Analysis of the Effects of Highway Geometric Design Features on the Frequency of Truck-Involved Rear-End Crashes Using the Random Effect Zero-Inflated Negative Binomial Regression Model
Abstract
:1. Introduction
1.1. Research Background
1.2. Research Gaps and Objectives
2. Highway Geometric Design Features on the Frequency of Truck-Involved Crashes
3. Methods Section
3.1. Data Collection
3.2. Model Development
4. Results
4.1. Model Statistics
4.2. Correlations and Parameter Estimations
5. Discussion
6. Conclusions and Implementations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Office of the National Economic and Social Development Council (NESDC). Thailand’s Logistics Report (in Thai). Available online: https://www.nesdc.go.th/ewt_dl_link.php?nid=12898 (accessed on 2 August 2023).
- Wen, H.; Ma, Z.; Chen, Z.; Luo, C. Analyzing the impact of curve and slope on multi-vehicle truck crash severity on mountainous freeways. Acc. Anal. Prev. 2023, 181, 106951. [Google Scholar]
- Song, D.; Yang, X.; Yang, Y.; Cui, P.; Zhu, G. Bivariate joint analysis of injury severity of drivers in truck-car crashes accommodating multilayer unobserved heterogeneity. Acc. Anal. Prev. 2023, 190, 107175. [Google Scholar]
- Baikejuli, M.; Shi, J.; Hussain, M. A study on the probabilistic quantification of heavy-truck crash risk under the influence of multi-factors. Acc. Anal. Prev. 2022, 174, 106771. [Google Scholar]
- Al-Bdairi, N.S.S.; Hernandez, S. Comparison of contributing factors for injury severity of large truck drivers in run-off-road crashes on rural and urban roadways: Accounting for unobserved heterogeneity. Int. J. Transp. Sci. Technol. 2020, 9, 116–127. [Google Scholar] [CrossRef]
- Apronti, D.T.; Saha, P.; Moomen, M.; Ksaibati, K. Truck safety evaluation on Wyoming mountain passes. Acc. Anal. Prev. 2019, 122, 342–349. [Google Scholar]
- WHO. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Settasuwacha, D.; Luathep, P.; Taneerananon, P. Highway-Railway Grade Crossing Accident Cost in Thailand. In Proceedings of the 5th ATRANS SYMPOSIUM, Bangkok, Thailand, 24–25 August 2012. [Google Scholar]
- Chantith, C.; Permpoonwiwat, C.K.; Hamaide, B. Measure of productivity loss due to road traffic accidents in Thailand. IATSS Res. 2021, 45, 131–136. [Google Scholar]
- Se, C.; Champahom, T.; Jomnonkwao, S.; Karoonsoontawong, A.; Ratanavaraha, V. Temporal stability of factors influencing driver-injury severities in single-vehicle crashes: A correlated random parameters with heterogeneity in means and variances approach. Anal. Meth. Acc. Res. 2021, 32, 100179. [Google Scholar]
- Champahom, T.; Jomnonkwao, S.; Banyong, C.; Nambulee, W.; Karoonsoontawong, A.; Ratanavaraha, V. Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach. Sustainability 2021, 13, 10086. [Google Scholar]
- Lee, J.; Yasmin, S.; Eluru, N.; Abdel-Aty, M.; Cai, Q. Analysis of crash proportion by vehicle type at traffic analysis zone level: A mixed fractional split multinomial logit modeling approach with spatial effects. Acc. Anal. Prev. 2018, 111, 12–22. [Google Scholar]
- Wen, H.; Sun, J.; Zeng, Q.; Zhang, X.; Yuan, Q. The Effects of Traffic Composition on Freeway Crash Frequency by Injury Severity: A Bayesian Multivariate Spatial Modeling Approach. J. Adv. Transp. 2018, 2018, 6964828. [Google Scholar]
- Osama, A.; Sayed, T. Investigating the effect of spatial and mode correlations on active transportation safety modeling. Anal. Meth. Acc. Res. 2017, 16, 60–74. [Google Scholar]
