 3) | Hybrid | 1200 |
F12 | Hybrid Function 3 (N = 3) | Hybrid | 1300 |
F13 | Hybrid Function 4 (N = 4) | Hybrid | 1400 |
F14 | Hybrid Function 5 (N = 4) | Hybrid | 1500 |
F15 | Hybrid Function 6 (N = 4) | Hybrid | 1600 |
F16 | Hybrid Function 6 (N = 5) | Hybrid | 1700 |
F17 | Hybrid Function 6 (N = 5) | Hybrid | 1800 |
F18 | Hybrid Function 6 (N = 5) | Hybrid | 1900 |
F19 | Hybrid Function 6 (N = 6) | Hybrid | 2000 |
F20 | Composition Function 1 (N = 3) | Composition | 2100 |
F21 | Composition Function 2 (N = 3) | Composition | 2200 |
F22 | Composition Function 3 (N = 4) | Composition | 2300 |
F23 | Composition Function 4 (N = 4) | Composition | 2400 |
F24 | Composition Function 5 (N = 5) | Composition | 2500 |
F25 | Composition Function 6 (N = 5) | Composition | 2600 |
F26 | Composition Function 7 (N = 6) | Composition | 2700 |
F27 | Composition Function 8 (N = 6) | Composition | 2800 |
F28 | Composition Function 9 (N = 3) | Composition | 2900 |
F29 | Composition Function 10 (N = 3) | Composition | 3000 |
Name | Parameters |
---|---|
CCMGO | w = 2; rec_num = 10; divide_num = [dim/4, dim]; d1 = 0.2 |
MGO | w = 2; rec_num = 10; divide_num = dim/4; d1 = 0.2; |
WOA | = 1 |
GWO | = [2, 0] |
MFO | b = 1; t = [−1, 1]; a = [−1, −2] |
SCA | a = 2 |
PSO | = 2 |
SMA | a = [2, 0]; vb = [−2, 2]; E = [0, 2] |
BA | Qmin = 0; Qmax = 2 |
FA | alpha = 0.5; betamin = 0.2; gamma = 1 |
F1 | F2 | F3 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 9.3875 × 104 | 1.2429 × 105 | 6.3469 × 103 | 1.8785 × 103 | 4.9078 × 102 | 1.4145 × 101 |
MGO | 1.6156 × 105 | 2.8369 × 105 | 4.7837 × 104 | 9.1011 × 103 | 4.9353 × 102 | 1.1080 × 101 |
WOA | 3.1479 × 106 | 2.1521 × 106 | 1.5459 × 105 | 6.5052 × 104 | 5.5521 × 102 | 4.3391 × 101 |
GWO | 2.0741 × 109 | 1.1617 × 109 | 3.1738 × 104 | 1.1031 × 104 | 5.9004 × 102 | 1.0153 × 102 |
MFO | 9.3736 × 109 | 7.0162 × 109 | 8.0164 × 104 | 5.6794 × 104 | 1.3305 × 103 | 8.6241 × 102 |
SCA | 1.2688 × 1010 | 2.4698 × 109 | 3.6850 × 104 | 5.6118 × 103 | 1.4518 × 103 | 2.4771 × 102 |
PSO | 3.1410 × 103 | 4.1096 × 103 | 3.0000 × 102 | 2.1517 × 10−3 | 4.6319 × 102 | 2.4383 × 101 |
SMA | 2.6843 × 109 | 9.4623 × 108 | 3.6783 × 104 | 8.9412 × 103 | 6.2258 × 102 | 6.1424 × 101 |
BA | 5.4272 × 105 | 2.8167 × 105 | 3.0011 × 102 | 1.1756 × 10−1 | 4.7692 × 102 | 2.6001 × 101 |
FA | 1.4463 × 1010 | 1.7921 × 109 | 5.9894 × 104 | 6.6363 × 103 | 1.3073 × 103 | 1.4159 × 102 |
