Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Collection
2.2. Analysis Tools
2.3. Analysis Method
3. Results
3.1. The Literature Publication Trends Analysis
3.2. Principal Researchers and Cooperation Relationships Analysis
3.3. Subject Areas and Journal Distribution Analysis
3.4. The Research Current Status and Basic Knowledge Analysis
3.4.1. Highly Co-Cited Journals Analysis
3.4.2. Core Literature Analysis
NO. | Title | Journal | Author | Year | IN | CN | ACY |
---|---|---|---|---|---|---|---|
1 | Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells | Journal of Power Sources | Nakagawa et al. [9] | 2007 | 2 | 1 | 8.38 |
2 | Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance | Chemical Engineering Journal | Shi et al. [42] | 2018 | 1 | 1 | 21.2 |
3 | A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries | Journal of Membrane Science | Kuo et al. [14] | 2016 | 1 | 1 | 13.71 |
4 | Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets | Journal of Materials Chemistry A | Li et al. [13] | 2018 | 4 | 1 | 13.2 |
5 | Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate-based ionic liquid | Journal of Materials Chemistry A | Chen et al. [43] | 2013 | 2 | 1 | 6.4 |
6 | Self-healing Janus interfaces for high-performance LAGP-based lithium metal batteries | ACS Energy Letters | Liu et al. [48] | 2020 | 4 | 3 | 16.67 |
7 | Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane | Journal of Colloid and Interface Science | Cai et al. [44] | 2020 | 4 | 3 | 16.67 |
8 | Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process | ACS Sustainable Chemistry & Engineering | Yuan et al. [49] | 2017 | 3 | 1 | 7.83 |
9 | Flame retardancy of phosphorus-containing ionic liquid-based epoxy networks | Polymer Degradation And Stability | Sonnier et al. [45] | 2016 | 5 | 1 | 6.71 |
10 | Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons | Journal of Materials Chemistry A | Men et al. [50] | 2013 | 3 | 1 | 4.6 |
11 | Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide | RSC Advances | Gui et al. [51] | 2015 | 1 | 1 | 5.63 |
12 | Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)(3)-Supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries | Journal of Physical Chemistry C | Guo et al. [46] | 2018 | 1 | 1 | 8.8 |
13 | Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness | Composites Part B-Engineering | Jia et al. [52] | 2020 | 1 | 1 | 13 |
14 | Uniform nanoparticle coating of cellulose fibers during wet electrospinning | Journal of Materials Chemistry A | Zheng et al. [53] | 2014 | 2 | 2 | 4.22 |
15 | Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries | ACS Sustainable Chemistry & Engineering | Kim et al. [47] | 2016 | 3 | 1 | 5.14 |
3.4.3. Knowledge Base Analysis
3.5. Research Flow, Hot Spots and Frontiers Analysis
3.5.1. Key Literature’s Research Flow Analysis
No. | Author | Year | LCS | No. | Author | Year | LCS |
---|---|---|---|---|---|---|---|
46 | Nakagawa et al. [9] | 2007 | 132 | 231 | Sonnier et al. [45] | 2016 | 46 |
48 | Seki et al. [92] | 2008 | 17 | 257 | Watanabe et al. [93] | 2017 | 17 |
58 | Profatilova et al. [94] | 2009 | 12 | 261 | Shi et al. [95] | 2017 | 30 |
63 | Lewandowski et al. [89] | 2009 | 52 | 268 | Chen et al. [96] | 2017 | 17 |
69 | Xiang et al. [97] | 2010 | 16 | 284 | Yuan et al. [49] | 2017 | 46 |
78 | Arbizzani et al. [98] | 2011 | 29 | 289 | Xiao et al. [99] | 2017 | 29 |
81 | Nadherna et al. [100] | 2011 | 14 | 290 | Guo et al. [101] | 2017 | 14 |
98 | Men et al. [50] | 2013 | 44 | 307 | Jiang et al. [102] | 2018 | 16 |
99 | Chen et al. [43] | 2013 | 63 | 311 | Yang et al. [6] | 2018 | 19 |
102 | Kivotidi et al. [103] | 2013 | 13 | 316 | Guo et al. [46] | 2018 | 44 |
107 | Yang et al. [104] | 2013 | 28 | 326 | Xiao et al. [87] | 2018 | 24 |
118 | Chen et al. [105] | 2014 | 26 | 363 | Li et al. [13] | 2018 | 66 |
129 | Zheng et al. [53] | 2014 | 36 | 370 | Shi et al. [42] | 2018 | 105 |
143 | Gui et al. [51] | 2015 | 44 | 379 | Wang et al. [90] | 2019 | 20 |
152 | Wilken et al. [106] | 2015 | 13 | 380 | Huo et al. [107] | 2019 | 18 |