- Xu, C.; Ozbay, K.; Liu, H.; Xie, K.; Yang, D. Exploring the impact of truck traffic on road segment-based severe crash proportion using extensive weigh-in-motion data. Saf. Sci. 2023, 166, 106261. [Google Scholar]
- Wang, C.; Chen, F.; Zhang, Y.; Cheng, J. Spatiotemporal instability analysis of injury severities in truck-involved and non-truck-involved crashes. Anal. Meth. Acc. Res. 2022, 34, 100214. [Google Scholar] [CrossRef]
- Duvvuri, S.; Pulugurtha, S.S.; Mathew, S. Modeling injury severity of crashes involving trucks: Capturing and exploring risk factors associated with land use and demographic in addition to crash, driver, and on-network characteristics. IATSS Res. 2022, 46, 602–613. [Google Scholar] [CrossRef]
- Champahom, T.; Jomnonkwao, S.; Karoonsoontawong, A.; Ratanavaraha, V. Spatial zero-inflated negative binomial regression models: Application for estimating frequencies of rear-end crashes on Thai highways. J. Transp. Saf. Secur. 2022, 14, 523–540. [Google Scholar] [CrossRef]
- Lao, Y.; Zhang, G.; Wang, Y.; Milton, J. Generalized nonlinear models for rear-end crash risk analysis. Acc. Anal. Prev. 2014, 62, 9–16. [Google Scholar] [CrossRef]
- Qi, Y.; Srinivasan, R.; Teng, H.; Baker, R. Analysis of the Frequency and Severity of Rear-End Crashes in Work Zones. Traffic Inj. Prev. 2013, 14, 61–72. [Google Scholar] [CrossRef]
- Ni, Y.; Li, K. Estimating Rear-End Accident Probabilities at Signalized Intersections: A Comparison Study of Intersections with and Without Green Signal Countdown Devices. Traffic Inj. Prev. 2014, 15, 583–590. [Google Scholar] [CrossRef]
- Yuan, Q.; Lu, M.; Theofilatos, A.; Li, Y.B. Investigation on occupant injury severity in rear-end crashes involving trucks as the front vehicle in Beijing area, China. Chin. J. Traumat. 2017, 20, 20–26. [Google Scholar] [CrossRef]
- Raihan, M.A.; Alluri, P.; Wu, W.; Gan, A. Estimation of bicycle crash modification factors (CMFs) on urban facilities using zero inflated negative binomial models. Acc. Anal. Prev. 2019, 123, 303–313. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Chen, F.; Cui, S.; Cheng, J.; Bo, W. A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime. Sustainability 2022, 14, 9061. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Cheng, J.; Bo, W.; Zhang, P.; Hou, M.; Xiao, F.; Wang, T. Random-Parameter Multivariate Negative Binomial Regression for Modeling Impacts of Contributing Factors on the Crash Frequency by Crash Types. Discret. Dyn. Nat. Soc. 2020, 2020, 6621752. [Google Scholar] [CrossRef]
- Hou, Q.; Tarko, A.P.; Meng, X. Analyzing crash frequency in freeway tunnels: A correlated random parameters approach. Acc. Anal. Prev. 2018, 111, 94–100. [Google Scholar] [CrossRef]
- Wen, X.; Xie, Y.; Jiang, L.; Li, Y.; Ge, T. On the interpretability of machine learning methods in crash frequency modeling and crash modification factor development. Acc. Anal. Prev. 2022, 168, 106617. [Google Scholar] [CrossRef] [PubMed]
- Feknssa, N.; Venkataraman, N.; Shankar, V.; Ghebrab, T. Unobserved heterogeneity in ramp crashes due to alignment, interchange geometry and truck volume: Insights from a random parameter model. Anal. Meth. Acc. Res. 2023, 37, 100254. [Google Scholar] [CrossRef]
- Iranitalab, A.; Khattak, A.; Bahouth, G. Statistical modeling of cargo tank truck crashes: Rollover and release of hazardous materials. J. Saf. Res. 2020, 74, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Agbelie, B.R.D.K. Random-parameters analysis of highway characteristics on crash frequency and injury severity. J. Traffic Transp. Eng. (Engl. Ed.) 2016, 3, 236–242. [Google Scholar] [CrossRef]