F4 | F5 | F6 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 5.4730 × 102 | 8.9643 × 100 | 6.0000 × 102 | 4.3867 × 10−3 | 7.8150 × 102 | 9.7607 × 100 |
MGO | 5.6413 × 102 | 8.5239 × 100 | 6.0000 × 102 | 1.2025 × 10−4 | 8.0114 × 102 | 1.2546 × 101 |
WOA | 7.8507 × 102 | 6.2600 × 101 | 6.6882 × 102 | 1.3300 × 101 | 1.2357 × 103 | 1.0049 × 102 |
GWO | 5.9923 × 102 | 2.8902 × 101 | 6.0988 × 102 | 4.3030 × 100 | 8.5780 × 102 | 3.5598 × 101 |
MFO | 7.1971 × 102 | 5.1124 × 101 | 6.4053 × 102 | 1.2079 × 101 | 1.1219 × 103 | 2.2063 × 102 |
SCA | 7.7487 × 102 | 2.0651 × 101 | 6.4852 × 102 | 4.6381 × 100 | 1.1262 × 103 | 4.2682 × 101 |
PSO | 6.9375 × 102 | 4.0546 × 101 | 6.4544 × 102 | 7.4126 × 100 | 9.9383 × 102 | 5.1109 × 101 |
SMA | 7.1472 × 102 | 3.6475 × 101 | 6.4161 × 102 | 7.6309 × 100 | 1.0714 × 103 | 5.9583 × 101 |
BA | 8.4918 × 102 | 5.4933 × 101 | 6.7349 × 102 | 9.6446 × 100 | 1.6510 × 103 | 1.8809 × 102 |
FA | 7.5784 × 102 | 1.0742 × 101 | 6.4407 × 102 | 2.9626 × 100 | 1.3864 × 103 | 4.1624 × 101 |
F7 | F8 | F9 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 8.5046 × 102 | 7.1227 × 100 | 9.0542 × 102 | 5.6323 × 100 | 3.8173 × 103 | 3.8526 × 102 |
MGO | 8.6955 × 102 | 1.3256 × 101 | 9.3020 × 102 | 2.2531 × 101 | 4.6229 × 103 | 3.8254 × 102 |
WOA | 1.0102 × 103 | 5.4531 × 101 | 7.7603 × 103 | 2.2539 × 103 | 6.2311 × 103 | 6.9373 × 102 |
GWO | 8.9081 × 102 | 2.3697 × 101 | 2.0043 × 103 | 6.3529 × 102 | 4.4260 × 103 | 1.3461 × 103 |
MFO | 1.0072 × 103 | 4.3452 × 101 | 7.4238 × 103 | 2.0970 × 103 | 5.5716 × 103 | 8.0899 × 102 |
SCA | 1.0524 × 103 | 1.6918 × 101 | 5.3439 × 103 | 7.4913 × 102 | 8.0736 × 103 | 3.8373 × 102 |
PSO | 9.4496 × 102 | 2.5764 × 101 | 4.3403 × 103 | 9.9910 × 102 | 5.1451 × 103 | 6.8974 × 102 |
SMA | 9.6968 × 102 | 2.8388 × 101 | 5.7536 × 103 | 9.0981 × 102 | 5.6918 × 103 | 6.1943 × 102 |
BA | 1.0441 × 103 | 4.9251 × 101 | 1.2690 × 104 | 4.6140 × 103 | 5.5111 × 103 | 8.1083 × 102 |
FA | 1.0523 × 103 | 1.1106 × 101 | 5.3093 × 103 | 5.7708 × 102 | 8.1169 × 103 | 3.0811 × 102 |
F10 | F11 | F12 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 1.1777 × 103 | 2.7442 × 101 | 7.6021 × 105 | 6.7582 × 105 | 2.3250 × 104 | 1.3882 × 104 |
MGO | 1.1888 × 103 | 2.4376 × 101 | 7.8080 × 105 | 5.0623 × 105 | 3.0908 × 104 | 2.6628 × 104 |
WOA | 1.4723 × 103 | 7.1039 × 101 | 4.3190 × 107 | 2.9598 × 107 | 1.3858 × 105 | 7.4986 × 104 |
GWO | 1.9076 × 103 | 9.3785 × 102 | 7.4988 × 107 | 1.0179 × 108 | 4.8309 × 106 | 2.5806 × 107 |
