Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook
Abstract
:1. Introduction
2. Materials and Methods
- Devices must be small and light enough to be operated whilst handheld, even if the device is intended to be used as part of an arm-based system.
- Devices must have a FOV suitable for intraoperative gamma imaging, identified as FOV sizes greater than 100 mm2.
- Intraoperative gamma imaging must be stated as an intended use case for the device.
- The characteristics of the device must have been published in a peer-reviewed journal or within technical documentation published by the device’s manufacturer.
- The device must have either been developed, undergone a technical update, or have had new technical information on the device published since 2013.
2.1. Choice of Parameters Reported
2.2. Calculations Used in System Comparison
3. Overview of Devices
3.1. Trends in System Functionality
3.2. Trends in Physical Parameters
3.3. Trends in Performance Characteristics
4. Advances in Collimation Technology
4.1. Collimator Material
4.2. Parallel Collimation
4.3. Pinhole Collimation
4.4. Collimator Optimisation
4.5. Alternative Collimator Geometries
5. Advances in Scintillator Detectors
5.1. Detector Size
5.2. Scintillator Material
5.3. Geometry
5.3.1. Pixelated Scintillators
5.3.2. Continuous Scintillators
5.4. Readouts
6. Advances in Semiconductor Detectors
6.1. Detector Size and Geometry
6.2. Detector Material
6.3. Detector Architecture
6.4. Readouts
7. Outlook for the Next 10 Years
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Povoski, S.P. The history of radioguided surgery: Early historical milestones and the development of later innovative clinical applications. In Radioguided Surgery; Herrmann, K., Nieweg, O.E., Povoski, S.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–12. [Google Scholar]
- Tsuchimochi, M.; Hayama, K. Intraoperative gamma cameras for radioguided surgery: Technical characteristics, performance parameters, and clinical applications. Phys. Med. 2013, 29, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterom, M.N.; Rietbergen, D.D.; Welling, M.M.; Van Der Poel, H.G.; Maurer, T.; Van Leeuwen, F.W. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev. Med. Devices 2019, 16, 711–734. [Google Scholar] [CrossRef] [PubMed]
- Creighton, E.W.; Dunlap, Q.; Peckham, M.M.; Elms, C.; King, D.; Stack, B.C., Jr. Utility of intraoperative digital scintigraphy in radioguided parathyroidectomy. Head Neck 2021, 43, 2967–2972. [Google Scholar] [CrossRef]
- Perkins, A.C.; Lees, J.E. Gamma Cameras for Interventional and Intraoperative Imaging; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Herrmann, K.; Nieweg, O.E.; Povoski, S.P. (Eds.) Radioguided Surgery, Current Applications and Innovative Directions in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Russo, P.; Mettivier, G.; Pani, R.; Pellegrini, R.; Cinti, M.; Bennati, P. Imaging performance comparison between a scintillator based and a CdTe semiconductor based photon counting compact gamma camera. Med. Phys. 2009, 36, 1298–1317. [Google Scholar] [CrossRef]
- Russo, P.; Curion, A.S.; Mettivier, G.; Esposito, M.; Aurilio, M.; Caracò, C.; Aloj, L.; Lastoria, S. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging. Med. Phys. 2011, 38, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Di Lillo, F.; Corvino, V.; Frallicciardi, P.M.; Sarno, A.; Mettivier, G. CdTe compact gamma camera for coded aperture imaging in radioguided surgery. Phys. Med. 2020, 69, 223–232. [Google Scholar] [CrossRef]
- Popovic, K.; McKisson, J.; Kross, B.; Lee, S.J.; Mckisson, J.; Weisenberger, A.; Proffitt, J.; Stolin, A.; Majewski, S.; Williams, M. Development and Characterization of a Round Hand-Held Silicon Photomultiplier Based Gamma Camera for Intraoperative Imaging. IEEE Trans. Nucl. Sci. 2014, 61, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Bugby, S.; Lees, J.; Bhatia, B.; Perkins, A. Characterisation of a high resolution small field of view portable gamma camera. Phys. Med. 2014, 30, 331–339. [Google Scholar] [CrossRef]
- Ibraheem, M.H.; Gamil, M.; Tantawy, A.; Talaat, O.; Boutrrus, R.; Gomaa, M.M.M. The Role of Intra-Operative Mobile Gamma Camera and Gamma Probe in Detection of Sentinel Lymph Node in Early Stage Breast Cancer. J. Cancer Sci. Clin. Ther. 2019, 3, 229–239. [Google Scholar] [CrossRef]
- Darambara, D.G. Detector Design for Small Field of View (SFOV) Nuclear Cameras. In Gamma Cameras for Interventional and Intraoperative Imaging; Perkins, A.C., Lees, J.E., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 47–72. [Google Scholar]
- Gambini, J.P.; Quinn, T.P. Hybrid tracers and devices for intraoperative imaging: The future for radioguided surgery? Clin. Transl. Imaging 2016, 4, 343–351. [Google Scholar] [CrossRef]
- Bhatia, B.; Bugby, S.; Lees, J.; Perkins, A. A scheme for assessing the performance characteristics of small field-of-view gamma cameras. Phys. Med. 2015, 31, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Acampa, W.; Capussela, T.; Cuocolo, A.; Di Lillo, F.; Punzo, G.; Quarto, M.; Roberti, G.; Russo, P.; Serra, M. Characterization of a small FOV portable GC: MediPROBE. Radiat. Prot. Dosim. 2019, 183, 290–296. [Google Scholar] [CrossRef]
- Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Akbarzadeh, A.; Gorjizadeh, N.; Farahani, M.H.; Teimourian, B.; Ghafarian, P.; Sabet, H.; Ay, M.R. Design and development of a dedicated portable gamma camera system for intra-operative imaging. Phys. Med. 2016, 32, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Netter, E.; Pinot, L.; Ménard, L.; Duval, M.A.; Janvier, B.; Lefebvre, F.; Siebert, R.; Charon, Y. The Tumor Resection Camera (TReCam), a multipixel imaging probe for radio-guided surgery. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 2573–2576. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. 510(k) Summary for Portable Gamma Camera: Sentinella 102. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf9/K092471.pdf (accessed on 24 February 2022).