164 | Kalhoff et al. [108] | 2015 | 24 | 387 | Bentis et al. [109] | 2019 | 20 |
168 | Tan et al. [110] | 2015 | 27 | 397 | Jiao et al. [88] | 2019 | 18 |
173 | Hu et al. [111] | 2015 | 12 | 406 | Yu et al. [112] | 2019 | 15 |
176 | Alongi et al. [74] | 2015 | 30 | 411 | Wang et al. [113] | 2019 | 15 |
190 | Chen et al. [114] | 2016 | 17 | 432 | Jian et al. [115] | 2019 | 16 |
193 | Kim et al. [47] | 2016 | 34 | 465 | Bose et al. [116] | 2019 | 22 |
195 | Kuo et al. [14] | 95 | 2016 | 544 | Cai et al. [44] | 2020 | 50 |
198 | Huang et al. [117] | 19 | 2016 | 576 | Liu et al. [48] | 2020 | 49 |
206 | Chen et al. [118] | 12 | 2016 | 608 | Li et al. [91] | 2020 | 22 |
221 | Yuan et al. [119] | 28 | 2016 | 713 | Tian et al. [120] | 2020 | 20 |
3.5.2. Research Hotspots Analysis
3.5.3. Exploring the Frontiers of Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—A review. Fluid Phase Equilib. 2004, 219, 93–98. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef]
- Hurley, F.H.; Wier, T.P. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. J. Electrochem. Soc. 1951, 98, 207–212. [Google Scholar] [CrossRef]
- Wilkes, J.S.; Zaworotko, M.J. Air and water sTable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc.-Chem. Commun. 1992, 13, 965–967. [Google Scholar] [CrossRef]
- Davis, J.H. Task-specific ionic liquids. Chem. Lett. 2004, 33, 1072–1077. [Google Scholar] [CrossRef]
- Yang, Q.W.; Zhang, Z.Q.; Sun, X.G.; Hu, Y.S.; Xing, H.B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, Z.; Holloczki, O.; Nagy, J.; Nyulaszi, L. An organocatalytic ionic liquid. Org. Biomol. Chem. 2011, 9, 5362–5364. [Google Scholar] [CrossRef] [PubMed]
- Verma, C.; Alrefaee, S.H.; Quraishi, M.A.; Ebenso, E.E.; Hussain, C.M. Recent developments in sustainable corrosion inhibition using ionic liquids: A review. J. Mol. Liq. 2020, 321, 114484. [Google Scholar] [CrossRef]
- Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Source 2007, 174, 1021–1026. [Google Scholar] [CrossRef]
- Jiao, C.M.; Wang, H.Z.; Chen, X.L. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane. J. Therm. Anal. Calorim. 2018, 133, 1471–1480. [Google Scholar] [CrossRef]
- Li, C.X.; Ma, C.; Li, J. Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polym. Advan. Technol. 2020, 31, 1765–1775. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, W.H. Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. Chemelectrochem 2015, 2, 22–36. [Google Scholar] [CrossRef]
- Li, X.W.; Feng, Y.Z.; Chen, C.; Ye, Y.S.; Zeng, H.X.; Qu, H.; Liu, J.W.; Zhou, X.P.; Long, S.J.; Xie, X.L. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J. Mater. Chem. A 2018, 6, 20500–20512. [Google Scholar] [CrossRef]
- Kuo, P.L.; Tsao, C.H.; Hsu, C.H.; Chen, S.T.; Hsu, H.M. A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J. Membr. Sci. 2016, 499, 462–469. [Google Scholar] [CrossRef]
- Aghmih, K.; Boukhriss, A.; El Bouchti, M.; Chaoui, M.A.; Majid, S.; Gmouh, S. Introduction of Ionic Liquids as Highly Efficient Plasticizers and Flame Retardants of Cellulose Triacetate Films. J. Polym. Environ. 2022, 30, 2905–2918. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, J.; Wang, J.H. In-depth analysis on thermal hazards related research trends about lithium-ion batteries: A bibliometric study. J. Energy Storage 2021, 35, 102253. [Google Scholar] [CrossRef]
- Goyal, S.; Chauhan, S.; Mishra, P. Circular economy research: A bibliometric analysis (2000–2019) and future research insights. J. Clean. Prod. 2021, 287, 125011. [Google Scholar] [CrossRef]
- Lawal, I.A.; Klink, M.; Ndungu, P.; Moodley, B. Brief bibliometric analysis of “ionic liquid” applications and its review as a substitute for common adsorbent modifier for the adsorption of organic pollutants. Environ. Res. 2019, 175, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Lang, Z.H.; Liu, H.; Meng, N.; Wang, H.N.; Wang, H.; Kong, F.Y. Mapping the knowledge domains of research on fire safety—An informetrics analysis. Tunn. Undergr. Space Technol. 2021, 108, 103676. [Google Scholar] [CrossRef]