MFO | 5.0242 × 103 | 5.8710 × 103 | 5.5507 × 108 | 6.3529 × 108 | 1.1620 × 108 | 3.2070 × 108 |
SCA | 2.1162 × 103 | 3.1725 × 102 | 1.1021 × 109 | 2.6941 × 108 | 3.8766 × 108 | 1.7146 × 108 |
PSO | 1.1985 × 103 | 2.3743 × 101 | 3.3605 × 104 | 1.8907 × 104 | 1.6430 × 104 | 1.5195 × 104 |
SMA | 1.5378 × 103 | 9.6734 × 101 | 9.1920 × 107 | 4.5310 × 107 | 2.1682 × 106 | 2.3372 × 106 |
BA | 1.2941 × 103 | 5.9040 × 101 | 2.5194 × 106 | 1.9557 × 106 | 3.1477 × 105 | 1.2367 × 105 |
FA | 3.4537 × 103 | 4.6384 × 102 | 1.5031 × 109 | 2.7479 × 108 | 5.5605 × 108 | 1.5926 × 108 |
F13 | F14 | F15 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 6.6078 × 103 | 4.2189 × 103 | 1.1788 × 104 | 6.3326 × 103 | 2.1765 × 103 | 1.3227 × 102 |
MGO | 1.5084 × 104 | 9.8346 × 103 | 2.2119 × 104 | 1.8794 × 104 | 2.1519 × 103 | 1.6588 × 102 |
WOA | 8.7090 × 105 | 9.4998 × 105 | 6.6626 × 104 | 3.6297 × 104 | 3.4919 × 103 | 4.3085 × 102 |
GWO | 2.2354 × 105 | 4.4007 × 105 | 2.0655 × 105 | 5.1690 × 105 | 2.3664 × 103 | 2.7197 × 102 |
MFO | 4.3377 × 105 | 1.2584 × 106 | 3.0167 × 107 | 1.6486 × 108 | 3.1544 × 103 | 3.3005 × 102 |
SCA | 1.4238 × 105 | 7.9330 × 104 | 1.2004 × 107 | 1.0574 × 107 | 3.6654 × 103 | 1.8768 × 102 |
PSO | 7.4037 × 103 | 4.8823 × 103 | 6.3968 × 103 | 6.1663 × 103 | 2.8344 × 103 | 3.6717 × 102 |
SMA | 1.6322 × 105 | 9.4226 × 104 | 1.7638 × 104 | 6.0717 × 103 | 2.8870 × 103 | 3.1743 × 102 |
BA | 6.3676 × 103 | 3.0735 × 103 | 1.2503 × 105 | 9.6707 × 104 | 3.3392 × 103 | 4.9046 × 102 |
FA | 2.3415 × 105 | 1.0609 × 105 | 6.1143 × 107 | 2.9214 × 107 | 3.4202 × 103 | 1.7189 × 102 |
F16 | F17 | F18 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 1.8418 × 103 | 4.7839 × 101 | 1.8777 × 105 | 1.0793 × 105 | 8.0208 × 103 | 5.0355 × 103 |
MGO | 1.8872 × 103 | 5.3940 × 101 | 3.0783 × 105 | 2.1066 × 105 | 1.5241 × 104 | 1.1343 × 104 |
WOA | 2.5695 × 103 | 2.6375 × 102 | 2.9573 × 106 | 3.3986 × 106 | 3.4772 × 106 | 2.2369 × 106 |
GWO | 1.9990 × 103 | 1.5469 × 102 | 6.8374 × 105 | 8.2071 × 105 | 4.8725 × 105 | 6.5325 × 105 |
MFO | 2.5272 × 103 | 3.1294 × 102 | 2.3283 × 106 | 4.6075 × 106 | 1.6749 × 107 | 3.8286 × 107 |
SCA | 2.4031 × 103 | 1.5192 × 102 | 2.8800 × 106 | 1.6831 × 106 | 2.3285 × 107 | 1.1446 × 107 |
PSO | 2.4411 × 103 | 3.0918 × 102 | 1.2966 × 105 | 8.1880 × 104 | 1.0706 × 104 | 8.8187 × 103 |
SMA | 2.2685 × 103 | 2.0445 × 102 | 6.7114 × 105 | 6.1655 × 105 | 4.2415 × 105 | 5.4044 × 105 |