- Yamamoto, S.; Kataoka, J.; Oshima, T.; Ogata, Y.; Watabe, T.; Ikeda, H.; Kanai, Y.; Hatazawa, J. Development of a high resolution gamma camera system using finely grooved GAGG scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 821, 28–33. [Google Scholar] [CrossRef]
- Polito, C.; Pellegrini, R.; Cinti, M.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Orsolini Cencelli, V.; Pani, R. Dual-modality imaging with a ultrasound-gamma device for oncology. Radiat. Phys. Chem. 2018, 147, 77–84. [Google Scholar] [CrossRef]
- Sánchez, F.; Fernández, M.; Gimenez, M.; Benlloch, J.; Rodriguez-Alvarez, M.; Garcia de Quiros, F.; Lerche, C.; Pavón, N.; Palazón, J.; Martínez, J.; et al. Performance tests of two portable mini gamma cameras for medical applications. Med. Phys. 2006, 33, 4210–4220. [Google Scholar] [CrossRef] [PubMed]
- Bugby, S.; Lees, J.; Ng, A.; Alqahtani, M.; Perkins, A. Investigation of an SFOV hybrid gamma camera for thyroid imaging. Phys. Med. 2016, 32, 290–296. [Google Scholar] [CrossRef]
- Kogler, A.K.; Polemi, A.M.; Nair, S.; Majewski, S.; Dengel, L.T.; Slingluff, C.L.; Kross, B.; Lee, S.; McKisson, J.; McKisson, J.; et al. Evaluation of camera-based freehand SPECT in preoperative sentinel lymph node mapping for melanoma patients. EJNMMI Res. 2020, 10, 139. [Google Scholar] [CrossRef]
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Moyer, R. Low-Energy Multihole Converging Collimator Compared with a Pinhole Collimator; Technical Report; Searle Radiographics Inc.: Des Plaines, IL, USA, 1974. [Google Scholar]
- Mather, R.L. Gamma-ray collimator penetration and scattering effects. J. Appl. Phys. 1957, 28, 1200–1207. [Google Scholar] [CrossRef]
- Metzler, S.D.; Bowsher, J.E.; Smith, M.F.; Jaszczak, R.J. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans. Med. Imaging 2001, 20, 730–741. [Google Scholar] [CrossRef]
- Accorsi, R.; Metzler, S.D. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans. Med. Imaging 2004, 23, 750–763. [Google Scholar] [CrossRef]
- Schoonjans, T.; Brunetti, A.; Golosio, B.; del Rio, M.S.; Solé, V.A.; Ferrero, C.; Vincze, L. The xraylib library for X-ray–matter interactions. Recent developments. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 776–784. [Google Scholar] [CrossRef]
- Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A. A novel fully integrated handheld gamma camera. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 832, 271–278. [Google Scholar] [CrossRef]
- Dinu, N.; Imando, T.A.; Nagai, A.; Pinot, L.; Puill, V.; Callier, S.; Janvier, B.; Esnault, C.; Verdier, M.A.; Raux, L.; et al. SiPM arrays and miniaturized readout electronics for compact gamma camera. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 787, 367–372. [Google Scholar] [CrossRef]
- Bricou, A.; Benbara, A.; Verdier, M.A.; Bouvet-Lefebvre, F.; Pinot, L.; Ménard, L.; Sellier, N.; Soussan, M.; Vicaut, E.; Duval, M.A.; et al. Interest of a hand-held gamma camera (TReCam) in breast SNOLL procedure. Ann. Breast Surg. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Duval, M.A.; Bricou, A.; Barranger, E.; Kerrou, K.; Pitre, S.; Ménard, L.; Janvier, B.; Lefebvre, F.; Pinot, L.; Verdier, M.; et al. Surgical Experience with POCI and TReCam Prototype Cameras. In Gamma Cameras for Interventional and Intraoperative Imaging; Perkins, A.C., Lees, J.E., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 73–90. [Google Scholar]
- Hamamatsu Photonics, K.K. Flat Panel Type Multianode Photomultiplier Tube Assembly H9500 Series, H9500-03; Technical Report; Hamamatsu Photonics K.K. (Electron Tube Division): Iwata, Japan, 2015. [Google Scholar]
- Callier, S.; Cizel, J.B.; Dulucq, F.; de La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N. ROC chips for imaging calorimetry at the International Linear Collider. J. Instrum. 2014, 9, C02022. [Google Scholar] [CrossRef]
- Pani, R.; Vittorini, F.; Cinti, M.; Bennati, P.; Pellegrini, R.; Ridolfi, S.; Scafè, R.; Meo, S.L.; Mattioli, M.; Navarria, F.; et al. Revisited position arithmetics for LaBr3: Ce continuous crystals. Nucl. Phys. B-Proc. Suppl. 2009, 197, 383–386. [Google Scholar] [CrossRef]
- Ferretti, A.; Chondrogiannis, S.; Marcolongo, A.; Rubello, D. Phantom study of a new hand-held γ-imaging probe for radio-guided surgery. Nucl. Med. Commun. 2013, 34, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Casella, C.; Rossini, P.; Cappelli, C.; Nessi, C.; Nascimbeni, R.; Portolani, N. Radioguided parathyroidectomy with portable mini gamma-camera for the treatment of primary hyperparathyroidism. Int. J. Endocrinol. 2015, 2015, 134731. [Google Scholar] [CrossRef] [PubMed]
- Chondrogiannis, S.; Ferretti, A.; Facci, E.; Marzola, M.C.; Rampin, L.; Tadayyon, S.; Maffione, M.; Reale, D.; Mencarelli, R.; Marcolongo, A.; et al. Intraoperative hand-held imaging γ-camera for sentinel node detection in patients with breast cancer: Feasibility evaluation and preliminary experience on 16 patients. Clin. Nucl. Med. 2013, 38, e132–e136. [Google Scholar] [CrossRef]
- Trotta, C.; Massari, R.; Palermo, N.; Scopinaro, F.; Soluri, A. New high spatial resolution portable camera in medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 577, 604–610. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, K.K. Flat Panel Type Multianode PMT Assembly H8500 Series/H10966 Series. Available online: http://hamamatsu.com.cn/UserFiles/DownFile/Product/H8500_H10966_TPMH1327E02.pdf (accessed on 25 February 2022).
- Knoll, P.; Mirzaei, S.; Schwenkenbecher, K.; Barthel, T. Performance evaluation of a solid-state detector based handheld gamma camera system. Front. Biomed. Technol. 2014, 1, 61–67. [Google Scholar]
- Pashazadeh, A.; Lauretta, N.F.; Boese, A.; Friebe, M. Hybrid handheld gamma-ultrasound prototype for radioguided surgery: Initial results. Curr. Dir. Biomed. Eng. 2021, 7, 140–142. [Google Scholar] [CrossRef]
- Roth, D.; Larsson, E.; Sundlöv, A.; Sjögreen Gleisner, K. Characterisation of a hand-held CZT-based gamma camera for 177Lu imaging. EJNMMI Phys. 2020, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- SurgicEye GmbH. declipseSPECT Imaging Probe. Available online: https://www.surgiceye.com/for-healthcare-professionals/declipsespect-imaging-probe/ (accessed on 25 February 2022).