- Dong, C.; Clarke, D.B.; Richards, S.H.; Huang, B. Differences in passenger car and large truck involved crash frequencies at urban signalized intersections: An exploratory analysis. Acc. Anal. Prev. 2014, 62, 87–94. [Google Scholar] [CrossRef]
- Dong, C.; Dong, Q.; Huang, B.; Hu, W.; Nambisan, S.S. Estimating Factors Contributing to Frequency and Severity of Large Truck–Involved Crashes. J. Transp. Eng. Part A Syst. 2017, 143, 04017032. [Google Scholar] [CrossRef]
- Dong, C.; Clarke, D.B.; Yan, X.; Khattak, A.; Huang, B. Multivariate random-parameters zero-inflated negative binomial regression model: An application to estimate crash frequencies at intersections. Acc. Anal. Prev. 2014, 70, 320–329. [Google Scholar] [CrossRef]
- Zhao, Q.; Goodman, T.; Azimi, M.; Qi, Y. Roadway-Related Truck Crash Risk Analysis: Case Studies in Texas. Transp. Res. Rec. 2018, 2672, 20–28. [Google Scholar] [CrossRef]
- Islam, M.; Hosseini, P.; Jalayer, M. An analysis of single-vehicle truck crashes on rural curved segments accounting for unobserved heterogeneity. J. Saf. Res. 2022, 80, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Leng, J.; Hou, Q.; Yang, H. A Correlated Random Parameters Model with Heterogeneity in Means to Account for Unobserved Heterogeneity in Crash Frequency Analysis. Transp. Res. Rec. 2020, 2674, 312–322. [Google Scholar] [CrossRef]
- Champahom, T.; Jomnonkwao, S.; Chatpattananan, V.; Karoonsoontawong, A.; Ratanavaraha, V. Analysis of Rear-End Crash on Thai Highway: Decision Tree Approach. J. Adv. Transp. 2019, 2019, 2568978. [Google Scholar] [CrossRef]
- Gupta, N.; Bamney, A.; Rostami, A.; Kamjoo, E.; Savolainen, P.T. How did the COVID-19 pandemic affect driver speed selection and crash risk on rural freeways? Transp. Res. Part F 2023, 97, 181–206. [Google Scholar] [CrossRef]
- Wang, L.; Abdel-Aty, M.; Lee, J. Safety analytics for integrating crash frequency and real-time risk modeling for expressways. Acc. Anal. Prev. 2017, 104, 58–64. [Google Scholar] [CrossRef]
- Washington, S.P.; Karlaftis, M.G.; Mannering, F. Statistical and Econometric Methods for Transportation Data Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Saeed, T.U.; Hall, T.; Baroud, H.; Volovski, M.J. Analyzing road crash frequencies with uncorrelated and correlated random-parameters count models: An empirical assessment of multilane highways. Anal. Meth. Acc. Res. 2019, 23, 100101. [Google Scholar] [CrossRef]
- Mahmud, S.M.S.; Ferreira, L.; Hoque, M.S.; Tavassoli, A. Micro-level safety risk assessment model for a two-lane heterogeneous traffic environment in a developing country: A comparative crash probability modeling approach. J. Saf. Res. 2019, 69, 125–134. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Z.; Lee, C.; Lin, P.S.; Chen, T.; Guo, R.; Lu, Q. Development of crash modification factors of horizontal curve design features for single-motorcycle crashes on rural two-lane highways: A matched case-control study. Acc. Anal. Prev. 2019, 123, 51–59. [Google Scholar] [CrossRef]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression Models for Count Data in R. J. Stat. Soft. 2008, 27, 25. [Google Scholar] [CrossRef]
