Texture-Based Preprocessing Framework with nnU-Net Model for Accurate Intracranial Artery Segmentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Proposed Method
2.3. Quantitative Metrics
3. Results
3.1. Evaluation of Visual Performance
3.2. Quantitative Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boehme, A.K.; Esenwa, C.; Elkind, M.S.V. Stroke risk factors, genetics, and prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef]
- Saver, J.L. Time is brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef]
- Barlinn, K.; Alexandrov, A.V. Vascular imaging in stroke: Comparative analysis. Neurotherapeutics 2011, 8, 340–348. [Google Scholar] [CrossRef]
- Kagadis, G.C.; Spyridonos, P.; Karnabatidis, D.; Diamantopoulos, A.; Athanasiadis, E.; Daskalakis, A.; Katsanos, K.; Cavouras, D.; Mihailidis, D.; Siablis, D.; et al. Computerized analysis of digital subtraction angiography: A tool for quantitative in-vivo vascular imaging. J. Digit. Imaging 2008, 21, 433–445. [Google Scholar] [CrossRef]
- Boegel, M.; Hoelter, P.; Redel, T.; Maier, A.; Hornegger, J.; Doerfler, A. A fully-automatic locally adaptive thresholding algorithm for blood vessel segmentation in 3D digital subtraction angiography. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 2006–2009. [Google Scholar] [CrossRef]
- Khan, K.B.; Khaliq, A.A.; Jalil, A.; Shahid, M. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising. PLoS ONE 2018, 13, e0192203. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, Y. Centerline-based vessel segmentation using graph cuts. In Proceedings of the Sixth International Conference on Graphic and Image Processing (ICGIP 2014), Beijing, China, 24–26 October 2014; Volume 9443. [Google Scholar] [CrossRef]
- Bizijak, Ž.; Likar, B.; Pernuš, F.; Špiclin, Ž. Vascular surface segmentation for intracranial aneurysm isolation and quantification. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, the 23rd International Conference, Lima, Peru, 4–8 October 2020; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 128–137. [Google Scholar] [CrossRef]
- Kufel, J.; Bargieł-Łaczek, K.; Kocot, S.; Kozlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What it machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Wu, X.; Cao, X.; Young, G.S.; Chen, H.; Xu, X. A neural network approach to segment brain blood vessels in digital subtraction angiography. Comput. Methods Programs Biomed. 2020, 185, 105159. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gu, P.; Xiao, Z. Multiscale U-Net with spatial positional attention for retinal vessel segmentation. J. Healthc. Eng. 2022, 2022, 5188362. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, H.; Shi, Y.; Tan, T.; Liu, W.; Pan, X.; Deng, Y.; Gao, F.; Su, R. ERNet: Edge regularization network for cerebral vessel segmentation in digital subtraction angiography images. IEEE J. Biomed. Health Inform. 2024, 28, 1472–1483. [Google Scholar] [CrossRef]
- Su, R.; van der Sluijs, P.M.; Chen, Y.; Cornelissen, S.; van den Broek, R.; van Zwam, W.H.; van der Lugt, A.; Niessen, W.J.; Ruijters, D.; van Walsum, T. CAVE: Cerebral artery-vein segmentation in digital subtraction angiography. Comput. Med. Imaging Graph. 2024, 115, 102392. [Google Scholar] [CrossRef] [PubMed]
- Elhassan, M.A.M.; Huang, C.; Yang, C.; Munea, T.L. DSANet: Dilated spatial attention for real-time semantic segmentation in urban street scenes. Expert Syst. Appl. 2021, 183, 115090. [Google Scholar] [CrossRef]
- Liu, W.; Tian, T.; Wang, L.; Xu, W.; Li, L.; Li, H.; Zhao, W.; Tian, S.; Pan, X.; Deng, Y.; et al. DIAS: A dataset and benchmark for intracranial artery segmentation in DSA sequences. Med. Image Anal. 2024, 97, 103247. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Q.; Mou, L.; Zhang, D.; Chen, D.; Shan, C.; Zhao, Y.; Su, R.; Guo, M. DSCA: A digital subtraction angiography sequence dataset and spatio-temporal model for cerebral artery segmentation. IEEE Trans. Med. Imaging 2025, 44, 2515–2527. [Google Scholar] [CrossRef]
- Memari, N.; Ramli, A.R.; Saripan, M.I.B.; Mashohor, S.; Moghbel, M. Retinal blood vessel segmentation by using matched filtering and Fuzzy C-means clustering with integrated level set method for diabetic retinopathy assessment. J. Med. Biol. Eng. 2019, 39, 713–731. [Google Scholar] [CrossRef]