- Gou, X.Q.; Liu, H.; Qiang, Y.J.; Lang, Z.H.; Wang, H.N.; Ye, D.; Wang, Z.W.; Wang, H. In-depth analysis on safety and security research based on system dynamics: A bibliometric mapping approach-based study. Saf. Sci. 2022, 147, 105617. [Google Scholar] [CrossRef]
- Huang, R.; Liu, H.; Ma, H.L.; Qiang, Y.J.; Pan, K.; Gou, X.Q.; Wang, X.; Ye, D.; Wang, H.N.; Glowacz, A. Accident prevention analysis: Exploring the intellectual structure of a research field. Sustainability 2022, 14, 8784. [Google Scholar] [CrossRef]
- Chen, C.M.; Hu, Z.G.; Liu, S.B.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, Y.J.; Tao, X.W.; Gou, X.Q.; Lang, Z.H.; Liu, H. Towards a bibliometric mapping of network public opinion studies. Information 2022, 13, 17. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, H.; Pan, K.; Huang, R.; Gou, X.Q.; Qiang, Y.J. Exploring thermal hazard of lithium-ion batteries by bibliometric analysis. J. Energy Storage 2023, 67, 107578. [Google Scholar] [CrossRef]
- Garfield, E.; Pudovkin, A.I.; Istomin, V.S. Algorithmic citation-linked historiography—Mapping the literature of science. Proc. Am. Soc. Inf. Sci. Technol. 2002, 39, 14–24. [Google Scholar] [CrossRef]
- Pan, X.L.; Yan, E.J.; Cui, M.; Hua, W.N. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J. Informetr. 2018, 12, 481–493. [Google Scholar] [CrossRef]
- Yang, Z.J.; Huang, D.; Zhao, Y.Q.; Wang, W.Q. A bibliometric review of energy related international investment based on an evolutionary perspective. Energies 2022, 15, 3435. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Yao, J.Y.; Ye, D.; Lang, Z.H.; Glowacz, A. Mapping the knowledge domains of new energy vehicle safety: Informetrics analysis-based studies. J. Energy Storage 2021, 35, 102275. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.H.; Liu, L.L.; Zhao, N.N. Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels, human exposure and regulation. J. Environ. Manag. 2012, 113, 22–30. [Google Scholar] [CrossRef]
- Hong, R.; Liu, H.; Xiang, C.L.; Song, Y.M.; Lv, C. Visualization and analysis of mapping knowledge domain of oxidation studies of sulfide ores. Environ. Sci. Pollut. Res. 2020, 27, 5809–5824. [Google Scholar] [CrossRef]
- Cai, W.; Li, Z.X.; Mu, X.W.; He, L.X.; Zhou, X.; Guo, W.W.; Song, L.; Hu, Y. Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change. J. Hazard. Mater. 2021, 404, 124106. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.W.; Cai, W.; Wang, J.L.; Song, L.; Hu, Y. Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Appl. Mater. Today 2020, 20, 100762. [Google Scholar] [CrossRef]
- He, Q.X.; Tang, L.; Fu, T.; Shi, Y.Q.; Wang, X.L.; Wang, Y.Z. Novel phosphorus-containing halogen-free ionic liquids: Effect of sulfonate anion size on physical properties, biocompatibility, and flame retardancy. RSC Adv. 2016, 6, 52485–52494. [Google Scholar] [CrossRef]
- He, W.T.; Song, P.A.; Yu, B.; Fang, Z.P.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. Tec. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Chen, C.; Li, C.J.; Reniers, G.; Yang, F.Q. Safety and security of oil and gas pipeline transportation: A systematic analysis of research trends and future needs using WoS. J. Clean Prod. 2021, 279, 123583. [Google Scholar] [CrossRef]
- Liu, H.; Hong, R.; Xiang, C.L.; Lv, C.; Li, H.H. Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 2020, 262, 116598. [Google Scholar] [CrossRef]
- Lang, Z.H.; Wang, D.G.; Liu, H.; Gou, X.Q. Mapping the knowledge domains of research on corrosion of petrochemical equipment: An informetrics analysis-based study. Eng. Fail. Anal. 2021, 129, 105716. [Google Scholar] [CrossRef]
- Chen, K.; Lin, X.P.; Wang, H.; Qiang, Y.J.; Kong, J.; Huang, R.; Wang, H.N.; Liu, H. Visualizing the knowledge base and research hotspot of public health emergency management: A science mapping analysis-based study. Sustainability 2022, 14, 7389. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Fu, T.; Xu, Y.J.; Li, D.F.; Wang, X.L.; Wang, Y.Z. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018, 354, 208–219. [Google Scholar] [CrossRef]