- Freesmeyer, M.; Opfermann, T.; Winkens, T. Hybrid integration of real-time US and freehand SPECT: Proof of concept in patients with thyroid diseases. Radiology 2014, 271, 856–861. [Google Scholar] [CrossRef]
- Vadawale, S.; Purohit, S.; Shanmugam, M.; Acharya, Y.; Goswami, J.; Sudhakar, M.; Sreekumar, P. Characterization and selection of CZT detector modules for HEX experiment onboard Chandrayaan-1. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 598, 485–495. [Google Scholar] [CrossRef]
- Kotoch, T.B.; Nandi, A.; Debnath, D.; Malkar, J.; Rao, A.; Hingar, M.; Madhav, V.P.; Sreekumar, S.; Chakrabarti, S.K. Instruments of RT-2 experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload. Exp. Astron. 2011, 29, 27–54. [Google Scholar] [CrossRef]
- Judge, J.; Popovic, K.; Williams, M.; Slingluff, C. Evaluation of mobile gamma camera imaging in sentinel lymph node biopsy for melanoma independent of pre-operative lymphoscintigraphy. J. Nucl. Med. 2012, 53, 1433. [Google Scholar]
- Judge, J.M.; Popovic, K.; Petroni, G.R.; Kross, B.; McKisson, J.; McKisson, J.; Weisenberger, A.G.; Stolin, A.; Majewski, S.; Rehm, P.; et al. Evaluation of Preoperative and Intraoperative Mobile Gamma Camera Imaging in Sentinel Lymph Node Biopsy for Melanoma Independent of Preoperative Lymphoscintigraphy. J. Surg. Res. 2023, 285, 176–186. [Google Scholar] [CrossRef]
- Goertzen, A.L.; Thiessen, J.D.; McIntosh, B.; Simpson, M.J.; Schellenberg, J. Characterization of a handheld gamma camera for intraoperative use for sentinel lymph node biopsy. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Republic of Korea, 27 October–2 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Imando, T.A.; Dinu, N.; Callier, S.; Cuisy, D.; Gaspard, M.; Pinot, L.; Puill, V.; Raux, L.; Trochet, S.; Menard, L. Miniaturized multi-channels SiPM read-out electronics for medical imaging application. In Proceedings of the International Workshop on New Photon-Detectors (PhotoDet2012), LAL Orsay, France, 13–15 June 2012; p. 49. [Google Scholar] [CrossRef]
- Callier, S.; Taille, C.D.; Martin-Chassard, G.; Raux, L. EASIROC, an easy & versatile readout device for SiPM. Phys. Procedia 2012, 37, 1569–1576. [Google Scholar] [CrossRef]
- Sánchez, F.; Benlloch, J.; Escat, B.; Pavón, N.; Porras, E.; Kadi-Hanifi, D.; Ruiz, J.; Mora, F.; Sebastia, A. Design and tests of a portable mini gamma camera. Med. Phys. 2004, 31, 1384–1397. [Google Scholar] [CrossRef]
- Ortega, J.; Ferrer-Rebolleda, J.; Cassinello, N.; Lledo, S. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Vermeeren, L.; Valdés Olmos, R.A.; Klop, W.M.C.; Balm, A.J.; van den Brekel, M.W. A portable gamma-camera for intraoperative detection of sentinel nodes in the head and neck region. J. Nucl. Med. 2010, 51, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Hellingman, D.; Vidal-Sicart, S.; De Wit van der Veen, L. A New Portable Hybrid Camera for Fused Optical and Scintigraphic Imaging. Clin. Nucl. Med. 2015, 41, e39–e43. [Google Scholar] [CrossRef] [PubMed]
- Pouw, B.; de Wit-van der Veen, L.; Stokkel, M.P.M. Surgical Experiences with Intraoperative Gamma Cameras. In Gamma Cameras for Interventional and Intraoperative Imaging; Perkins, A.C., Lees, J.E., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 145–172. [Google Scholar]
- Martínez, A.A.; Morón, C.C.; Molina, T.C.; Gómez, F.G.; de la Riva Perez, P.; de la Cruz Merino, L.; Tiliani, O.A.; León, J.T.; Montaño, J.C. Development of a leakage monitoring system in isolated limb perfusion with portable gamma camera. Rev. Esp. Med. Nucl. Imagen Mol. Engl. Ed. 2021, 40, 4–11. [Google Scholar] [CrossRef]
- Point Grey Research. Bumblebee 2 Stereo Vision System Preliminary Specifications. Available online: http://www.nast-group.caltech.edu/~murray/dgc05/upload/9/92/Point_grey_bumblebee_2_product_brochure.pdf (accessed on 24 February 2022).
- Fujita, T.; Kataoka, J.; Nishiyama, T.; Ohsuka, S.; Nakamura, S.; Yamamoto, S. Two-dimensional diced scintillator array for innovative, fine-resolution gamma camera. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 765, 262–268. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, K.K. Position Sensitive Photomultiplier Tubes R8900-00-C12, R8900U-00-c12. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R8900(U)-00-C12_TPMH1299E.pdf (accessed on 25 February 2022).
- Georgiou, M.; Loudos, G.; Fysikopoulos, E.; Lamprou, E.; Mikropoulos, K.; Shegani, A.; Georgoulias, P. λ-Eye: A high-sensitivity γ imaging probe for axillary sentinel lymph node mapping. Nucl. Med. Commun. 2016, 37, 1001–1009. [Google Scholar] [CrossRef]
- Georgiou, M.; Loudos, G.; Stratos, D.; Papadimitroulas, P.; Liakou, P.; Georgoulias, P. Optimization of a gamma imaging probe for axillary sentinel lymph mapping. J. Instrum. 2012, 7, P09010. [Google Scholar] [CrossRef]
- Fysikopoulos, E.; Georgiou, M.; Loudos, G.; Matsopoulos, G. Low cost FPGA based data acquisition system for a gamma imaging probe. J. Instrum. 2013, 8, T11004. [Google Scholar] [CrossRef]
- Massari, R.; Soluri, A.; Caputo, D.; Ronchi, S. Low power readout circuits for large area silicon photomultiplier array. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 158–162. [Google Scholar] [CrossRef]
- Lees, J.; Bassford, D.; Blake, O.; Blackshaw, P.; Perkins, A. A high resolution Small Field Of View (SFOV) gamma camera: A columnar scintillator coated CCD imager for medical applications. J. Instrum. 2011, 6, C12033. [Google Scholar] [CrossRef]
- Ng, A.H.; Blackshaw, P.E.; Alqahtani, M.S.; Jambi, L.K.; Bugby, S.L.; Lees, J.E.; Perkins, A.C. A novel compact small field of view hybrid gamma camera: First clinical results. Nucl. Med. Commun. 2017, 38, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Teledyne e2v (UK) Limited. CCD97-00 Datasheet. Available online: https://www.teledyneimaging.com/download/f68f9696-ff81-45c2-80e0-3fc83fac6c67/ (accessed on 25 February 2022).
- Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Jambi, L.K.; Dawood, N.S.; McKnight, W.R.; Ng, A.H.; Perkins, A.C. A multimodality hybrid gamma-optical camera for intraoperative imaging. Sensors 2017, 17, 554. [Google Scholar] [CrossRef]
- Cencelli, V.O.; de Notaristefani, F.; Fabbri, A.; Petulla, F.; D’Abramo, E.; Pani, R.; Cinti, M.; Bennati, P.; Boccaccio, P.; Lanconelli, N.; et al. A gamma camera with the useful field of view coincident with the crystal area. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 1886–1890. [Google Scholar] [CrossRef]
- Meo, S.L.; Lanconelli, N.; Navarria, F.; Perrotta, A.; Baldazzi, G.; Bollini, D.; Pani, R.; Pellegrini, R.; Cinti, M.; Bennati, P.; et al. A dual-modality ultrasound-gamma system: Monte Carlo simulations of the scintillation imager. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 607, 256–258. [Google Scholar] [CrossRef]
- Fabbri, A.; De Notaristefani, F.; Cencelli, V.O.; Bennati, P.; Cinti, M.; Petulla, F.; Pellegrini, R.; De Vincentis, G.; Pani, R. Independent channel readout system for a 2 × 2 array of H8500 with SBA photocatode. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; pp. 1329–1331. [Google Scholar] [CrossRef]