- Mahapatra, S.; Agrawal, S.; Mishro, P.K.; Pachori, R.B. A novel framework for retinal vessel segmentation using optimal improved Frangi filter and adaptive weighted spatial FCM. Comput. Biol. Med. 2022, 147, 105770. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Jin, M.; Hao, D.; Lv, Y.; Liu, Q.; Zhu, Y.; Ding, S.; Zhao, J.; Fei, B. Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recognit. 2019, 87, 38–54. [Google Scholar] [CrossRef]
- Iyer, K.; Najarian, C.P.; Fattah, A.A.; Arthurs, C.J.; Soroushmehr, S.M.R.; Subban, V.; Sankardas, M.A.; Nadakuditi, R.R.; Nallamothu, B.K.; Figueroa, C.A. AngioNet: A convolutional neural network for vessel segmentation in X-ray angiography. Sci. Rep. 2021, 11, 18066. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.; El-Bendary, N.; Hassanien, A.E.; Fahmy, A.; Shoeb, A.M.; Snasel, V. Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput. Sci. 2015, 65, 612–622. [Google Scholar] [CrossRef]
- Abdushkour, H.; Soomro, T.A.; Ali, A.; Ali Jandan, F.; Jelinek, H.; Memon, F.; Althobiani, F.; Ghonaim, S.M.; Irfan, M. Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy. PLoS ONE 2023, 18, e0288792. [Google Scholar] [CrossRef]
- Pandey, D.; Yin, X.; Wang, H.; Zhang, Y. Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Comput Vis. Image Underst. 2017, 155, 162–172. [Google Scholar] [CrossRef]
- Yin, X.; Ng, B.W.H.; He, J.; Zhang, Y.; Abbott, D. Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE 2014, 9, e95943. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, Y.C.; Fan, Y.C.; Taso, H.W. A novel algorithm of local contrast enhancement for medical image. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007. [Google Scholar] [CrossRef]
- Flores, W.G.; de Pereira, W.C.A. A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography. Comput. Biol. Med. 2017, 80, 14–23. [Google Scholar] [CrossRef]
- Vlachos, M.; Dermatas, E. Line patterns segmentation in blurred image using contrast enhancement and local entropy thresholding. J. Comput. Commun. 2024, 12, 116–141. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphic Gems IV; Academic Press: Cambridge, MA, USA, 1994; pp. 474–485. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Hayabuchi, Y.; Inoue, M.; Watanabe, N.; Sakata, M.; Nabo, M.M.H.; Kagami, S. Minimum-intensity projection of multidetector-row computed tomography for assessment of pulmonary hypertension in children with congenital heart disease. Int. J. Cardiol. 2011, 149, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, C.; Mukherjee, T.; Pasiliao, E., Jr. An empirical study on generalizations of the ReLU activation function. In Proceedings of the ACMSE ’19: Proceedings of the 2019 ACM Southeast Conference, Kennesaw, GA, USA, 18–20 April 2019; pp. 164–167. [Google Scholar] [CrossRef]
- Bjorck, J.; Gomes, C.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. In Proceedings of the NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 7705–7716. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980v9. [Google Scholar]
- Zhang, Z.; Sabuncu, M.R. Generalized cross entropy loss for training deep neural networks with noise labels. In Proceedings of the NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 32, pp. 8792–8802. [Google Scholar]
- Zou, K.H.; Warfield, S.K.; Bharatha, A.; Tempany, C.M.C.; Kaus, M.R.; Haker, S.J.; Wells, W.M., III; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression, 2019. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef]
- Erickson, B.J.; Kitamura, F. Magician’s corner: 9. Performance metrics for machine learning models. Radiol. Artif. Intell. 2021, 3, e200126. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Tian, T.; Cao, Z.; Pan, X.; Xu, W.; Jin, Y.; Gao, F. Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J. Biomed. Health Inform. 2022, 26, 4623–4634. [Google Scholar] [CrossRef]
- Gyánó, M.; Góg, I.; Óriás, V.I.; Ruzsa, Z.; Nemes, B.; Csobay-Novák, C.; Oláh, Z.; Nagy, Z.; Merkely, B.; Szigeti, K.; et al. Kinetic imaging in lower extremity arteriography: Comparison to digital subtraction angiography. Radiology 2018, 290, 246–253. [Google Scholar] [CrossRef]