- Chen, S.J.; Li, J.; Zhu, Y.K.; Guo, Z.B.; Su, S.P. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. J. Mater. Chem. A 2013, 1, 15242–15246. [Google Scholar] [CrossRef]
- Cai, W.; Hu, Y.X.; Pan, Y.; Zhou, X.; Chu, F.K.; Han, L.F.; Mu, X.W.; Zhuang, Z.Y.; Wang, X.; Xing, W.Y. Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. J. Colloid Interface Sci. 2020, 561, 32–45. [Google Scholar] [CrossRef]
- Sonnier, R.; Dumazert, L.; Livi, S.; Nguyen, T.K.L.; Duchet-Rumeau, J.; Vahabi, H.; Laheurte, P. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym. Degrad. Stabil. 2016, 134, 186–193. [Google Scholar] [CrossRef]
- Guo, Q.P.; Han, Y.; Wang, H.; Xiong, S.Z.; Sun, W.W.; Zheng, C.M.; Xie, K. Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 2018, 122, 10334–10342. [Google Scholar] [CrossRef]
- Kim, H.T.; Kang, J.; Mun, J.; Oh, S.M.; Yim, T.; Kim, Y.G. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. ACS Sustain. Chem. Eng. 2016, 4, 497–505. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, D.; Shanmukaraj, D.; Li, P.; Kang, F.Y.; Li, B.H.; Armand, M.; Wang, G.X. Self-healing janus interfaces for high-performance lagp-based lithium metal batteries. ACS Energy Lett. 2020, 5, 1456–1464. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.M.; Mi, Q.Y.; Yu, J.; Song, R.; Zhang, J. Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process. ACS Sustain. Chem. Eng. 2017, 5, 11117–11123. [Google Scholar] [CrossRef]
- Men, Y.J.; Siebenburger, M.; Qiu, X.L.; Antonietti, M.; Yuan, J.Y. Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons. J. Mater. Chem. A 2013, 1, 11887–11893. [Google Scholar] [CrossRef] [Green Version]
- Gui, H.; Xu, P.; Hu, Y.; Wang, J.; Yang, X.; Bahader, A.; Ding, Y. Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Adv. 2015, 5, 27814–27822. [Google Scholar] [CrossRef]
- Jia, Y.W.; Zhao, X.; Fu, T.; Li, D.F.; Guo, Y.; Wang, X.L.; Wang, Y.Z. Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos. Part B Eng. 2020, 197, 108192. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Miao, J.J.; Maeda, N.; Frey, D.; Linhardt, R.J.; Simmons, T.J. Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J. Mater. Chem. A 2014, 2, 15029–15034. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.L.; Hong, R.; Liu, H.G.; You, W.J. Mapping knowledge structure and research trends of emergency evacuation studies. Saf. Sci. 2020, 121, 348–361. [Google Scholar] [CrossRef]
- Fernicola, A.; Croce, F.; Scrosati, B.; Watanabe, T.; Ohno, H. LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources 2007, 174, 342–348. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-Ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef]
- Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sakaebe, H.; Tatsumi, K.; Kikuta, M.; Ishiko, E.; Kono, M. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide FSI (-). J. Power Sources 2006, 160, 1308–1313. [Google Scholar] [CrossRef]
- Sato, T.; Maruo, T.; Marukane, S.; Takagi, K. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power Sources 2004, 138, 253–261. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A Battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv. Funct. Mater. 2020, 30, 2003132. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergstrom, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283. [Google Scholar] [CrossRef]
- Yu, B.; Xing, W.; Guo, W.; Qiu, S.; Wang, X.; Lo, S.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J. Mater. Chem. A 2016, 4, 7330–7340. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Zhang, Y.; Cai, W.; Yao, C.; Hu, Y.; Hu, W. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J. Hazard. Mater. 2019, 362, 482–494. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mat. Sci. Eng. R. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Alongi, J.; Han, Z.D.; Bourbigot, S. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Edit. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wu, W.-H.; Wang, Y.-H.; Jiao, Y.-H.; Lu, L.-Y.; Qu, H.-Q.; Qin, X.-Y. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. J. Hazard. Mater. 2019, 366, 78–87. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Wang, J.; Tan, Y.; Qi, M.; Chen, L.; Wang, Y.-Z. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem. Eng. J. 2018, 337, 30–39. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wang, S.J.; Wang, A.Q.; Li, Y.L.; Yu, F.; Chen, Y. Polyethylene glycol-grafted cellulose-based gel polymer electrolyte for long-life Li-ion batteries. Appl. Surf. Sci. 2022, 593, 153411. [Google Scholar] [CrossRef]
