Older Drivers’ Motion and Simulator Sickness before and after Automated Vehicle Exposure
Abstract
:1. Introduction
1.1. Older Drivers
1.2. Automated Vehicles
1.3. Motion Sickness and Simulator Sickness
1.4. Rationale and Significance
1.5. Purpose
1.6. Research Question
- Do older drivers experience motion sickness in an automated shuttle (Level 4, SAE) and/or simulator sickness in a high-fidelity driving simulator operating in automated mode (Level 4, SAE)? If they experience motion sickness or simulator sickness, do their reported symptom scores vary?
- What is the effect of age and sex (if any) on motion and simulator sickness outcomes in this population?
2. Materials and Methods
2.1. Ethics
2.2. Design
2.3. Recruitment
2.4. Participants
2.5. Setting
2.6. Equipment
2.6.1. RTI Driving Simulator and Driving Scenario
2.6.2. Automated Shuttle
2.7. Measures
2.8. Procedure
2.9. Data Collection, Management, and Analysis
3. Results
3.1. Demographics
3.2. Motion or Simulator Sickness Comparison between Automated Shuttle and Driving Simulator Exposures
3.3. Motion and Simulator Sickness Comparison by Age and Sex
4. Discussion
4.1. Motion and/or Simulator Sickness (Shuttle vs. Driving Simulator)
4.2. Motion and/or Simulator Sickness by Age (Young-Old vs. Old-Old) and Sex (Male vs. Female)
4.3. Limitations, Strengths, and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pettigrew, S. Why public health should embrace the autonomous car. Aust. N. Z. J. Public Health 2016, 41, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.L.H.; Le, V.C.; Ebert, S.M.; Sienko, K.H.; Reed, M.P.; Sayer, J.R. Motion sickness in passenger vehicles during test track operations. Ergonomics 2019, 62, 1357–1371. [Google Scholar] [CrossRef] [PubMed]
- Golding, J.F. Motion sickness susceptibility. Auton. Neurosci. 2006, 129, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Stephanidis, C. Universal Access in Human-Computer Interaction. Context Diversity. In Proceedings of the 6th International Conference, UAHCI 2011, Held as Part of HCI International 2011, Orlando, FL, USA, 9–14 July 2011; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Keshavarz, B.; Hecht, H.; Lawson, B.D. Visually induced motion sickness: Characteristics, causes, and countermeasures. In Handbook of Virtual Environments: Design, Implementation, and Applications, 2nd ed.; Hale, K.S., Stanney, K.M., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 648–697. [Google Scholar]
- Koohestani, A.; Nahavandi, D.; Asadi, H.; Kebria, P.M.; Khosravi, A.; Alizadehsani, R.; Nahavandi, S. A knowledge dis-covery in motion sickness: A comprehensive literature review. IEEE Access 2019, 7, 85755–85770. [Google Scholar] [CrossRef]
- Mullen, N.W.; Weaver, B.; Riendeau, J.A.; Morrison, L.E.; Bédard, M. Driving Performance and Susceptibility to Simulator Sickness: Are They Related? Am. J. Occup. Ther. 2010, 64, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Turner, M. Motion sickness in public road transport: Passenger behaviour and susceptibility. Ergonomics 1999, 42, 444–461. [Google Scholar] [CrossRef]
- Koch, A.; Cascorbi, I.; Westhofen, M.; Dafotakis, M.; Klapa, S.; Kuhtz-Buschbeck, J.P. The Neurophysiology and Treatment of Motion Sickness. Dtsch. Aerzteblatt Online 2018, 115, 687–696. [Google Scholar] [CrossRef]
- Brooks, J.O.; Goodenough, R.R.; Crisler, M.C.; Klein, N.D.; Alley, R.L.; Koon, B.L.; Logan, W.C.; Ogle, J.H.; Tyrrell, R.A.; Wills, R.F. Simulator sickness during driving simulation studies. Accid. Anal. Prev. 2010, 42, 788–796. [Google Scholar] [CrossRef]
- Reinhard, R.; Rutrecht, H.M.; Hengstenberg, P.; Tutulmaz, E.; Geissler, B.; Hecht, H.; Muttray, A. The best way to assess visually induced motion sickness in a fixed-base driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2017, 48, 74–88. [Google Scholar] [CrossRef]
- Shechtman, O.; Classen, S.; Stephens, B.; Bendixen, R.; Belchior, P.; Sandhu, M.; McCarthy, D.; Mann, W.; Davis, E. The Impact of Intersection Design on Simulated Driving Performance of Young and Senior Adults. Traffic Inj. Prev. 2007, 8, 78–86. [Google Scholar] [CrossRef]