- Pani, R.; Cinti, M.N.; Bennati, P.; Pellegrini, R.; Scafé, R.; Bettiol, M.; Marchioni, C.; Meo, S.L.; Fabbri, A. New position arithmetic for scintillation camera based on floating weight system. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 3395–3398. [Google Scholar] [CrossRef]
- Jung, Y.J.; Jeong, S.; Min, E.; Kim, M.; Lee, H.; Quan, Y.H.; Rho, J.; Kim, K.M.; Kim, H.K.; Lee, K. Development of a sub-miniature gamma camera for multimodal imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161705. [Google Scholar] [CrossRef]
- Di Lillo, F.; Corvino, V.; Mettivier, G.; Sarno, A.; Russo, P. Performance of the MediPROBE compact gamma camera for coded aperture imaging. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Lees, J.E.; Bugby, S.L.; Bark, A.; Bassford, D.J.; Blackshaw, P.; Perkins, A. A hybrid camera for locating sources of gamma radiation in the environment. J. Instrum. 2013, 8, P10021. [Google Scholar] [CrossRef]
- Bugby, S.; Lees, J.; McKnight, W.; Dawood, N. Stereoscopic portable hybrid gamma imaging for source depth estimation. Phys. Med. Biol. 2021, 66, 045031. [Google Scholar] [CrossRef]
- Pani, R.; Pellegrini, R.; Cinti, M.N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G. Integrated ultrasound and gamma imaging probe for medical diagnosis. J. Instrum. 2016, 11, C03037. [Google Scholar] [CrossRef]
- Kross, B.J.; McKisson, J.; Stolin, A.; Weisenberger, A.G.; Zorn, C. Collimator with Attachment Mechanism and System; Technical Report; Thomas Jefferson National Accelerator Facility: Newport News, VA, USA, 2012. [Google Scholar]
- Alaqeel, M.; Tanzer, M. Improving ergonomics in the operating room for orthopaedic surgeons in order to reduce work-related musculoskeletal injuries. Ann. Med. Surg. 2020, 56, 133–138. [Google Scholar] [CrossRef]
- Ng, A.; Bugby, S.; Lees, J.; Morgan, P.; Perkins, A. Operator motion effects of a small field of view hybrid gamma camera: To hold or not to hold, that is the question? J. Phys. Conf. Ser. 2019, 1248, 012019. [Google Scholar] [CrossRef]
- Soluri, A.; Massari, R.; Trotta, C.; Montani, L.; Iurlaro, G.; Mangano, A.; Scopinaro, F.; Scafè, R. New imaging probe with crystals integrated in the collimator’s square holes. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 554, 331–339. [Google Scholar] [CrossRef]
- Royle, G.; Royle, N.; Pani, R.; Speller, R. Design of high resolution collimators for small gamma cameras. In Proceedings of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, San Francisco, CA, USA, 21–28 October 1995; Volume 3, pp. 1584–1586. [Google Scholar] [CrossRef]
- Li, R.; Qin, M.; Liu, C.; Huang, H.; Lu, H.; Chen, P.; Qu, X. Injection molding of tungsten powder treated by jet mill with high powder loading: A solution for fabrication of dense tungsten component at relative low temperature. Int. J. Refract. Met. Hard Mater. 2017, 62, 42–46. [Google Scholar] [CrossRef]
- Gear, J.I.; Taprogge, J.; White, O.; Flux, G.D. Characterisation of the attenuation properties of 3D-printed tungsten for use in gamma camera collimation. EJNMMI Phys. 2019, 6, 1. [Google Scholar] [CrossRef]
- Sidambe, A.; Judson, D.; Colosimo, S.; Fox, P. Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. Int. J. Refract. Met. Hard Mater. 2019, 84, 104998. [Google Scholar] [CrossRef]
- Netter, E. Developpement de la Mini Gamma Camera TReCam Pour Assister le Traitement Chirurgical du Cancer du Sein. Ph.D. Thesis, Université Paris-Diderot VII, Paris, France, 2011. [Google Scholar]
- Crystal Photonics GmbH. CrystalCam Hand Held Gamma Camera Product Brochure. Available online: https://jrtassociates.com/pdfs/CrystalCam.pdf (accessed on 24 February 2022).
- Pani, R.; Pellegrini, R.; Bennati, P.; Cinti, M.N.; Scafè, R.; De Vincentis, G.; Navarria, F.; Moschini, G.; Cencelli, V.O.; De Notaristefani, F.; et al. Performance of a lanthanum bromide detector and a new conception collimator for radiopharmaceuticals molecular imaging in oncology. In Proceedings of the AIP Conference Proceedings. American Institute of Physics, Fort Worth, TX, USA, 10–15 August 2009; Volume 1099, pp. 488–491. [Google Scholar] [CrossRef]
- Mettivier, G.; University of Naples Federico II, Naples, Campania, Italy; Farnworth, A.L.; Loughborough University, Loughborough, Leicestershire, UK. Personal communication, 2022.
- Fujii, H.; Idoine, J.D.; Gioux, S.; Accorsi, R.; Slochower, D.R.; Lanza, R.C.; Frangioni, J.V. Optimization of coded aperture radioscintigraphy for sentinel lymph node mapping. Mol. Imaging Biol. 2012, 14, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. 3-D localization of gamma ray sources with coded apertures for medical applications. J. Phys. Conf. Ser. 2015, 637, 012016. [Google Scholar] [CrossRef]
- Anzai, I.; Inoue, T.; Ito, T.; Shimizu, M.; Ryuo, H.; Takeuchi, Y. Analysis of Tomographical Information of Tracer Distribution by Using a CdZnTe Semiconductor-Based Gamma Counter Equipped with Using Coded Aperture. Radioisotopes 2002, 51, 505–508. [Google Scholar] [CrossRef]
- Cieślak, M.J.; Gamage, K.A.A.; Glover, R. Coded-aperture imaging systems: Past, present and future development—A review. Radiat. Meas. 2016, 92, 59–71. [Google Scholar] [CrossRef]
- Derenzo, S.; Boswell, M.; Weber, M.; Brennan, K. Scintillation Properties Database. Available online: http://scintillator.lbl.gov/ (accessed on 6 September 2022).
- Borrazzo, C.; Bettiol, M.; Bennati, P.; Preziosi, E.; Fabbri, A.; Scafè, R.; Pellegrini, R.; Pani, R. Monte Carlo simulation to evaluate factors affecting imaging performances of compact scintillation gamma camera. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Bettiol, M.; Preziosi, E.; Borrazzo, C.; Polito, C.; Cinti, M.; Pellegrini, R.; Pani, R. LaBr3: Ce and NaI: Tl performance comparison for single photon emission detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 154–157. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Zhang, Y.; Ying, G.; Huang, Q.; Xu, J.; Peng, Q. Evaluation of various scintillator materials in radiation detector design for positron emission tomography (PET). Crystals 2020, 10, 869. [Google Scholar] [CrossRef]
- Bugby, S.; Jambi, L.; Lees, J. A comparison of CsI: Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging. J. Instrum. 2016, 11, P09009. [Google Scholar] [CrossRef]
- Goertzen, A.L.; Zhang, X.; McClarty, M.M.; Berg, E.J.; Liu, C.Y.; Kozlowski, P.; Retière, F.; Ryner, L.; Sossi, V.; Stortz, G.; et al. Design and performance of a resistor multiplexing readout circuit for a SiPM detector. IEEE Trans. Nucl. Sci. 2013, 60, 1541–1549. [Google Scholar] [CrossRef]
- Min, E.; Jung, Y.J.; Lee, H.; Jang, J.; Kim, K.M.; Joo, S.K.; Lee, K. Development of a multipurpose gamma-ray imaging detector module with enhanced expandability. IEEE Trans. Nucl. Sci. 2017, 64, 1833–1839. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, K.K. Hamamatsu News—MPPC Array S12641/S12642/S12892/S12894 Series. Available online: https://www.hamamatsu-news.de/issues/hamamatsu_news_02_2014/files/assets/basic-html/index.html#9 (accessed on 25 February 2022).