- Brooks, M.; Kristensen, K.; van Benthem, K.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.; Mächler, M.; Bolker, B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Aguero-Valverde, J. Multivariate spatial models of excess crash frequency at area level: Case of Costa Rica. Acc. Anal. Prev. 2013, 59, 365–373. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, X.; Peng, S.; Huang, H.; Tian, G.; Jia, H. Investigation on the injuries of drivers and copilots in rear-end crashes between trucks based on real world accident data in China. Future Gener. Comput. Syst. 2018, 86, 1251–1258. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Zhang, Y.; Wang, S.; Yu, B.; Cheng, J. Temporal stability of factors affecting injury severity in rear-end and non-rear-end crashes: A random parameter approach with heterogeneity in means and variances. Anal. Meth. Acc. Res. 2022, 35, 100219. [Google Scholar] [CrossRef]
- Moomen, M.; Rezapour, M.; Raja, M.; Ksaibati, K. Predicting downgrade crash frequency with the random-parameters negative binomial model: Insights into the impacts of geometric variables on downgrade crashes in Wyoming. IATSS Res. 2020, 44, 94–102. [Google Scholar] [CrossRef]
- Moomen, M.; Rezapour, M.; Ksaibati, K. An investigation of influential factors of downgrade truck crashes: A logistic regression approach. J. Traffic Transp. Eng. (Engl. Ed.) 2019, 6, 185–195. [Google Scholar] [CrossRef]
- Ding, N.; Lu, L.; Jiao, N.; Wang, T. Rear-End Crash Risk Analysis considering Drivers’ Visual Perception and Traffic Flow Uncertainty: A Hierarchical Hybrid Bayesian Network Approach. Discret. Dyn. Nat. Soc. 2021, 2021, 7028660. [Google Scholar] [CrossRef]
Collision Type/Crash Severity | Fatal Crash | Severe Crash | Minor Injury Crash | PDO | Total | ||||
---|---|---|---|---|---|---|---|---|---|
Pedestrian collision | 70 | 14.55% | 33 | 6.86% | 104 | 21.62% | 274 | 56.96% | 481 |
Rear-end collision | 930 | 24.36% | 517 | 13.54% | 1139 | 29.84% | 1231 | 32.25% | 3817 |
Sideswipe collision | 272 | 19.93% | 125 | 9.16% | 412 | 30.18% | 556 | 40.73% | 1365 |
Single collision | 308 | 4.59% | 309 | 4.60% | 1697 | 25.26% | 4403 | 65.55% | 6717 |
Head on collision | 236 | 46.83% | 91 | 18.06% | 118 | 23.41% | 59 | 11.71% | 504 |
Variable | Value | Description | Frequency | Percentage |
---|---|---|---|---|
Rear-end crash with truck involvement (mean, S.D.) | (0.291, 2.071) | |||
Length (mean, S.D.) | (3.082, 5.023) | |||
AADT (mean, S.D.) | (14,473.9, 24,292.1) | |||
Percent Truck (mean, S.D.) | (16.328, 11.771) | |||
Number of lanes per direction | 0 | 2 lanes road | 9707 | 57.32% |
1 | 4 lanes road | 5459 | 32.23% | |
2 | 6 lanes road | 1015 | 5.99% | |
3 | 6 lanes and more | 755 | 4.46% | |
Speed Limit | 0 | 80 Km/h and less | 2497 | 14.74% |
1 | 90 Km/h | 4794 | 28.31% | |
2 | >90 Km/h | 9645 | 56.95% | |
Pavement | 0 | Asphalt concrete | 15,258 | 90.09% |
1 | Concrete | 1678 | 9.91% | |
Lane width | 0 | ≤3 m | 1025 | 6.05% |
1 | 3.1–3.5 m | 15,638 | 92.34% | |
2 | >3.5 m | 273 | 1.61% | |
Footpath | 0 | No | 16,131 | 95.25% |
1 | Yes | 805 | 4.75% | |
Shoulder width | 0 | ≤1 m | 6364 | 37.58% |
1 | 1.1–2 m | 3533 | 20.86% | |
2 | 2.1–3 m | 6604 | 38.99% | |
3 | >3 m | 435 | 2.57% | |
Right-of-Way | 0 | ≤40 m | 11,131 | 65.72% |
1 | 40.1–60 m | 3412 | 20.15% | |
2 | 60.1–80 m | 1803 | 10.65% | |
3 | >80 m | 590 | 3.48% | |
Median | 0 | Yes | 5608 | 33.11% |
1 | No | 11,328 | 66.89% | |
Median width | 0 | No median | 11,328 | 66.89% |
1 | ≤2 m | 987 | 5.83% | |
2 | 2.1–4 m | 664 | 3.92% | |
3 | 4.1–6 m | 2438 | 14.40% | |
4 | >6 m | 1519 | 8.97% | |
Curve a | 0 | Straight | 16,728 | 98.77% |
1 | Curve (R > 100) | 208 | 1.23% | |
Slope a | 0 | Normal | 16,734 | 98.81% |
1 | Slope (>3% grade) | 202 | 1.19% | |
Median opening a | 0 | Non median opening | 16,757 | 98.94% |