BA | 2.8397 × 103 | 2.6454 × 102 | 1.7296 × 105 | 1.4578 × 105 | 6.3761 × 105 | 2.8491 × 105 |
FA | 2.5193 × 103 | 1.3317 × 102 | 4.0789 × 106 | 1.7465 × 106 | 9.8337 × 107 | 3.0392 × 107 |
F19 | F20 | F21 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 2.2133 × 103 | 7.2694 × 101 | 2.3522 × 103 | 1.0086 × 101 | 2.8794 × 103 | 1.1681 × 103 |
MGO | 2.2436 × 103 | 8.0062 × 101 | 2.3582 × 103 | 3.2713 × 101 | 2.9752 × 103 | 1.3490 × 103 |
WOA | 2.7923 × 103 | 1.7679 × 102 | 2.5710 × 103 | 6.1411 × 101 | 6.2553 × 103 | 1.9373 × 103 |
GWO | 2.3771 × 103 | 1.5767 × 102 | 2.3791 × 103 | 1.9638 × 101 | 4.6370 × 103 | 1.6141 × 103 |
MFO | 2.6655 × 103 | 2.1973 × 102 | 2.4983 × 103 | 4.3194 × 101 | 6.3968 × 103 | 1.5134 × 103 |
SCA | 2.5862 × 103 | 1.1281 × 102 | 2.5561 × 103 | 2.0667 × 101 | 8.9634 × 103 | 1.6339 × 103 |
PSO | 2.6441 × 103 | 2.1825 × 102 | 2.4721 × 103 | 4.4254 × 101 | 4.9468 × 103 | 2.2506 × 103 |
SMA | 2.4495 × 103 | 1.4614 × 102 | 2.4708 × 103 | 2.4979 × 101 | 4.0565 × 103 | 2.1651 × 103 |
BA | 3.0151 × 103 | 2.8197 × 102 | 2.6002 × 103 | 4.7096 × 101 | 6.8688 × 103 | 1.7185 × 103 |
FA | 2.6088 × 103 | 8.7682 × 101 | 2.5384 × 103 | 1.4015 × 101 | 3.8333 × 103 | 1.2889 × 102 |
F22 | F23 | F24 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 2.7098 × 103 | 2.2201 × 101 | 2.8826 × 103 | 1.1959 × 101 | 2.8869 × 103 | 9.6118 × 10−1 |
MGO | 2.7200 × 103 | 1.2828 × 101 | 2.8934 × 103 | 1.3821 × 101 | 2.8873 × 103 | 6.4718 × 10−1 |
WOA | 3.0563 × 103 | 8.1959 × 101 | 3.1756 × 103 | 8.7993 × 101 | 2.9499 × 103 | 3.8644 × 101 |
GWO | 2.7476 × 103 | 3.3271 × 101 | 2.9316 × 103 | 4.7673 × 101 | 2.9811 × 103 | 3.6181 × 101 |
MFO | 2.8323 × 103 | 3.9181 × 101 | 2.9938 × 103 | 3.4765 × 101 | 3.3149 × 103 | 4.5989 × 102 |
SCA | 2.9828 × 103 | 2.9394 × 101 | 3.1635 × 103 | 2.4587 × 101 | 3.2066 × 103 | 5.3344 × 101 |
PSO | 3.3244 × 103 | 1.2112 × 102 | 3.3639 × 103 | 1.8302 × 102 | 2.8813 × 103 | 1.2226 × 101 |
SMA | 2.8518 × 103 | 3.4349 × 101 | 3.0024 × 103 | 2.1021 × 101 | 3.0105 × 103 | 4.2694 × 101 |
BA | 3.3377 × 103 | 1.4683 × 102 | 3.3551 × 103 | 1.3067 × 102 | 2.9097 × 103 | 2.2350 × 101 |
FA | 2.9113 × 103 | 1.0986 × 101 | 3.0672 × 103 | 1.2063 × 101 | 3.5529 × 103 | 1.0610 × 102 |
F25 | F26 | F27 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCMGO | 4.0360 × 103 | 4.4910 × 102 | 3.2084 × 103 | 5.6067 × 100 | 3.2191 × 103 | 1.1333 × 101 |
MGO | 4.1057 × 103 | 4.4247 × 102 | 3.2110 × 103 | 5.7906 × 100 | 3.2263 × 103 | 1.2693 × 101 |