- Kandasamy, D.; Betz, M.E.; DiGuiseppi, C.; Mielenz, T.P.; Eby, D.W.; Molnar, L.J.; Hill, L.; Strogatz, D.; Li, G. Self-reported health conditions and related driving reduction in older drivers. Occup. Ther. Health Care 2018, 32, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Sanford, S.; Rapoport, M.J.; Tuokko, H.; Crizzle, A.; Hatzifilalithis, S.; Laberge, S. Canadian Consortium on Neuro-degeneration in Aging Driving and Dementia Team. Independence, loss, and social identity: Perspectives on driving cessation and dementia. Dementia 2019, 18, 2906–2924. [Google Scholar] [CrossRef]
- Edwards, J.D.; Lunsman, M.; Perkins, M.; Rebok, G.W.; Roth, D.L. Driving Cessation and Health Trajectories in Older Adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2009, 64, 1290–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marottoli, R.A.; de Leon, C.F.M.; Glass, T.A.; Williams, C.S.; Cooney, L.M., Jr.; Berkman, L.F. Consequences of driving cessation: Decreased out-of-home activity levels. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2000, 55, S334–S340. [Google Scholar] [CrossRef] [PubMed]
- Musselwhite, C. The importance of driving for older people and how the pain of driving cessation can be reduced. Signpost 2011, 15, 22–26. [Google Scholar]
- Society of Automotive Engineers International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-road Motor Vehicles (J3016_201806); Society of Automotive Engineers International: Warrendale, PA, USA, 2018. [Google Scholar]
- Anderson, J.M.; Nidhi, K.; Stanley, K.D.; Sorensen, P.; Samaras, C.; Oluwatola, O.A. Autonomous Vehicle Technology: A Guide for Policymakers; Rand Corporation: Santa Monica, CA, USA, 2014. [Google Scholar]
- Cicchino, J.B.; McCartt, A.T. Trends in older driver crash involvement rates and survivability in the United States: An update. Accid. Anal. Prev. 2014, 72, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, A.; De Kleine, R.; Keoleian, G.; Good, J.; Lewis, G. Shared Autonomous Vehicles as a Sustainable Solution to the Last Mile Problem: A Case Study of Ann Arbor-Detroit Area. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2017, 10, 328–336. [Google Scholar] [CrossRef]
- Classen, S.; Mason, J.; Wersal, J.; Sisiopiku, V.; Rogers, J. Older Drivers’ Experience with Automated Vehicle Technology: Interim Analysis of a Demonstration Study. Front. Sustain. Cities 2020, 2. [Google Scholar] [CrossRef]
- Yusof, N.M.; Karjanto, J.; Kapoor, S.; Terken, J.; Delbressine, F.; Rauterberg, M. Experimental setup of motion sickness and situation awareness in automated vehicle riding experience. In Proceedings of the 9th International Conference on Auto-motive User Interfaces and Interactive Vehicular Applications Adjunct, Oldenburg, Germany, 24–27 September 2017; pp. 104–109. [Google Scholar]
- Graybiel, A.; Wood, C.D.; Miller, E.F.; Cramer, D.B. Diagnostic Criteria for Grading the Severity of Acute Motion Sickness; Naval Aerospace Medical Institute, Naval Aerospace Medical Center: Pensacola, FL, USA, 1968; Volume 39, pp. 453–455. [Google Scholar]
- LaViola, J.J., Jr. A discussion of cybersickness in virtual environments. Assoc. Comput. Mach. Sigchi Bull. 2000, 32, 47–56. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Drexler, J. Research in visually induced motion sickness. Appl. Ergon. 2010, 41, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Classen, S.; Bewernitz, M.; Shechtman, O. Driving Simulator Sickness: An Evidence-Based Review of the Literature. Am. J. Occup. Ther. 2011, 65, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Classen, S.; Wersal, J.; Mason, J.; Rogers, J.; Sisiopiku, V. Face and Content Validity of an Automated Vehicle Road Course and a Corresponding Simulation Scenario. Front. Futur. Transp. 2020, 1. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- US Department of Health & Human Services. Clinical Research Study Investigator’s Toolbox. Available online: https://www.nia.nih.gov/research/clinical-research-study-investigators-toolbox#forms (accessed on 1 January 2021).