- Williams, M.B.; Goode, A.R.; Galbis-Reig, V.; Majewski, S.; Weisenberger, A.G.; Wojcik, R. Performance of a PSPMT based detector for scintimammography. Phys. Med. Biol. 2000, 45, 781. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.; Sacco, D.; Bennati, P.; Baroncelli, A.; Galasso, M.; Cinti, M.; Pellegrini, R.; Pani, R.; Cencelli, V.O. Study of position reconstruction of a LaBr3: Ce continuous scintillation crystal for medical applications. J. Instrum. 2013, 8, P12010. [Google Scholar] [CrossRef]
- Trinci, G.; Massari, R.; Scandellari, M.; Scopinaro, F.; Soluri, A. Super spatial resolution (SSR) method for scintigraphic imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 626, 120–127. [Google Scholar] [CrossRef]
- Mahani, H.; Raisali, G.; Kamali-Asl, A.; Ay, M.R. Monte Carlo optimization of crystal configuration for pixelated molecular SPECT scanners. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 844, 1–6. [Google Scholar] [CrossRef]
- Barrett, H.H.; Swindell, W. Radiological Imaging: The Theory of Image Formation, Detection, and Processing; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Shi, R.; Chen, Y.; Dang, X.; Zhu, B.; Wang, Z.; Yang, C.; Wei, M. Experimental evaluation of reconstruction algorithms for scintillation crystal array based on charge projection readout. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 937, 117–124. [Google Scholar] [CrossRef]
- Gundacker, S.; Heering, A. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 2020, 65, 17TR01. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Ballabriga, R.; Alozy, J.; Campbell, M.; Frojdh, E.; Heijne, E.; Koenig, T.; Llopart, X.; Marchal, J.; Pennicard, D.; Poikela, T.; et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J. Instrum. 2016, 11, P01007. [Google Scholar] [CrossRef]
- Llopart, X.; Ballabriga, R.; Campbell, M.; Tlustos, L.; Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 581, 485–494. [Google Scholar] [CrossRef]
- Verger, L.; Baffert, N.; Rosaz, M.; Rustique, J. Characterization of CdZnTe and CdTe: Cl materials and their relationship to X-and γ-ray detector performance. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 380, 121–126. [Google Scholar] [CrossRef]
- Barrett, H.; Eskin, J.; Barber, H. Charge transport in arrays of semiconductor gamma-ray detectors. Phys. Rev. Lett. 1995, 75, 156. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.D.; Seller, P.; Veale, M.C.; Sellin, P.J. Investigation of the small pixel effect in CdZnTe detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 2, pp. 1255–1259. [Google Scholar] [CrossRef]
- Bugby, S.; Koch-Mehrin, K.; Veale, M.; Wilson, M.; Lees, J. Energy-loss correction in charge sharing events for improved performance of pixellated compound semiconductors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 142–151. [Google Scholar] [CrossRef]
- Yang, C.; Zannoni, E.; Meng, L.J. X-Y-Z-E 4-D Reconstruction of Charge Sharing Events in Small-Pixel CdTe and CZT Detectors Using Vector-Net and Joint-Net for Multi-Isotope Hyperspectral SPECT Imaging. In Proceedings of the IEEE NPSS MIC RTSD, Milan, Italy, 5–12 November 2022. [Google Scholar]
- Hong, J.; Copete, A.; Grindlay, J.; Vadawale, S.; Craig, W.; Harrison, F.; Cook, W.; Gehrels, N. Detector and telescope development for ProtoEXIST and fine beam measurements of spectral response of CZT detectors. In Proceedings of the UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, San Diego, CA, USA; 2005; Volume 5898, pp. 173–181. [Google Scholar] [CrossRef]
- Llopart, X.; Campbell, M.; Dinapoli, R.; San Segundo, D.; Pernigotti, E. Medipix2: A 64k pixel readout chip with 55 μm square elements working in single photon counting mode. IEEE Trans. Nucl. Sci 2002, 49, 2279. [Google Scholar] [CrossRef]
- Lee, B.; Kim, D.; Chung, M.A.; Baek, C.H.; Han, D.H.; Cha, H.; Jeong, S.; Yeom, J.Y.; Lee, K.; Lee, H. Development of a Compact Gamma Camera with a Diverging Collimator for Iridium-192 Brachytherapy. In Proceedings of the IEEE NPSS MIC RTSD, Milan, Italy, 5–12 November 2022. [Google Scholar]
- Kaissas, I.; Papadimitropoulos, C.; Clouvas, A.; Potiriadis, C.; Lambropoulos, C. Signal to noise ratio optimization for extended sources with a new kind of MURA masks. J. Instrum. 2020, 15, C01012. [Google Scholar] [CrossRef]
- Meißner, T.; Rozhkov, V.; Hesser, J.; Nahm, W.; Loew, N. Quantitative comparison of planar coded aperture imaging reconstruction methods. J. Instrum. 2023, 18, P01006. [Google Scholar] [CrossRef]
- Furenlid, L.; May, M.; Kupinski, M.; Feng, Y.; Sabet, H. Comparison of Printed versus Machined Tungsten Collimators. In Proceedings of the IEEE NPSS MIC RTSD, Milan, Italy, 5–12 November 2022. [Google Scholar]
- Hu, Y.; Fan, P.; Lyu, Z.; Qi, C.; Liu, Y.; Ma, T. A High-Sensitivity Mobile Medical Gamma Camera with Mosaic-Patterned Scintillator-Glass Detector for Intraoperative Imaging Guidance. In Proceedings of the IEEE NPSS MIC RTSD, Milan, Italy, 5–12 November 2022. [Google Scholar]
- Koyama, A.; Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Sakuma, I. Prototype of a single probe Compton camera for laparoscopic surgery. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 660–663. [Google Scholar] [CrossRef]
- Kishimoto, A.; Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T.; Ohsuka, S. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 656–659. [Google Scholar] [CrossRef]
- Kishimoto, A.; Kataoka, J.; Taya, T.; Tagawa, L.; Mochizuki, S.; Ohsuka, S.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.; et al. First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 2017, 7, 2110. [Google Scholar] [CrossRef]
- Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Lin, Z.; Lv, S.; Yang, Z.; Qiu, J.; Zhou, S. Structured scintillators for efficient radiation detection. Adv. Sci. 2022, 9, 2102439. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, G.; Lecoq, P.; Benlloch, J.M.; Gonzalez, A.J. Metascintillators for ultrafast gamma detectors: A review of current state and future perspectives. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 6, 5–15. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1620. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Yang, G.; James, R.B. Optimization of CZTS gamma-ray detectors. In Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXIII; Cherepy, N.J., Fiederle, M., James, R.B., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11838, p. 1183804. [Google Scholar] [CrossRef]