- Yang, G.; Song, Y.D.; Wang, Q.; Zhang, L.B.; Deng, L.J. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 2020, 190, 108563. [Google Scholar] [CrossRef]
- Wu, F.L.; Schur, A.R.; Kim, G.T.; Dong, X.; Kuenzel, M.; Diemant, T.; D’Orsi, G.; Simonetti, E.; De Francesco, M.; Bellusci, M.; et al. A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. Energy Storage Mater. 2021, 42, 826–835. [Google Scholar] [CrossRef]
- Kale, S.B.; Nirmale, T.C.; Khupse, N.D.; Kale, B.B.; Kulkarni, M.V.; Pavitran, S.; Gosavi, S.W. Cellulose-derived flame-retardant solid polymer electrolyte for lithium-ion batteries. ACS Sustain. Chem. Eng. 2021, 9, 1559–1567. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, L.B.; Yan, C.T.; Hong, Y.K.; Xu, M.J.; Qian, L.J.; Li, B. Eco-friendly phosphonic acid piperazine salt toward high-efficiency smoke suppression and flame retardancy for epoxy resins. J. Mater. Sci. 2021, 56, 16999–17010. [Google Scholar] [CrossRef]
- Xie, H.L.; Lai, X.J.; Zhou, R.M.; Li, H.Q.; Zhang, Y.J.; Zeng, X.R.; Guo, J.H. Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stabil. 2015, 118, 167–177. [Google Scholar] [CrossRef]
- Zhou, H.H.; Tan, S.; Wang, C.H.; Wu, Y. Enhanced flame retardancy of flexible polyurethane foam with low loading of liquid halogen-free phosphonium thiocyanate. Polym. Degrad. Stabil. 2022, 195, 109789. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Wei, H.J.; Wang, F.; Sun, H.X.; Liang, W.D.; Li, A. Ionic liquid-based monolithic porous polymers as efficient flame retardant and thermal insulation materials. Polymer 2019, 185, 121947. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Li, K.W. Slip and fall incidents at work: A visual analytics analysis of the research domain. Int. J. Environ. Res. Public Health 2019, 16, 4972. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Wu, K.; Luo, F.B.; Yao, S.; Lv, M.P.; Zou, H.M.; Lu, M.G. Influence of ionic liquid-based metal-organic hybrid on thermal degradation, flame retardancy, and smoke suppression properties of epoxy resin composites. J. Mater. Sci. 2018, 53, 10135–10146. [Google Scholar] [CrossRef]
- Jiao, C.M.; Wang, H.Z.; Chen, X.L.; Tang, G.W. Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@ EOOEMIm BF4. J. Therm. Anal. Calorim. 2019, 135, 3141–3152. [Google Scholar] [CrossRef]
- Lewandowski, A.; Swiderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies. J. Power Source 2009, 194, 601–609. [Google Scholar] [CrossRef]
- Wang, Q.S.; Jiang, L.H.; Yu, Y.; Sun, J.H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Li, X.W.; Zheng, Y.W.; Li, C.Y. Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids. Energy Storage Mater. 2020, 29, 273–280. [Google Scholar] [CrossRef]
- Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Mita, Y.; Terada, N.; Charest, P.; Guerfi, A.; Zaghib, K. Compatibility of N-Methyl-N-propylpyrrolidinium cation room-temperature ionic liquid electrolytes and graphite electrodes. J. Phys. Chem. C 2008, 112, 16708–16713. [Google Scholar] [CrossRef]
- Watanabe, M.; Thomas, M.L.; Zhang, S.G.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190–7239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Profatilova, I.A.; Choi, N.S.; Roh, S.W.; Kim, S.S. Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids. J. Power Source 2009, 192, 636–643. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Yu, B.; Duan, L.J.; Gui, Z.; Wang, B.B.; Hu, Y.; Yuen, R.K.K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 2017, 332, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Feng, X.L.; Jiao, C.M. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J. Therm. Anal. Calorim. 2017, 129, 851–857. [Google Scholar] [CrossRef]