- Stern, E.B.; Akinwuntan, A.E.; Hirsch, P. Simulator sickness: Strategies for mitigation and prevention. In Driving Simulation for Assessment, Intervention, and Training: A Guide for Occupational Therapy and Health Care Professionals, 1st ed.; Classen, S., Ed.; American Occupational Therapy Press: North Bethesda, MD, USA, 2017; pp. 107–120. [Google Scholar]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Mallery, P. IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference, 16th ed.; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Sportillo, D.; Paljic, A.; Ojeda, L. Get ready for automated driving using Virtual Reality. Accid. Anal. Prev. 2018, 118, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.; Van Der Zwaan, K.F.; Hart, E.P.; Groeneveld, G.J.; Roos, R.A. Comparable rates of simulator sickness in Huntington’s disease and healthy individuals. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 499–504. [Google Scholar] [CrossRef]
- Keshavarz, B.; Novak, A.C.; Hettinger, L.J.; Stoffregen, T.A.; Campos, J.L. Passive restraint reduces visually induced motion sickness in older adults. J. Exp. Psychol. Appl. 2017, 23, 85–99. [Google Scholar] [CrossRef]
- Saryazdi, R.; Bak, K.; Campos, J.L. Inattentional Blindness During Driving in Younger and Older Adults. Front. Psychol. 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Domeyer, J.E.; Cassavaugh, N.D.; Backs, R.W. The use of adaptation to reduce simulator sickness in driving assessment and research. Accid. Anal. Prev. 2013, 53, 127–132. [Google Scholar] [CrossRef]
- Diels, C.; Bos, J.E. Self-driving carsickness. Appl. Ergon. 2016, 53, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Iskander, J.; Attia, M.; Saleh, K.; Nahavandi, D.; Abobakr, A.; Mohamed, S.; Asadi, H.; Khosravi, A.; Lim, C.P.; Hossny, M. From car sickness to autonomous car sickness: A review. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 716–726. [Google Scholar] [CrossRef]
- Paillard, A.C.; Quarck, G.; Paolino, F.; Denise, P.; Paolino, M.; Golding, J.F.; Ghulyan-Bedikian, V. Motion sickness sus-ceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. J. Vestib. Res. 2013, 23, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Mourant, R.R.; Rengarajan, P.; Cox, D.; Lin, Y.; Jaeger, B.K. The effect of driving environments on simulator sickness. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Baltimore, MD, USA, 1–5 October 2007; Sage CA: Los Angeles, CA, USA, 2007; Volume 51, pp. 1232–1236. [Google Scholar]
- Keshavarz, B.; Ramkhalawansingh, R.; Haycock, B.; Shahab, S.; Campos, J. Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 47–62. [Google Scholar] [CrossRef]
Factor | Value | Frequency (%) |
---|---|---|
Age | 65–69 years old | 25 (24%) |
70–74 years old | 30 (30%) | |
75–79 years old | 24 (25%) | |
80–84 years old | 19 (18%) | |
85 years and older | 3 (3%) | |
Sex | Male | 48 (46%) |
Female | 56 (54%) | |
Race | African-American or Black | 8 (8%) |
Asian/Pacific Islander | 1 (1%) | |