- Kim, H.; Ogorodnik, Y.; Kargar, A.; Cirignano, L.; Thrall, C.L.; Koehler, W.; O’Neal, S.P.; He, Z.; Swanberg, E.; Payne, S.A.; et al. Thallium bromide gamma-ray spectrometers and pixel arrays. Front. Phys. 2020, 8, 55. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Gedda, M.; Panagiotopoulos, A.; Kymakis, E.; Anthopoulos, T.D.; Petridis, K. Metal halide perovskites for high-energy radiation detection. Adv. Sci. 2020, 7, 2002098. [Google Scholar] [CrossRef]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light. Sci. Appl. 2019, 8, 87. [Google Scholar] [CrossRef]
- Woodward, T.; Wise, A.; Harrel, S.; Goulden, J.; Varagnat, A. Next generation fast sCMOS detector development for EUV and soft X-ray high-harmonic generation, semiconductor metrology, X-ray absorption spectroscopy, soft X-ray microscopy, and tomography . In Photonic Instrumentation Engineering IX; Busse, L.E., Soskind, Y., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2022; Volume 12008, p. 1200806. [Google Scholar] [CrossRef]
- Ballabriga, R.; Alozy, J.; Bandi, F.; Campbell, M.; Egidos, N.; Fernandez-Tenllado, J.; Heijne, E.; Kremastiotis, I.; Llopart, X.; Madsen, B.; et al. Photon counting detectors for X-ray imaging with emphasis on CT. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 422–440. [Google Scholar] [CrossRef]
- Jones, L.; Bell, S.; Cline, B.; Gardiner, T.; Hart, M.; Prydderch, M.; Seller, P.; Veale, M.; Wilson, M. Spectroscopic X-ray imaging at MHz frame rates—The HEXITECMHz ASIC. J. Instrum. 2022, 17, C10012. [Google Scholar] [CrossRef]
- Ballabriga, R.; Alozy, J.; Blaj, G.; Campbell, M.; Fiederle, M.; Frojdh, E.; Heijne, E.; Llopart, X.; Pichotka, M.; Procz, S.; et al. The Medipix3RX: A high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 2013, 8, C02016. [Google Scholar] [CrossRef]
- Ricci, R.; Kostou, T.; Chatzipapas, K.; Fysikopoulos, E.; Loudos, G.; Montalto, L.; Scalise, L.; Rinaldi, D.; David, S. Monte Carlo optical simulations of a small FoV gamma camera. effect of scintillator thicknesses and septa materials. Crystals 2019, 9, 398. [Google Scholar] [CrossRef]
- Kim, M.; Bae, J.K.; Kim, K.M.; Lee, W. Effects of Varying Matching Between Collimator Hole and Scintillator Pixel on Gamma Camera Image Resolution. J. Korean Phys. Soc. 2018, 72, 455–461. [Google Scholar] [CrossRef]
- Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Bhatia, B.S.; Alqahtani, M.S.; Dawood, N.S.; Ng, A.H.; Perkins, A.C. Comparison of columnar and pixelated scintillators for small field of view hybrid gamma camera imaging. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Myronakis, M.E.; Zvelebil, M.; Darambara, D.G. Effect of collimator design and anode dimensions on gamma-cameras based on pixelated CdZnTe. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Republic of Korea, 27 October–2 November 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Hatefi Hesari, S.; Haque, M.A.; McFarlane, N. A Comprehensive Survey of Readout Strategies for SiPMs Used in Nuclear Imaging Systems. Photonics 2021, 8, 266. [Google Scholar] [CrossRef]
- Di Trapani, V.; Bravin, A.; Brun, F.; Dreossi, D.; Longo, R.; Mittone, A.; Rigon, L.; Delogu, P. Characterization of the acquisition modes implemented in Pixirad-1/Pixie-III X-ray Detector: Effects of charge sharing correction on spectral resolution and image quality. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 955, 163220. [Google Scholar] [CrossRef]
- Walsh, M.; Opie, A.; Ronaldson, J.; Doesburg, R.; Nik, S.; Mohr, J.; Ballabriga, R.; Butler, A.; Butler, P. First CT using Medipix3 and the MARS-CT-3 spectral scanner. J. Instrum. 2011, 6, C01095. [Google Scholar] [CrossRef]
- Jiang, Y.; Bugby, S.; Cosma, G. Automatic detection of scintillation light splashes using conventional and deep learning methods. J. Instrum. 2022, 17, P06021. [Google Scholar] [CrossRef]
- Decuyper, M.; Deprez, K.; Mollet, P. Neural networks for gamma interaction positioning in continuous SPECT detectors. In Proceedings of the 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (IEEE NPSS MIC RTSD), Milano, Italy, 5–12 November 2022. [Google Scholar]
- Knight, J.C.; Mosley, M.J.; Veerle, K.; Dias, G.M.; Allen, P.D.; Smart, S.; Cornelissen, B. Dual-isotope imaging allows in vivo immunohistochemistry using radiolabelled antibodies in tumours. Nucl. Med. Biol. 2019, 70, 14–22. [Google Scholar] [CrossRef]
- Zannoni, E.M.; Zhang, J.; Meng, L.J. Hyperspectral SPECT: Time to revisit the spectral domain for gamma ray imaging? J. Nucl. Med. 2018, 59 (Suppl. S1), 361. [Google Scholar]
- Pani, R.; Fabbri, A.; Cinti, M.; Orlandi, C.; Pellegrini, R.; Scafè, R.; Artibani, M. LaBr3: Ce small FOV gamma camera with excellent energy resolution for multi-isotope imaging. J. Instrum. 2015, 10, C06002. [Google Scholar] [CrossRef]
- Fabbri, A.; Cencelli, V.O.; Bennati, P.; Cinti, M.N.; Pellegrini, R.; De Vincentis, G.; Pani, R. Dual isotope imaging with LaBr3: Ce crystal and H8500 PSPMT. J. Instrum. 2013, 8, C02022. [Google Scholar] [CrossRef]
- Scuffham, J.; Wilson, M.; Seller, P.; Veale, M.; Sellin, P.; Jacques, S.; Cernik, R. A CdTe detector for hyperspectral SPECT imaging. J. Instrum. 2012, 7, P08027. [Google Scholar] [CrossRef]
- Montémont, G.; Bohuslav, P.; Dubosq, J.; Feret, B.; Monnet, O.; Oehling, O.; Skala, L.; Stanchina, S.; Verger, L.; Werthmann, G. NuVISION: A portable multimode gamma camera based on HiSPECT imaging module. In Proceedings of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Atlanta, GA, USA, 21–28 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Bedir, M.E.; Thomadsen, B.; Bednarz, B. Development and characterization of a handheld radiation detector for radio-guided surgery. Radiat. Meas. 2020, 135, 106362. [Google Scholar] [CrossRef]
- Yagishita, A.; Takeda, S.; Katsuragawa, M.; Kawamura, T.; Matsumura, H.; Orita, T.; Umeda, I.O.; Yabu, G.; Caradonna, P.; Takahashi, T.; et al. Simultaneous visualization of multiple radionuclides in vivo. Nat. Biomed. Eng. 2022, 6, 640–647. [Google Scholar] [CrossRef]
- Dickhoff, L.R.; Peeters, M.J.V.; Bosman, P.A.; Alderliesten, T. Therapeutic applications of radioactive sources: From image-guided brachytherapy to radio-guided surgical resection. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Fabbri, A.; Yang, X.; Qi, Y.; Zhan, B.; Wang, J.; Liu, Z.; Cencelli, V.; Tsui, B. Design and development of a high-resolution handheld gamma camera for thyroid and sentinel nodes imaging. In Proceedings of the 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (IEEE NPSS MIC RTSD), Milano, Italy, 5–12 November 2022. [Google Scholar]
