Simultaneous Enhancement of Welder Health and Aluminum Weld Joint Quality Using Controlled Welding Room Condition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Distribution of Welding Fume Particles
3.2. Welding Fume Flow Direction
3.3. Physical Characteristics of Weld Joint
4. Conclusions
- Airflow velocity and ambient temperature affect the fume content in the welding room. This is indicated by the fact that a higher airflow velocity was observed to lead to the removal of more welding fume from the welding room. Meanwhile, an increase in the temperature slowed down the growth rate and reduced the density of welding fume particles;
- Increased airflow velocity and temperature during welding caused porosity defects and incomplete penetration. It was also discovered that welding at low temperatures led to spatter defects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardika, R.D.; Triyono, T.; Muhayat, N. A review porosity in aluminium welding. Procedia Struct. Integr. 2021, 33, 171–180. [Google Scholar] [CrossRef]
- Chinakhov, D.A.; Vorobyev, A.V.; Grigorieva, E.G.; Mayorova, E.I. Study of Wind Velocity Impact upon the Quality of Shielding and upon the Thermal Processes under MAG Welding. Appl. Mech. Mater. 2015, 770, 253–257. [Google Scholar] [CrossRef]
- Ni, W.; Yang, S.; Jia, J.; Bai, J.; Lin, Y. Fatigue property of Al-5Zn-2Mg aluminium alloy welding joints used in high-speed trains. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2016, 45, 2774–2778. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Xie, J.; Sun, S.; Wang, L.; Qian, Y.; Meng, Y.; Wei, Y. Microstructure and mechanical properties of aluminium 5083 weldments by gas tungsten arc and gas metal arc welding. Mater. Sci. Eng. A 2012, 549, 7–13. [Google Scholar] [CrossRef]
- Jeffus, L. Welding: Principles and Applications, 9th ed.; Cengage Learning: Singapore, 2020; pp. 3–4. [Google Scholar]
- Dhanashekar, M.; Loganathan, P.; Ayyanar, S.; Mohan, S.R.; Sathish, T. Mechanical and wear behaviour of AA6061/SiC composites fabricated by powder metallurgy method. Mater. Today Proc. 2020, 21, 1008–1012. [Google Scholar] [CrossRef]
- Cueca, F.; Patarroyo, A.; Rojas, F.; Solano, E.; Morales, A.; Muñoz, R. Study of the weld ability of Aluminium Alloy 5083 H116 with Pulsed Arc GMAW (GMAW-P). Ship Sci. Technol. 2012, 6, 43–56. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Y.; Song, J.; Pu, J.; Zhao, X.; Yao, G. On-line monitor of hydrogen porosity based on arc spectral information in Al–Mg alloy pulsed gas tungsten arc welding. Opt. Laser Technol. 2015, 70, 30–38. [Google Scholar] [CrossRef]
- Han, Y.; Xue, S.; Fu, R.; Lin, L.; Lin, Z.; Pei, Y.; Sun, H. Influence of hydrogen embrittlement on impact property and microstructural characteristics in aluminium alloy weld. Vacuum 2020, 172, 109073. [Google Scholar] [CrossRef]
- Han, Y.; Xue, S.; Fu, R.; Zhang, P. Effect of hydrogen content in ER5183 welding wire on the tensile strength and fracture morphology of Al–Mg MIG weld. Vacuum 2019, 166, 218–225. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, Y.; Yang, L.; Wu, D.; Chen, S. Real-time monitoring and control of porosity defects during arc welding of aluminium alloys. J. Mater. Process. Technol. 2020, 286, 116832. [Google Scholar] [CrossRef]
- Gou, G.; Zhang, M.; Chen, H.; Chen, J.; Li, P.; Yang, Y.P. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminium alloy welded joints in high-speed trains. Mater. Des. 2015, 85, 309–317. [Google Scholar] [CrossRef]
- Chang, Y.; Sproesser, G.; Neugebauer, S.; Wolf, K.; Scheumann, R.; Pittner, A.; Rethmeier, M.; Finkbeiner, M. Environmental and Social Life Cycle Assessment of welding technologies. Procedia CIRP 2015, 26, 293–298. [Google Scholar] [CrossRef]
- Rana, H.K.; Akhtar, M.R.; Ahmed, M.B.; Liò, P.; Quinn, J.M.W.; Huq, F.; Moni, M.A. Genetic effects of welding fumes on the progression of neurodegenerative diseases. NeuroToxicology 2019, 71, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Safe Work Australia. Guidance on the Interpretation of Workplace Exposure Standards for Airborne Contaminants. Available online: http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/680/Guidance_Interpretation_Workplace_Exposure_Standards_Airborne_Contaminants.pdf (accessed on 6 June 2022).