WOA | 7.1806 × 103 | 9.9826 × 102 | 3.3544 × 103 | 9.4240 × 101 | 3.2966 × 103 | 3.3966 × 101 |
GWO | 4.5703 × 103 | 3.1382 × 102 | 3.2494 × 103 | 2.6475 × 101 | 3.4278 × 103 | 7.1809 × 101 |
MFO | 6.1219 × 103 | 4.4450 × 102 | 3.2484 × 103 | 2.2024 × 101 | 4.2467 × 103 | 7.9835 × 102 |
SCA | 6.9624 × 103 | 3.2108 × 102 | 3.4048 × 103 | 4.8784 × 101 | 3.8418 × 103 | 1.3263 × 102 |
PSO | 6.8713 × 103 | 2.1881 × 103 | 3.3191 × 103 | 3.3374 × 102 | 3.1604 × 103 | 5.7726 × 101 |
SMA | 5.1885 × 103 | 6.1139 × 102 | 3.2600 × 103 | 3.0310 × 101 | 3.4233 × 103 | 4.0169 × 101 |
BA | 9.0997 × 103 | 2.1628 × 103 | 3.4647 × 103 | 1.4833 × 102 | 3.1460 × 103 | 5.8797 × 101 |
FA | 6.5233 × 103 | 1.4455 × 102 | 3.3370 × 103 | 1.4475 × 101 | 3.8857 × 103 | 8.5131 × 101 |
F28 | F29 | |||||
Avg | Std | Avg | Std | |||
CCMGO | 3.6150 × 103 | 8.3397 × 101 | 4.3106 × 104 | 2.7155 × 104 | ||
MGO | 3.6077 × 103 | 6.6509 × 101 | 7.3720 × 104 | 4.3047 × 104 | ||
WOA | 4.6753 × 103 | 3.6858 × 102 | 1.1157 × 107 | 7.7763 × 106 | ||
GWO | 3.7680 × 103 | 1.7323 × 102 | 5.9954 × 106 | 8.1820 × 106 | ||
MFO | 4.1237 × 103 | 2.7095 × 102 | 1.3106 × 106 | 3.7924 × 106 | ||
SCA | 4.5999 × 103 | 1.9125 × 102 | 7.0834 × 107 | 2.8824 × 107 | ||
PSO | 4.0102 × 103 | 3.2291 × 102 | 5.2893 × 103 | 2.9526 × 103 | ||
SMA | 4.0647 × 103 | 2.2025 × 102 | 6.6360 × 106 | 4.7522 × 106 | ||
BA | 5.0038 × 103 | 4.1198 × 102 | 9.7148 × 105 | 6.7934 × 105 | ||
FA | 4.6803 × 103 | 1.5299 × 102 | 1.0007 × 108 | 2.3892 × 107 | ||
Overall Rank | ||||||
RANK | +/=- | AVG | ||||
CCMGO | 1 | ~ | 1.6207 | |||
MGO | 2 | 18/10/1 | 2.6552 | |||
WOA | 8 | 29/0/0 | 7.4828 | |||
GWO | 4 | 29/0/0 | 4.4828 | |||
MFO | 7 | 29/0/0 | 7.0000 | |||
SCA | 9 | 29/0/0 | 7.9310 | |||
PSO | 3 | 16/4/9 | 3.7931 | |||
SMA | 5 | 29/0/0 | 5.3448 | |||
BA | 6 | 24/2/3 | 6.6552 | |||
FA | 10 | 29/0/0 | 8.0345 |
CCMGO | MGO | WOA | GWO | MFO | |
F1 | / | 1.20 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F2 | / | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 4.73 × 10−6 |
F3 | / | 3.09 × 10−1 | 1.73 × 10−6 | 1.92 × 10−6 | 1.92 × 10−6 |
F4 | / | 2.35 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F5 | / | 8.31 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F6 | / | 4.29 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F7 | / | 1.49 × 10−5 | 1.73 × 10−6 | 2.35 × 10−6 | 1.73 × 10−6 |
F8 | / | 2.60 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F9 | / | 5.22 × 10−6 | 1.73 × 10−6 | 2.56 × 10−2 | 1.92 × 10−6 |