1 | Median Opening with auxiliary lane | 179 | 1.06% |
Model Statistics | POI | NBR | ZINB | SZINB |
---|---|---|---|---|
Log−likelihood intercept-only model | −17,834.9 | −7348.39 | −7348.39 | −6984.54 |
Log−likelihood convergence model | −10,682.3 | −6448.38 | −6159.07 | −6049.3 |
McFadden ρ2 | 0.4010 | 0.1225 | 0.1618 | 0.1339 |
The Akaike Information Criterion (AIC) | 21,412.55 | 12,946.76 | 12,416.14 | 12,198.59 |
Mean zero probability | 0.910 | |||
Dispersion ratio | 4.676 *** | |||
Over-dispersion | 0.841 | |||
Spatial correlation | 0.396 |
Estimate | S.D. | t-Stat | p-Value | Sig. | CMF | |
---|---|---|---|---|---|---|
Random Effect (intercept) | 5.970 | 2.443 | 2.443 | 0.0201 | ** | |
Conditional model: | ||||||
(Intercept) | −1.363 | 0.313 | −4.361 | <0.000 | *** | |
2 lanes road | 0.114 | 0.132 | 0.865 | 0.387 | ||
4 lanes road | 0.240 | 0.183 | 1.313 | 0.189 | ||
6 lanes road | 0.465 | 0.178 | 2.611 | 0.009 | ** | 1.5914 |
90 Km/h | −0.074 | 0.214 | −0.345 | 0.730 | ||
>90 Km/h | 0.544 | 0.134 | 4.049 | <0.000 | *** | 1.7229 |
Concrete Pavement | −0.407 | 0.119 | −3.423 | 0.001 | ** | 0.6658 |
Lane width [3.1–3.5 m] | −0.219 | 0.271 | −0.808 | 0.419 | ||
Lane width [>3.5 m] | −0.578 | 0.385 | −1.499 | 0.134 | ||
Footpath | 0.364 | 0.164 | 2.226 | 0.026 | ** | 1.4393 |
Shoulder width [1.1–2 m] | 0.359 | 0.154 | 2.324 | 0.020 | ** | 1.4318 |
Shoulder width [2.1–3 m] | 0.485 | 0.152 | 3.180 | 0.001 | ** | 1.6240 |
Shoulder width [>3 m] | 0.134 | 0.234 | 0.574 | 0.566 | ||
Right-of-way [40.1–60 m] | 0.447 | 0.111 | 4.017 | <0.000 | *** | 1.5643 |
Right-of-way [60.1–80 m] | 0.334 | 0.133 | 2.518 | 0.012 | ** | 1.3967 |
Right-of-way [>80 m] | 0.480 | 0.207 | 2.319 | 0.020 | ** | 1.6158 |
Median width [≤2 m] | 0.119 | 1.509 | 0.079 | 0.937 | ||
Median width [2.1–4 m] | 0.278 | 1.507 | 0.185 | 0.853 | ||
Median width [4.1–6 m] | 0.412 | 1.490 | 0.276 | 0.782 | ||
Median width [>6 m] | 0.564 | 1.495 | 0.377 | 0.706 | ||
Curve | 1.617 | 0.120 | 13.502 | <0.000 | *** | 5.0369 |
Slope | 0.746 | 0.192 | 3.881 | <0.000 | *** | 2.1089 |
Median opening | 1.604 | 0.161 | 9.948 | <0.000 | *** | 4.9738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champahom, T.; Se, C.; Jomnonkwao, S.; Kasemsri, R.; Ratanavaraha, V. Analysis of the Effects of Highway Geometric Design Features on the Frequency of Truck-Involved Rear-End Crashes Using the Random Effect Zero-Inflated Negative Binomial Regression Model. Safety 2023, 9, 76. https://doi.org/10.3390/safety9040076
Champahom T, Se C, Jomnonkwao S, Kasemsri R, Ratanavaraha V. Analysis of the Effects of Highway Geometric Design Features on the Frequency of Truck-Involved Rear-End Crashes Using the Random Effect Zero-Inflated Negative Binomial Regression Model. Safety. 2023; 9(4):76. https://doi.org/10.3390/safety9040076
Chicago/Turabian StyleChampahom, Thanapong, Chamroeun Se, Sajjakaj Jomnonkwao, Rattanaporn Kasemsri, and Vatanavongs Ratanavaraha. 2023. "Analysis of the Effects of Highway Geometric Design Features on the Frequency of Truck-Involved Rear-End Crashes Using the Random Effect Zero-Inflated Negative Binomial Regression Model" Safety 9, no. 4: 76. https://doi.org/10.3390/safety9040076
APA StyleChampahom, T., Se, C., Jomnonkwao, S., Kasemsri, R., & Ratanavaraha, V. (2023). Analysis of the Effects of Highway Geometric Design Features on the Frequency of Truck-Involved Rear-End Crashes Using the Random Effect Zero-Inflated Negative Binomial Regression Model. Safety, 9(4), 76. https://doi.org/10.3390/safety9040076