- Schoonover, T.; Conroy, L.; Lacey, S.; Plavka, J. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders. Ind. Health 2011, 49, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Golbabaei, F.; Khadem, M. Air Pollution in Welding Processes—Assessment and Control Methods. Current Air Quality Issues; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Racette, B.A.; Criswell, S.R.; Lundin, J.I.; Hobson, A.; Seixas, N.; Kotzbauer, P.T.; Evanoff, B.A.; Perlmutter, J.S.; Zhang, J.; Sheppard, L.; et al. Increased risk of parkinsonism associated with welding exposure. NeuroToxicology 2012, 33, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Sakib, N.; Chowdhury, U.N.; Islam, M.B.; Quinn, J.M.; Moni, M.A. A systems biology approach to identifying genetic factors affected by aging, lifestyle factors, and type 2 diabetes that influences Parkinson’s disease progression. Inform. Med. Unlocked 2020, 21, 100448. [Google Scholar] [CrossRef]
- Hull, M.J.; Abraham, J.L. Aluminium welding fume-induced pneumoconiosis. Hum. Pathol. 2002, 33, 819–825. [Google Scholar] [CrossRef]
- Vishnyakov, V.I.; Kiro, S.A.; Ennan, A.A. Formation of primary particles in welding fume. J. Aerosol Sci. 2013, 58, 9–16. [Google Scholar] [CrossRef]
- Dajian, L. Research on Diffusion and Control Technology of Welding Fume. J. Energy Nat. Resour. 2017, 6, 1. [Google Scholar] [CrossRef]
- Vishnu, B.R.; Sivapirakasam, S.P.; Satpathy, K.K.; Albert, S.K.; Chakraborty, G. Influence of nano-sized flux materials in the reduction of the Cr (VI) in the stainless steel welding fumes. J. Manuf. Process. 2018, 34, 713–720. [Google Scholar] [CrossRef]
- Hong, T.S.; Ghobakhloo, M. Safety and Security Conditions in Welding Processes. Compr. Mater. Process. 2014, 6, 213–225. [Google Scholar] [CrossRef]
- Vishnyakov, V.I.; Kiro, S.A.; Oprya, M.V.; Ennan, A.A. Effects of shielding gas temperature and flow rate on the welding fume particle size distribution. J. Aerosol Sci. 2017, 114, 55–61. [Google Scholar] [CrossRef]
- Vishnyakov, V.I.; Kiro, S.A.; Oprya, M.V.; Ennan, A.A. Effect of shielding gas temperature on the welding fume particle formation: Theoretical model. J. Aerosol Sci. 2018, 124, 112–121. [Google Scholar] [CrossRef]
- Azmarini, A.N.; Majid, S.A.; Zakaria, S.H.; Sulaiman, S.A. A study on IAQ in a welding laboratory. Appl. Mech. Mater. 2013, 393, 947–952. [Google Scholar] [CrossRef]
- De Meneses, V.A.; Gomes, J.F.P.; Scotti, A. The effect of metal transfer stability (spattering) on fume generation, morphology and composition in short-circuit MAG welding. J. Mater. Process. Technol. 2014, 214, 1388–1397. [Google Scholar] [CrossRef]
- Duan, M.; Wang, Y.; Gao, D.; Yang, Y.; Cao, Z. Modeling dispersion mode of high-temperature particles transiently produced from industrial processes. Build. Environ. 2017, 126, 457–470. [Google Scholar] [CrossRef]
- Keanini, R.G.; Rubinsky, B. Three-dimensional simulation of the plasma arc welding process. Int. J. Heat Mass Transf. 1993, 36, 3283–3298. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, X.; Liu, T.; Kang, Y.; Zhan, X. Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminium alloy with Y-shaped groove. J. Manuf. Process. 2020, 57, 847–856. [Google Scholar] [CrossRef]
- Wagner, D.C.; Yang, Y.K.; Kou, S. Spatter and porosity in gas-metal arc welding of magnesium alloys: Mechanisms and elimination. Weld. J. 2013, 92, 347s–362s. [Google Scholar]