- Xiang, H.F.; Yin, B.; Wang, H.; Lin, H.W.; Ge, X.W.; Xie, S.; Chen, C.H. Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim. Acta 2010, 55, 5204–5209. [Google Scholar] [CrossRef]
- Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Source 2011, 196, 4801–4805. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, K.; Luo, F.B.; Guo, Y.Y.; Zhang, S.H.; Du, X.X.; Zhu, Q.Q.; Lu, M.G. An efficient phosphonate-based ionic liquid on flame retardancy and mechanical property of epoxy resin. J. Mater. Sci. 2017, 52, 13992–14003. [Google Scholar] [CrossRef]
- Nadherna, M.; Reiter, J.; Moskon, J.; Dominko, R. Lithium bis(fluorosulfonyl)imide-PYR14TFSI ionic liquid electrolyte compatible with graphite. J. Power Source 2011, 196, 7700–7706. [Google Scholar] [CrossRef]
- Guo, Q.P.; Han, Y.; Wang, H.; Xiong, S.Z.; Li, Y.J.; Liu, S.K.; Xie, K. New class of lagp-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl. Mater. Inter. 2017, 9, 41837–41844. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.C.; Lin, W.C.; Hua, M.; Pan, X.H.; Shu, C.M.; Jiang, J.C. Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. J. Therm. Anal. Calorim. 2018, 131, 2821–2831. [Google Scholar] [CrossRef]
- Kivotidi, S.; Tsioptsias, C.; Pavlidou, E.; Panayiotou, C. Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2. J. Therm. Anal. Calorim. 2013, 111, 475–482. [Google Scholar] [CrossRef]
- Yang, X.F.; Ge, N.L.; Hu, L.Y.; Gui, H.G.; Wang, Z.G.; Ding, Y.S. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym. Advan. Technol. 2013, 24, 568–575. [Google Scholar] [CrossRef]
- Chen, S.J.; Li, J.; Zhu, Y.K.; Su, S.P. Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene. RSC Adv. 2014, 4, 32902–32913. [Google Scholar] [CrossRef]
- Wilken, S.; Xiong, S.Z.; Scheers, J.; Jacobsson, P.; Johansson, P. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties. J. Power Source 2015, 275, 935–942. [Google Scholar] [CrossRef]
- Huo, S.Q.; Wang, J.; Yang, S.; Li, C.; Wang, X.L.; Cai, H.P. Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin. Polym. Degrad. Stabil. 2019, 159, 79–89. [Google Scholar] [CrossRef]
- Kalhoff, J.; Eshetu, G.G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 2015, 8, 2154–2175. [Google Scholar] [CrossRef]
- Bentis, A.; Boukhriss, A.; Grancaric, A.M.; El Bouchti, M.; El Achaby, M.; Gmouh, S. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 2019, 26, 2139–2153. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, Z.B.; Chen, X.F.; Long, J.W.; Chen, L.; Wang, Y.Z. Novel multifunctional organic inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Inter. 2015, 7, 17919–17928. [Google Scholar] [CrossRef]
- Hu, Y.D.; Xu, P.; Gui, H.G.; Wang, X.X.; Ding, Y.S. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos. Part A Appl. Sci. Manuf. 2015, 77, 147–153. [Google Scholar] [CrossRef]
- Yu, Q.P.; Han, D.; Lu, Q.W.; He, Y.B.; Li, S.; Liu, Q.; Han, C.P.; Kang, F.Y.; Li, B.H. Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries. ACS Appl. Mater. Inter. 2019, 11, 9911–9918. [Google Scholar] [CrossRef]
- Wang, P.; Chen, L.; Xiao, H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. J. Anal. Appl. Pyrol. 2019, 139, 104–113. [Google Scholar] [CrossRef]
- Chen, X.L.; Ma, C.Y.; Jiao, C.M. Synergistic effects between Emim PF6 and aluminum hypophosphite on flame retardant thermoplastic polyurethane. RSC Adv. 2016, 6, 67409–67417. [Google Scholar] [CrossRef]
- Jian, R.K.; Ai, Y.F.; Xia, L.; Zhang, Z.P.; Wang, D.Y. Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin. Compos. Part B Eng. 2019, 168, 458–466. [Google Scholar] [CrossRef]
- Bose, P.; Deb, D.; Bhattacharya, S. Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte. Electrochim. Acta 2019, 319, 753–765. [Google Scholar] [CrossRef]
- Huang, G.B.; Song, P.A.; Liu, L.N.; Han, D.M.; Ge, C.H.; Li, R.R.; Guo, Q.P. Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 2016, 98, 689–701. [Google Scholar] [CrossRef]