F10 | / | 3.87 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F11 | / | 7.81 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F12 | / | 3.60 × 10−1 | 1.73 × 10−6 | 3.88 × 10−6 | 3.52 × 10−6 |
F13 | / | 4.90 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F14 | / | 1.71 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 2.35 × 10−6 |
F15 | / | 7.34 × 10−1 | 1.92 × 10−6 | 2.11 × 10−3 | 1.73 × 10−6 |
F16 | / | 6.84 × 10−3 | 1.73 × 10−6 | 1.64 × 10−5 | 1.73 × 10−6 |
F17 | / | 2.56 × 10−2 | 3.18 × 10−6 | 4.20 × 10−4 | 7.71 × 10−4 |
F18 | / | 7.27 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 2.60 × 10−6 |
F19 | / | 1.47 × 10−1 | 1.73 × 10−6 | 1.48 × 10−4 | 1.92 × 10−6 |
F20 | / | 2.18 × 10−2 | 1.73 × 10−6 | 4.45 × 10−5 | 1.73 × 10−6 |
F21 | / | 4.95 × 10−2 | 4.73 × 10−6 | 3.72 × 10−5 | 6.34 × 10−6 |
F22 | / | 1.57 × 10−2 | 1.73 × 10−6 | 2.60 × 10−5 | 1.92 × 10−6 |
F23 | / | 5.67 × 10−3 | 1.73 × 10−6 | 5.22 × 10−6 | 1.73 × 10−6 |
F24 | / | 8.59 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F25 | / | 6.29 × 10−1 | 1.92 × 10−6 | 1.24 × 10−5 | 1.73 × 10−6 |
F26 | / | 1.31 × 10−1 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 |
F27 | / | 3.00 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F28 | / | 9.59 × 10−1 | 1.73 × 10−6 | 2.22 × 10−4 | 2.35 × 10−6 |
F29 | / | 1.38 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.80 × 10−5 |
SCA | PSO | SMA | BA | FA | |
F1 | 1.73 × 10−6 | 4.73 × 10−6 | 1.73 × 10−6 | 5.22 × 10−6 | 1.73 × 10−6 |
F2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F3 | 1.73 × 10−6 | 3.18 × 10−6 | 1.73 × 10−6 | 1.48 × 10−2 | 1.73 × 10−6 |
F4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F7 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F8 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F9 | 1.73 × 10−6 | 4.29 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F10 | 1.73 × 10−6 | 1.40 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F11 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 7.69 × 10−6 | 1.73 × 10−6 |
F12 | 1.73 × 10−6 | 9.37 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F13 | 1.73 × 10−6 | 6.00 × 10−1 | 1.73 × 10−6 | 6.58 × 10−1 | 1.73 × 10−6 |
F14 | 1.73 × 10−6 | 5.32 × 10−3 | 1.11 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 |
F15 | 1.73 × 10−6 | 2.60 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F16 | 1.73 × 10−6 | 1.92 × 10−6 | 2.35 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F17 | 1.73 × 10−6 | 1.96 × 10−2 | 2.22 × 10−4 | 4.17 × 10−1 | 1.73 × 10−6 |