Caucasian or White | 92 (88%) | |
Would rather not say | 1 (1%) | |
Other | 2 (2%) | |
Education | High school | 4 (4%) |
Some college credits | 10 (10%) | |
Technical training | 2 (2%) | |
Associate’s degree | 12 (11%) | |
Bachelor’s degree | 21 (20%) | |
Master’s degree | 32 (31%) | |
Doctorate/Professional degree | 23 (22%) | |
Relationship | Single, never married | 6 (6%) |
Married or domestic partnership | 74 (71%) | |
Widowed | 11 (11%) | |
Divorced | 13 (12%) | |
Employment | Part-time | 14 (13%) |
Full-time | 5 (5%) | |
Retired | 83 (80%) | |
Homemaker | 1 (1%) | |
Unemployed | 1 (1%) |
MSAQ Domains | Negative Ranks | Positive Ranks | Statistics a | p | |||||
---|---|---|---|---|---|---|---|---|---|
(Shuttle-Simulator) | n | Mean Rank | Sum of Ranks | n | Mean Rank | Sum of Ranks | Ties | Z | |
Sweatiness | 21 | 12.69 | 266.50 | 3 | 11.17 | 33.50 | 80 | −3.346 b | 0.001 |
Queasiness | 34 | 17.50 | 595.00 | 0 | 0.00 | 0.00 | 70 | −5.119 b | 0.001 |
Dizziness | 29 | 16.45 | 477.00 | 2 | 9.50 | 19.00 | 73 | −4.526 b | 0.001 |
Nauseousness | 20 | 10.50 | 210.00 | 0 | 0.00 | 0.00 | 84 | −3.981 b | 0.001 |
MSAQ Domains | Young-Old Group | Old-Old Group | Males | Females | ||
---|---|---|---|---|---|---|
Median (SD) | Median (SD) | p | Median (SD) | Median (SD) | p | |
Shuttle | ||||||
Sweatiness | 0.00 (0.67) | 0.00 (1.05) | 0.794 | 0.00 (0.43) | 0.00 (1.09) | 0.018 |
Queasiness | 0.00 (0.00) | 0.00 (0.72) | 0.280 | 0.00 (0.00) | 0.00 (0.67) | 0.355 |
Dizziness | 0.00 (0.00) | 0.00 (0.00) | 1.0 | 0.00 (0.00) | 0.00 (0.00) | 1.0 |
Nauseousness | 0.00 (0.00) | 0.00 (0.00) | 1.0 | 0.00 (0.00) | 0.00 (0.00) | 1.0 |
Simulator | ||||||
Sweatiness | 0.00 (1.89) | 0.00 (0.97) | 0.216 | 0.00 (1.70) | 0.00 (1.42) | 0.147 |
Queasiness | 0.00 (1.81) | 0.00 (1.50) | 0.605 | 0.00 (1.86) | 0.00 (1.50) | 0.743 |
Dizziness | 0.00 (1.78) | 0.00 (1.60) | 0.553 | 0.00 (1.67) | 0.00 (1.73) | 0.884 |
Nauseousness | 0.00 (1.29) | 0.00 (1.29) | 0.038 | 0.00 (1.35) | 0.00 (1.25) | 0.680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Classen, S.; Hwangbo, S.W.; Mason, J.; Wersal, J.; Rogers, J.; Sisiopiku, V.P. Older Drivers’ Motion and Simulator Sickness before and after Automated Vehicle Exposure. Safety 2021, 7, 26. https://doi.org/10.3390/safety7020026
Classen S, Hwangbo SW, Mason J, Wersal J, Rogers J, Sisiopiku VP. Older Drivers’ Motion and Simulator Sickness before and after Automated Vehicle Exposure. Safety. 2021; 7(2):26. https://doi.org/10.3390/safety7020026
Chicago/Turabian StyleClassen, Sherrilene, Seung Woo Hwangbo, Justin Mason, James Wersal, Jason Rogers, and Virginia P. Sisiopiku. 2021. "Older Drivers’ Motion and Simulator Sickness before and after Automated Vehicle Exposure" Safety 7, no. 2: 26. https://doi.org/10.3390/safety7020026
APA StyleClassen, S., Hwangbo, S. W., Mason, J., Wersal, J., Rogers, J., & Sisiopiku, V. P. (2021). Older Drivers’ Motion and Simulator Sickness before and after Automated Vehicle Exposure. Safety, 7(2), 26. https://doi.org/10.3390/safety7020026