- Chen, S.J.; Wang, C.L.; Li, J. Effect of alkyl groups in organic part of polyoxo-metalates based ionic liquids on properties of flame retardant polypropylene. Thermochim. Acta 2016, 631, 51–58. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.M.; Yu, J.; Song, R.; Mi, Q.Y.; He, J.S.; Zhang, J. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci. China Chem. 2016, 59, 1335–1341. [Google Scholar] [CrossRef]
- Tian, X.L.; Yi, Y.K.; Fang, B.R.; Yang, P.; Wang, T.; Liu, P.; Qu, L.; Li, M.T.; Zhang, S.Q. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 2020, 32, 9821–9848. [Google Scholar] [CrossRef]
- Hu, H.K.; Xue, W.D.; Jiang, P.; Li, Y. Polyimide-based materials for lithium-ion battery separator applications: A bibliometric study. Int. J. Polym. Sci. 2022, 2022, 6740710. [Google Scholar] [CrossRef]
- Xie, K.F.; Yu, S.C.; Wang, P.; Chen, P. Polyethylene terephthalate-based materials for lithium-ion battery separator applications: A review based on knowledge domain analysis. Int. J. Polym. Sci. 2021, 2021, 6694105. [Google Scholar] [CrossRef]
- Wang, C.X.; Lv, S.R.; Suo, X. The knowledge map of public safety and health. In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; IEEE: Zhangjiajie, China, 2015; pp. 1688–1692. [Google Scholar]
- Sabe, M.; Chen, C.; Sentissi, O.; Deenik, J.; Vancampfort, D.; Firth, J.; Smith, L.; Stubbs, B.; Rosenbaum, S.; Schuch, F.B.; et al. Thirty years of research on physical activity, mental health, and wellbeing: A scientometric analysis of hotspots and trends. Front. Public Health 2022, 10, 943435. [Google Scholar] [CrossRef]
- Kim, G.T.; Jeong, S.S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J. Power Source 2011, 196, 2187–2194. [Google Scholar] [CrossRef]
- Guerfi, A.; Duchesne, S.; Kobayashi, Y.; Vijh, A.; Zaghib, K. LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)(-) for Li-ion batteries. J. Power Source 2008, 175, 866–873. [Google Scholar] [CrossRef]
- Liu, D.; Wu, F.; Shen, Z.H.; Fan, X.H. Safety-enhanced polymer electrolytes with high ambient-temperature lithium-ion conductivity based on ABA triblock copolymers. Chin. J. Polym. Sci. 2022, 40, 21–28. [Google Scholar] [CrossRef]
- Bi, X.; Meng, W.H.; Meng, Y.F.; Di, H.; Li, J.H.; Xie, J.X.; Xu, J.Z.; Fang, L.D. Novel BMIM PF6 modified flake-ANP flame retardant: Synthesis and application in epoxy resin. Polym. Test. 2021, 101, 107284. [Google Scholar] [CrossRef]
- Feng, T.T.; Wang, Y.X.; Dong, H.X.; Piao, J.X.; Wang, Y.F.; Ren, J.Y.; Chen, W.J.; Liu, W.; Chen, X.L.; Jiao, C.M. Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: Improving thermal stability, flame retardancy, and smoke suppression. Polym. Degrad. Stabil. 2022, 199, 109899. [Google Scholar] [CrossRef]
- Gao, M.; Wang, T.L.; Chen, X.X.; Zhang, X.Q.; Yi, D.Q.; Qian, L.J.; You, R.K. Preparation of ionic liquid multifunctional graphene oxide and its effect on decrease fire hazards of flexible polyurethane foam. J. Therm. Anal. Calorim. 2022, 147, 7289–7297. [Google Scholar] [CrossRef]
- Czlonka, S.; Strakowska, A.; Strzelec, K.; Kairyte, A.; Kremensas, A. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polym. Test. 2020, 87, 106511. [Google Scholar] [CrossRef]
- Jiang, H.C.; Lin, W.C.; Hua, M.; Pan, X.H.; Shu, C.M.; Jiang, J.C. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. J. Therm. Anal. Calorim. 2019, 138, 489–499. [Google Scholar] [CrossRef]
- Liu, S.H.; Xu, Z.L.; Zhang, L. Effect of cyano ionic liquid on flame retardancy of melamine. J. Therm. Anal. Calorim. 2021, 144, 305–314. [Google Scholar] [CrossRef]
- Meng, J.W.; Pan, Y.; Yang, F.; Wang, Y.J.; Zheng, Z.Y.; Jiang, J.C. Thermal stability and decomposition kinetics of 1-Alkyl-2,3-Dimethylimidazolium nitrate ionic liquids: TGA and DFT study. Materials 2021, 14, 2560. [Google Scholar] [CrossRef]
- Li, S.C.; Jiang, H.C.; Hua, M.; Pan, X.H.; Li, H.C.; Guo, X.X.; Zhang, H. Theoretical and experimental studies on the thermal decomposition of 1-butyl-3-methylimidazolium dibutyl phosphate. J. Loss. Prevent. Proc. 2020, 65, 104162. [Google Scholar] [CrossRef]
- Li, Y.W.; Liu, H.; Pan, K.; Gou, X.Q.; Zhou, K.; Shao, D.N.; Qi, Y.; Gao, Q.; Yu, Y.; Tian, J.X. Inhibition effect of imidazolium-based ionic liquids on pyrophorisity of FeS. J. Mol. Liq. 2023, 369, 120944. [Google Scholar] [CrossRef]