- Shen, Z.M.; Meng, L.J. Development and evaluation of compact and high resolution CdTe/CZT detectors for handheld gamma camera and probe application. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Republic of Korea, 27 October–2 November 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications. J. Instrum. 2017, 12, C01059. [Google Scholar] [CrossRef]
- Kang, H.G.; Song, S.H.; Han, Y.B.; Lee, H.Y.; Kim, K.M.; Hong, S.J. Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. Opt. Express 2018, 26, 8325–8339. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.B.; Song, S.H.; Kang, H.G.; Lee, H.Y.; Hong, S.J. SiPM-based gamma detector with a central GRIN lens for a visible/NIRF/gamma multi-modal laparoscope. Opt. Express 2021, 29, 2364–2377. [Google Scholar] [CrossRef]
Device | Design | Performance Characteristics | Physical Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Description | Detector | Readout | Collimator | Extrinsic Spatial Resolution (mm) | Extrinsic Sensitivity (cps/MBq) | Energy Resolution (%) | Size (mm) | Weight (kg) | FOV (mm) | |
TReCam [18,32,33,34,35,36,37] | Developed in 2009 for tumour resection applications, with new device information published in 2015. Designed to achieve a larger FOV than the POCI device, as requested by surgical feedback. Used intraoperatively for SLNB. | LaBr scintillator and a Hamamatsu H9500 flat-panel 256-anode photomultiplier tube (MA-PMT). | Four HARDROC2 semi-digital readout ASICs. Pulse centroid position obtained using a power-weighted, centre-of-gravity (COG) algorithm. | Parallel (LEHR) | 2 @ 0 cm | 300 @ 0 cm | 11 | - | ||
IPG 2 [38,39,40,41,42] | Commercialised IGC. Used intraoperatively in SLNB and parathyroidectomy procedures. | Pixelated CsI:Tl scintillator array and a Hamamatsu H8500 flat-panel MA-PMT. | Custom USB ADC-card. The software interface returns no spectral information. | Parallel (LEGP) | 2.5 @ 0 cm 2.9 @ 1.5 cm | 204 @ 0 cm | 20 a | 1.2 | ||
CrystalCam [43,44,45,46,47,48,49] | Spectroscopic Commercialised device featuring per-pixel spectroscopic capability and suitable for Lu imaging. Integrated within multiple multimodal imaging platforms. Used intraoperatively in SLNB. | Indium-contacted CdZnTe crystal grown via the modified horizontal Bridgman technique. | Two XAIM readout ASICs capable of per-pixel, 12-bit, spectroscopic imaging. | Parallel (LEHR) | 1.98 @ 0 cm b 4.9 @ 5 cm b | 237 @ 0 cm | 5.2 | 0.8 | ||
Parallel (LEHS) | 2.63 @ 0 cm b | 554 @ 0 cm | ||||||||
Parallel (MEGP) | 1.90 @ 0 cm b | 177 @ 0 cm | ||||||||
PopovicCam [10,50,51] | Designed to provide a small, lightweight device for handheld use, based on requirements outlined by melanoma surgeons. Used preoperatively and intraoperatively for SLNB. | LaBr scintillator and an MPPC consisting of 80 SiPMs arranged in a grid pattern approximating a circle. | All 80 SiPM channels are digitised and read out. Event positioning is by a COG algorithm. |
Modular parallel (×1) |
7.5 @ 3 cm 10.3 @ 5 cm 16.5 @ 10 cm c | 481 @ 0.3 cm | 21.1 | ⌀ 75 × | 1.4 | ⌀60 |
Modular parallel (×2) | 4.5 @ 3 cm c 6.5 @ 5 cm c 9.5 @ 10 cm c | 73 @ 0.3 cm | ||||||||
GoertzenCam [52] | Designed to be used in place of non-imaging gamma probes in SLNB procedures. This is the smallest and lightest device investigated. | Pixelated CsI:Tl scintillator array and a SensL SPMArray4 SiPM. | Analogue SiPM signals digitized by two-channel analogue-to-digital converter (ADC) before 8:1 multiplexing | Parallel (LEHR) | 3.46 @ 0.1 cm @ 122 keV 6.24 @ 5 cm @ 122 keV | 162.9 @ 0.1 cm @ 122 keV 149.7 @ 5 cm @ 122 keV | 38.9 | 0.32 | ||
MAGICS [32,53,54] | Developed to address the size and weight limitations of available devices. The small size of MAGICS was achieved using miniaturised readout electronics. | LaBr scintillator and an MPPC array of 4 Hamamatsu S11828-3344M MPPCs. | Four EASIROC ASICs provide analogue readout of the 256 channels before digitisation. | Parallel | 2 @ 0 cm e | 300 | 9.78 @ 122 keV | - | ||
Sentinella 102 [4,22,42,55,56,57,58,59,60,61] | Hybrid; Localisation Aid. Commercial IGC. Updated in 2015 to include a Bumblebee 2 stereo optical camera module. Features a laser localisation aid, shown in Figure 2. Used for an extensive range of surgical applications. | CsI:Tl scintillator and a Hamamatsu H8500 flat-panel MA-PMT. | MA-PMT signals are multiplexed to 4 readout signals. Event position determined by a 2D polynomial model, parameterised by a least-squares fit of known positions. |
Pinhole (⌀2.5 mm) |
5.4 @ 3 cm 7.3 @ 5 cm |
~135.1 @ 3 cm 49.6 @ 5 cm 17.1 @ 5 cm | 15.9 f | g | - | @ 3 cm |
Pinhole (⌀4 mm) | 7 @ 3 cm 11.1 @ 5 cm 21 @ 15 cm | ~270.3 @ 3 cm 105.0 @ 5 cm 39.2 @ 3 cm | ||||||||
YamamotoCam [20,62,63] | Designed for small-animal scintigraphy and noted for intraoperative suitability. Unique scintillator architecture: a continuous scintillator, scored on the object-facing surface to produce fine pixelation. | Grooved GAGG:Ce scintillator coupled to a Hamamatsu H8900 PS-PMT. | The 6X and 6Y cross-plate PS-PMT anode signals are passed to weight-summing amplifiers before digital conversion, giving 4 readout signals. | Pinhole (⌀1 mm) | 1.0 @ 1 cm @ 122 keV | 21.4 @ 1 cm @ 122 keV h | 18.5 @ 122 keV | - | - | @ 1 cm |
SURGEOSIGHT-I [17,42] | Designed for preoperative and intraoperative scintigraphy for SLNB and radioguided cancer surgery. | Pixelated CsI:Na scintillator array and a Hamamatsu H8500 flat-panel MA-PMT. | The 64 anode MA-PMT signals are multiplexed to give 4 readout signals before digitisation. Event positioning by a COG algorithm. | Parallel (LEGP) | ~2.2 @ 0 cm 9.4 @ 10 cm | 142 | 20.6 | - | - | - |
-Eye [63,64,65,66] | Designed to optimise imaging performance considering the sensitivity and spatial resolution requirements needed for axillary sentinel lymph mapping. | Collimator–aperture-matched pixelated CsI:Tl scintillator array with tungsten septa and a Hamamatsu R8900U-00-C12 PS-PMT. | 6X + 6Y PS-PMT output multiplexed to four readout signals. Event positioning by COG algorithm. | Parallel (crystal– collimator structure) | 2.2 @ 0.2 cm ~10 @ 5 cm | 1500 | 36 | ~1 | ||
PGC [31,67] | Ultra-portable IGC with integrated display, ARM computing system, and battery allowing intraoperative imaging without additional equipment or cabling. | Collimator–aperture-matched pixelated CsI:Tl scintillator array with tungsten septa, and a array of Hamamatsu S11828-3344M ( SiPM) MPPCs. | MPPC output multiplexed to 4 readout signals. Event positioning by COG algorithm, implemented on the integrated computing system [67]. | Parallel (crystal– collimator structure) | ~2.6 @ 0 cm ~5.4 @ 3 cm | 142 | 16.2 @ 122 keV | ~1 | ||