- Wu, D.; Hua, X.; Huang, L.; Zhao, J. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminium alloy at full penetration condition. Opt. Laser Technol. 2018, 100, 157–164. [Google Scholar] [CrossRef]
- Ming, G.; Xiaoyan, Z.; Qianwu, H. Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J. Mater. Process. Technol. 2007, 184, 177–183. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Xiong, L.; Zhang, X.; Mi, G. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminium alloys under different place configurations. Mater. Des. 2020, 191, 108625. [Google Scholar] [CrossRef]
- Lu, K.; Lin, J.; Chen, Z.; Wang, W.; Yang, H. Safety assessment of incomplete penetration defects at the root of girth welds in pipelines. Ocean Eng. 2021, 230, 109003. [Google Scholar] [CrossRef]
- Toda, H.; Hidaka, T.; Kobayashi, M.; Uesugi, K.; Takeuchi, A.; Horikawa, K. Growth behavior of hydrogen micropores in aluminium alloys during high-temperature exposure. Acta Mater. 2009, 57, 2277–2290. [Google Scholar] [CrossRef]
Material | Fe | Si | Mn | Mg | Zn | Ti | Cu | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
ER5356 | 0.4 | 0.25 | 0.05 | 4.5 | 0.1 | 0.06 | 0.1 | 0.05 | Balance |
AA5083 | 0.4 | 0.4 | 0.4 | 4.9 | 0.25 | 0.15 | 0.25 | 0.05 | Balance |
No. | Temperature (°C) | Inhaust (m/s) | Exhaust (m/s) |
---|---|---|---|
1 | 19 | 1.1 | 1.1 |
2 | 19 | 1.1 | 1.6 |
3 | 19 | 1.1 | 2.1 |
4 | 19 | 1.6 | 1.1 |
5 | 19 | 1.6 | 1.6 |
6 | 19 | 1.6 | 2.1 |
7 | 19 | 2.1 | 1.1 |
8 | 19 | 2.1 | 1.6 |
9 | 19 | 2.1 | 2.1 |
10 | 27 | 1.1 | 1.1 |
11 | 27 | 1.1 | 1.6 |
12 | 27 | 1.1 | 2.1 |
13 | 27 | 1.6 | 1.1 |
14 | 27 | 1.6 | 1.6 |
15 | 27 | 1.6 | 2.1 |
16 | 27 | 2.1 | 1.1 |
17 | 27 | 2.1 | 1.6 |
18 | 27 | 2.1 | 2.1 |
19 | 35 | 1.1 | 1.1 |
20 | 35 | 1.1 | 1.6 |
21 | 35 | 1.1 | 2.1 |
22 | 35 | 1.6 | 1.1 |
23 | 35 | 1.6 | 1.6 |
24 | 35 | 1.6 | 2.1 |
25 | 35 | 2.1 | 1.1 |
26 | 35 | 2.1 | 1.6 |
27 | 35 | 2.1 | 2.1 |
28 | Room temp. | Without flow | Without flow |
Parameter | Recommended Value |
---|---|
Temperature | 23–26 °C |
CO₂ content | <600 ppm |
Dust concentration | 5000 µg/m3 |
Relative humidity | 40–60% |
No. | Welding Parameters | Front Weld Appearance | Back Weld Appearance |
---|---|---|---|
1 | Temperature (°C) = 19 Inhaust (m/s) = 1.1 Exhaust (m/s) = 1.1 | ||
2 | Temperature (°C) = 27 Inhaust (m/s) = 1.6 Exhaust (m/s) = 1.6 | ||
3 | Temperature (°C) = 35 Inhaust (m/s) = 2.1 Exhaust (m/s) = 2.1 | ||
4 | No-airflow welding room |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhayat, N.; Ardika, R.D.; Kadir, A.M.; Budiana, E.P.; Triyono, T. Simultaneous Enhancement of Welder Health and Aluminum Weld Joint Quality Using Controlled Welding Room Condition. Safety 2024, 10, 2. https://doi.org/10.3390/safety10010002
Muhayat N, Ardika RD, Kadir AM, Budiana EP, Triyono T. Simultaneous Enhancement of Welder Health and Aluminum Weld Joint Quality Using Controlled Welding Room Condition. Safety. 2024; 10(1):2. https://doi.org/10.3390/safety10010002
Chicago/Turabian StyleMuhayat, Nurul, Rizki Dwi Ardika, Andi M. Kadir, Eko P. Budiana, and Triyono Triyono. 2024. "Simultaneous Enhancement of Welder Health and Aluminum Weld Joint Quality Using Controlled Welding Room Condition" Safety 10, no. 1: 2. https://doi.org/10.3390/safety10010002
APA StyleMuhayat, N., Ardika, R. D., Kadir, A. M., Budiana, E. P., & Triyono, T. (2024). Simultaneous Enhancement of Welder Health and Aluminum Weld Joint Quality Using Controlled Welding Room Condition. Safety, 10(1), 2. https://doi.org/10.3390/safety10010002