F18 | 1.73 × 10−6 | 5.04 × 10−1 | 3.52 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F19 | 1.73 × 10−6 | 1.73 × 10−6 | 2.35 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F20 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F21 | 1.73 × 10−6 | 2.58 × 10−3 | 5.71 × 10−4 | 3.88 × 10−6 | 1.48 × 10−4 |
F22 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F23 | 1.73 × 10−6 | 2.60 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F24 | 1.73 × 10−6 | 8.94 × 10−4 | 1.73 × 10−6 | 1.02 × 10−5 | 1.73 × 10−6 |
F25 | 1.73 × 10−6 | 1.36 × 10−5 | 4.29 × 10−6 | 2.35 × 10−6 | 1.73 × 10−6 |
F26 | 1.73 × 10−6 | 5.71 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F27 | 1.73 × 10−6 | 6.32 × 10−5 | 1.73 × 10−6 | 2.84 × 10−5 | 1.73 × 10−6 |
F28 | 1.73 × 10−6 | 3.88 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F29 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
Properties | Value |
---|---|
Grid Size | 25 × 25 × 1 |
Depth | 4800 ft |
Initial Pressure | 4000 psi |
Porosity | 0.2 |
Compressibility | 6.9 × 10−5 psi−1 |
Initial Water Saturation | 0.2 |
Viscosity | 2.2 cP |
Algorithm | NPV (USD) | |||
---|---|---|---|---|
Mean | Std | Best | Worst | |
CCMGO | 9.4969 × 107 | 1.7636 × 106 | 9.7758 × 107 | 9.2169 × 107 |
MGO | 9.3972 × 107 | 2.2134 × 106 | 9.8885 × 107 | 9.0026 × 107 |
MFO | 8.9384 × 107 | 3.2705 × 106 | 9.5890 × 107 | 8.4333 × 107 |
GWO | 9.0767 × 107 | 3.8653 × 106 | 9.8620 × 107 | 8.3161 × 107 |
PSO | 8.2722 × 107 | 1.9501 × 106 | 8.6192 × 107 | 7.7980 × 107 |
SMA | 9.0067 × 107 | 2.9355 × 106 | 9.6942 × 107 | 8.4874 × 107 |
WOA | 8.6832 × 107 | 2.8288 × 106 | 9.2802 × 107 | 8.0419 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, T.; Li, T. Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization. Biomimetics 2025, 10, 32. https://doi.org/10.3390/biomimetics10010032
Yue T, Li T. Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization. Biomimetics. 2025; 10(1):32. https://doi.org/10.3390/biomimetics10010032
Chicago/Turabian StyleYue, Tong, and Tao Li. 2025. "Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization" Biomimetics 10, no. 1: 32. https://doi.org/10.3390/biomimetics10010032
APA StyleYue, T., & Li, T. (2025). Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization. Biomimetics, 10(1), 32. https://doi.org/10.3390/biomimetics10010032