- Deng, K.R.; Xu, Z.L.; Zhou, S.P.; Zhao, Z.; Zeng, K.L.; Xiao, M.; Meng, Y.Z.; Xu, Y.H. Nonflammable highly-fluorinated polymer electrolytes with enhanced interfacial compatibility for dendrite-free lithium metal batteries. J. Power Source 2021, 510, 230411. [Google Scholar] [CrossRef]
- Hou, J.X.; Wang, L.; Feng, X.N.; Terada, J.; Lu, L.G.; Yamazaki, S.; Su, A.Y.; Kuwajima, Y.; Chen, Y.J.; Hidaka, T.; et al. Thermal runaway of lithium-ion batteries employing flame-retardant fluorinated electrolytes. Energy Environ. Mater. 2021, 6, e12297. [Google Scholar] [CrossRef]
- Mei, X.Y.; Yue, Z.; Tufts, J.; Dunya, H.; Mandal, B.K. Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties. J. Fluor. Chem. 2018, 212, 26–37. [Google Scholar] [CrossRef]
- Huang, R.; Guo, X.Y.; Ma, S.Y.; Xie, J.X.; Xu, J.Z.; Ma, J. Novel phosphorus-nitrogen-containing ionic liquid modified metal-organic framework as an effective flame retardant for epoxy resin. Polymers 2020, 12, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatraman, V.; Evjen, S.; Knuutila, H.K.; Fiksdahl, A.; Alsberg, B.K. Predicting ionic liquid melting points using machine learning. J. Mol. Liq. 2018, 264, 318–326. [Google Scholar] [CrossRef]
- Naser, M.Z. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences. Fire Technol. 2021, 57, 2741–2784. [Google Scholar] [CrossRef]
- Xiao, J.C.; Hobson, J.; Ghosh, A.; Haranczyk, M.; Wang, D.Y. Flame retardant properties of metal hydroxide-based polymer composites: A machine learning approach. Compos. Commun. 2023, 40, 101593. [Google Scholar] [CrossRef]
- Ren, J.; Wang, H.; Chen, G.; Luo, K.; Fan, J. Predictive models for flame evolution using machine learning: A priori assessment in turbulent flames without and with mean shear. Phys. Fluids 2021, 33, 055113. [Google Scholar] [CrossRef]
- Koklu, M.; Taspinar, Y.S. Determining the extinguishing status of fuel flames with sound wave by machine learning methods. IEEE Access 2021, 9, 86207–86216. [Google Scholar] [CrossRef]
- Chen, Z.W.; Yang, B.R.; Song, N.N.; Chen, T.T.; Zhang, Q.W.; Li, C.X.; Jiang, J.C.; Chen, T.; Yu, Y.; Liu, L.X. Machine learning-guided design of organic phosphorus-containing flame retardants to improve the limiting oxygen index of epoxy resins. Chem. Eng. J. 2023, 455, 140547. [Google Scholar] [CrossRef]
- Dhakal, P.; Shah, J.K. Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids. Fluid Phase Equilib. 2021, 549, 113208. [Google Scholar] [CrossRef]
NO. | SF | TP | RR |
---|---|---|---|
F1 | TI = “ionic liquid” AND (TI = “flame retardant” OR TI = “fire retardant”) | 27 | H |
F2 | AB = “ionic liquid” AND (AB = “flame retardant” OR AB = “fire retardant”) | 56 | H |
F3 | AK = “ionic liquid” AND (AK = “flame retardant” OR AK = “fire retardant”) | 25 | H |
F4 | TS = “ionic liquid” AND (TS = “flame retardant” OR TS = “fire retardant”) | 116 | M |
F5 | (F1) or (F2) or (F3) | 74 | H |
NO. | TD | TP | SOTC | ACI | H-Index |
---|---|---|---|---|---|
1 | Article | 1120 | 17,180 | 15.34 | 60 |
2 | Review Article | 182 | 13,794 | 75.79 | 51 |
3 | Proceedings Paper | 18 | 486 | 27.01 | 9 |
4 | Others | 45 | 33 | 0.73 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, K.; Liu, H.; Wang, Z.; Ji, W.; Wang, J.; Huang, R.; Wei, Z.; Ye, D.; Xu, C.; Wang, H. Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping. Safety 2023, 9, 49. https://doi.org/10.3390/safety9030049
Pan K, Liu H, Wang Z, Ji W, Wang J, Huang R, Wei Z, Ye D, Xu C, Wang H. Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping. Safety. 2023; 9(3):49. https://doi.org/10.3390/safety9030049
Chicago/Turabian StylePan, Kai, Hui Liu, Zhijun Wang, Wenjing Ji, Jianhai Wang, Rui Huang, Ze Wei, Dong Ye, Chang Xu, and Haining Wang. 2023. "Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping" Safety 9, no. 3: 49. https://doi.org/10.3390/safety9030049
APA StylePan, K., Liu, H., Wang, Z., Ji, W., Wang, J., Huang, R., Wei, Z., Ye, D., Xu, C., & Wang, H. (2023). Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping. Safety, 9(3), 49. https://doi.org/10.3390/safety9030049