- Huihui, Y.; Daoliang, L.; Yingyi, C. A state-of-the-art review of image motion deblurring techniques in precision agriculture. Heliyon 2023, 9, e17332. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Huang, M.; Zhang, L.; Chan, L.W.C. Enhancing diagnostics images to improve the performance of the segment anything model in medical image segmentation. Bioengineering 2024, 11, 270. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Yang, D.; Sanford, T.; Harmon, S.; Turkbey, B.; Wood, B.J.; Roth, H.; Myronenko, A.; Xu, D.; et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 2020, 39, 2531–2540. [Google Scholar] [CrossRef]
- Guan, H.; Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Bio. Med. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Li, Y.; Xu, Y.; Xia, K. Phase analysis based vessel recompletion with incomplete DSA for dynamic coronary roadmap. In Proceedings of the 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 26–28 October 2024. [Google Scholar] [CrossRef]
- Haouchine, N.; Juvekar, P.; Xiong, X.; Luo, J.; Kapur, T.; Du, R.; Golby, A.; Frisken, S. Estimation of high frame rate digital subtraction angiography sequences at low radiation dose. Med. Image Comput. Comput. Assist. Interv. 2021, 12906, 171–180. [Google Scholar] [CrossRef] [PubMed]






| Pre-Processing Method | Parameter | Mean | Std. | 95% Cl |
|---|---|---|---|---|
| None | DICE | 0.65 | 0.15 | [0.61 0.69] |
| IoU | 0.47 | 0.20 | [0.42 0.52] | |
| Accuracy | 0.81 | 0.17 | [0.77 0.85] | |
| Sensitivity | 0.83 | 0.15 | [0.79 0.87] | |
| Specificity | 0.83 | 0.15 | [0.75 0.85] | |
| Precision | 0.80 | 0.20 | [0.75 0.85] | |
| F1-score | 0.80 | 0.07 | [0.77 0.85] | |
| Vessel connectivity | 115.35 | 7.70 | [113.40 117.30] | |
| Proposed | DICE | 0.83 | 0.20 | [0.78 0.88] |
| IoU | 0.72 | 0.14 | [0.68 0.76] | |
| Accuracy | 0.95 | 0.15 | [0.83 0.97] | |
| Sensitivity | 0.88 | 0.20 | [0.83 0.93] | |
| Specificity | 0.90 | 0.08 | [0.86 0.94] | |
| Precision | 0.88 | 0.15 | [0.84 0.92] | |
| F1-score | 0.93 | 0.12 | [0.90 0.96] | |
| Vessel connectivity | 40.50 | 5.75 | [39.05 41.95] |
| Pre-Processing Method | Parameter | Mean | Std. | 95% Cl |
|---|---|---|---|---|
| None | DICE | 0.65 | 0.30 | [0.57 0.73] |
| IoU | 0.61 | 0.12 | [0.54 0.68] | |
| Accuracy | 0.82 | 0.20 | [0.76 0.84] | |
| Sensitivity | 0.83 | 0.15 | [0.80 0.86] | |
| Specificity | 0.82 | 0.15 | [0.82 0.88] | |
| Precision | 0.85 | 0.10 | [0.82 0.88] | |
| F1-score | 0.85 | 0.10 | [0.82 0.88] | |
| Vessel connectivity | 123.27 | 5.50 | [121.88 124.66] | |
| Proposed | DICE | 0.82 | 0.26 | [0.75 0.89] |
| IoU | 0.75 | 0.18 | [0.69 0.81] | |
| Accuracy | 0.97 | 0.15 | [0.95 0.99] | |
| Sensitivity | 0.95 | 0.18 | [0.91 0.97] | |
| Specificity | 0.95 | 0.18 | [0.90 0.99] | |
| Precision | 0.96 | 0.20 | [0.94 0.98] | |
| F1-score | 0.96 | 0.20 | [0.94 0.98] | |
| Vessel connectivity | 24.40 | 3.38 | [23.64 25.16] | |
| CLAHE | DICE | 0.79 | 0.41 | [0.69 0.90] |
| IoU | 0.70 | 0.23 | [0.64 0.76] | |
| Accuracy | 0.91 | 0.25 | [0.89 0.93] | |
| Sensitivity | 0.85 | 0.12 | [0.82 0.93] | |
| Specificity | 0.85 | 0.12 | [0.82 0.94] | |
| Precision | 0.91 | 0.15 | [0.89 0.95] | |
| F1-score | 0.91 | 0.15 | [0.89 0.93] | |
| Vessel connectivity | 62.73 | 7.15 | [60.92 64.54] |
| Pre-Processing | nnU-Net | |
|---|---|---|
| Processing time (ms/frame) | 18.2 ± 3.1 | 42.5 ± 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, J.-Y. Texture-Based Preprocessing Framework with nnU-Net Model for Accurate Intracranial Artery Segmentation. J. Imaging 2025, 11, 438. https://doi.org/10.3390/jimaging11120438
Kim K, Kim J-Y. Texture-Based Preprocessing Framework with nnU-Net Model for Accurate Intracranial Artery Segmentation. Journal of Imaging. 2025; 11(12):438. https://doi.org/10.3390/jimaging11120438
Chicago/Turabian StyleKim, Kyuseok, and Ji-Youn Kim. 2025. "Texture-Based Preprocessing Framework with nnU-Net Model for Accurate Intracranial Artery Segmentation" Journal of Imaging 11, no. 12: 438. https://doi.org/10.3390/jimaging11120438
APA StyleKim, K., & Kim, J.-Y. (2025). Texture-Based Preprocessing Framework with nnU-Net Model for Accurate Intracranial Artery Segmentation. Journal of Imaging, 11(12), 438. https://doi.org/10.3390/jimaging11120438