HCGC [11,23,68,69,70,71] | Hybrid Development of the Mini Gamma Ray Camera, featuring co-aligned gamma–optical/near-infrared imaging. Used for multiple clinical scintigraphy applications, including thyroid imaging and lymphoscintigraphy. | Columnar CsI:Tl scintillator and a Teledyne e2V CCD97 back-illuminated EMCCD. | Custom CCD readout. Event position is determined frame-by-frame using a blob-detection algorithm with automatic scale selection. | Pinhole (⌀0.5 mm) | 1.28 @ 1.3 cm | 214 @ 0.3 cm | 58 | ⌀103 d | 1.5 d | @5 cm d |
PolitoCam [21,42,72,73,74,75] | Hybrid Dual-modality gamma–ultrasound device featuring matched FOVs. Gamma components based on an earlier IGC. | LaBr scintillator and a Hamamatsu H10966 flat-panel MA-PMT | 64 MA-PMT readout channels by 4 FPGA readout boards. Event positioning by a position-weighted, modified COG algorithm. | Parallel (HR) | 2.5 @ 2 cm i | - | 7.1 | - | - | 50 × 50 |
JungCam [76] | Designed to provide sub-millimetre intrinsic spatial resolution in a small-footprint device. | Collimator-matched pixelated GaGG:Ce scintillator array coupled to an MPPC. | The 64 MPPC output channels are multiplexed to 4 readout signals. | Diverging | 3.2 @ 10 cm | 59.9 @ 0 cm @ 122 keV 27.9 @ 4 cm @ 122 keV 8.6 @ 10 cm @ 122 keV | 18.9 | 0.9 | @ 10 cm | |
MediPROBE [7,8,9,16,77] | Under continuous development since 2009. Feature multiple available collimators, including coded aperture geometries, and multiple readout ASICs. Used preoperatively for sentinel lymph mapping. | CdTl:Cl semiconductor with finely pixelated Ohmic contacts coupled to a Medipix2 or Timepix CMOS readout ASIC. | 128- or 256-channel readout, with values subject to 2 energy thresholds (Medipix devices) or spectroscopic (Timepix devices). Event positioning by pulse centroid location using short-exposure frames. |
Pinhole (⌀0.35 mm) |
1.09 @ 5.4 cm @ 60 keV | - | - | 3.2 j | − @ 5 cm | |
Pinhole (⌀0.94 mm) | 2.57 @ 4.5 cm @ 60 keV | - | ||||||||
Pinhole (⌀1.9 mm) | 3.2 @ 2.5 cm 5.0 @ 5 cm 8.2 @ 10 cm |
230 @ 2.6 cm 34.0 @ 5.6 cm 5.4 @ 9.6 cm | ||||||||
Coded aperture (⌀0.07 mm) | 0.56 @ 5 cm @ 60 keV | - | ||||||||
KoglerCam [24] | Adapted version of the PopovicCam used within the freehand-SPECT (fhSPECT) system. Used preoperatively for sentinel lymph mapping. | 60 mm-thick pixelated NaI(Tl) scintillator array and PopovicCam detector. | PopovicCam readout. | Modular parallel (×1) | 4.5 @ 0 cm k 11.0 @ 5 cm k 18.0 @ 10 cm k | 171.0 @ 10 cm | 21.5 | 1.4 |
Device | Collimator Name | Aperture Shape | Aperture Diameter (mm) | Septal Thickness (mm) | Aperture Length (mm) | Geometric Resolution (mm) | Geometric Efficiency | Material |
---|---|---|---|---|---|---|---|---|
TReCam [18,89] | LEHR | Hexagonal | 1.5 | 0.23 | 15 | 6.8 @ 5 cm 12.0 @ 10 cm | Pb | |
IPG 2 [38,41] | LEGP | Square | 2.25 | 0.2 | 24 | 7.0 @ 5 cm 11.8 @ 10 cm | W | |
CrystalCam [43,90] | LEHR | Square | 2.16 | 0.3 | 22.58 | 7.1 @ 5 cm 12.0 @ 10 cm | W | |
LEHS | Square | 2.04 | 0.42 | 11.15 | 11.7 @ 5 cm 21.3 @ 10 cm | W | ||
MEGP | Circular | 1.5 | 0.96 | 11.5 | 8.5 @ 5 cm 15.4 @ 10 cm | Pb | ||
PopovicCam [10] | ×1 Modular collimator | Square | 0.6 | 0.4 | 5.5 | 7.4 @ 5 cm 14.1 @ 10 cm | W-polymer composite a | |
×2 Modular collimator | Square | 0.6 | 0.4 | 11 | 3.6 @ 5 cm 6.6 @ 10 cm | W-polymer composite a | ||
GoertzenCam [52] | LEHR | - | 1.2 | 0.2 | 23 | - | - | - |
MAGICS [32] | - | - | - | - | 15 | - | - | Pb |
SURGEOSIGHT-I [17] | LEGP | Hexagonal | 1.2 | 0.2 | 18 | 4.7 @ 5 cm 8.2 @ 10 cm | Pb | |
-Eye [64] | crystal –collimator structure | Square | 2 | 0.2 | 24 | 11.7 @ 5 cm b 21.5 @ 10 cm b | b | Pb |
PGC [31] | - | Square | 2.4 | 0.2 | 24 | 7.5 @ 5 cm 12.6 @ 10 cm | W | |
PolitoCam [91] | HR | Hexagonal | 1 | 0.2 | 18 | 3.9 @ 5 cm 6.8 @ 10 cm | Pb |
Device | Aperture Diameter (mm) | Acceptance Angle () | Thickness (mm) | Collimator–Detector Distance (mm) | Geometric Resolution (mm) | Geometric Efficiency | Material |
---|---|---|---|---|---|---|---|
Sentinella 102 [19] | 2.5 | - | - | - | - | - | Pb |
4 | - | - | - | - | - | Pb | |
YamamotoCam [20] | 0.5 | - | - | 18 | - | - | - |
MediPROBEMedipix2ASIC [8,9,16,92] | 0.35 | 90 | 13 | 18 | 2.04 @ 5 cm 3.55 @ 10 cm | @ 5 cm @ 10 cm | W |
0.94 | 90 | 4 | 18 | 4.27 @ 5 cm 7.41 @ 10 cm | @ 5 cm @ 10 cm | W | |
1.9 | 90 | 4 | 25 | 6.27 @ 5 cm 10.45 @ 10 cm | @ 5 cm @ 10 cm | W | |
HCGC [68] | 0.5 | 60 | 6 | 10 | 3.66 @ 5 cm 6.71 @ 10 cm | @ 5 cm @ 10 cm | W |
1 | 60 | 6 | 10 | 6.66 @ 5 cm 12.21 @ 10 cm | @ 5 cm @ 10 cm | W |
Object Side | Detector Side | |||||||
---|---|---|---|---|---|---|---|---|
Device | Aperture Shape | Aperture Diameter (mm) | Septal Thickness (mm) | Aperture Diameter (mm) | Septal Thickness (mm) | Thickness (mm) | Focal Distance (mm) | Material |
JungCam [76] | Square | 0.7 | 0.35 | 0.7 | 0.1 | 20 | 65.5 | WC |
Device | Design | Matrix | Aperture Shape | Aperture Diameter (mm) | Acceptance Angle () | Aperture Number | Thickness (mm) | Material |
---|---|---|---|---|---|---|---|---|
MediPROBE [9,77] | NTHT-MURA | 62 × 62 | Round | 0.08 | 180 | 480 | 0.11 | W |
NTHT-MURA | 62 × 62 | Round | 0.07 | 180 | 480 | 0.08 | W |
Device | Architecture | Detector Dimensions (mm3) | Pixel Size (mm3) | Pixel Matrix | Total Readout Area (mm2) | Readout Pixel Size (mm2) | Readout Pixel Pitch (mm) | Readout Layout |
---|---|---|---|---|---|---|---|---|
IPG 2 [38,41,42] | Pixelated CsI:Tl + PS-PMT | 6.08 a | ||||||
GoertzenCam [52,102] | Pixelated CsI:Tl + MPPC | 3.36 | ||||||
YamamotoCam [20,62,63] | Grooved GAGG:Ce + PS-PMT | b | N/A | N/A | 6X + 6Y cross-plate | |||
SURGEOSIGHT-I [17,42] | Pixelated CsI:Tl + PS-PMT | 6.08 a | ||||||
-Eye [63,64] | Pixelated CsI:Tl + PS-PMT | N/A | N/A | 6X + 6Y cross-plate | ||||
PGC [31,67] | Pixelated CsI:Tl + MPPC | - | ||||||
JungCam [76,103,104] | Pixelated GAGG:Ce + MPPC | c | 3.2 | |||||
KoglerCam [10,24] | Pixelated NaI:Tl + MPPC | 6 | , bounded by arrays |
Device | Architecture | Detector Dimensions (mm3) | Total Readout Area (mm2) | Readout Pixel Size (mm2) | Readout Pixel Pitch (mm) | Readout Layout |
---|---|---|---|---|---|---|
TReCam [18,35] | LaBr:Ce + PS-PMT | - × - × 5 | 3.04 a | |||
PopovicCam [10] | LaBr:Ce + MPPC | ~ | ~321 | 6 | , bounded by arrays | |
MAGICS [32,53] | LaBr:Ce + MPPC | - | ||||
Sentinella 102 [22,42,58] | CsI:Na + PS-PMT | 6.08 a | ||||
HCGC [11,70] | Columnar CsI:Tl + EM-CCD | - × - × 0.6 | - | |||
PolitoCam [21,42] | LaBr:Ce + PS-PMT | 6.08 a |
Device | Architecture | Detector Dimensions (mm) | Active Area (mm) | Anode Pixel Pad Size (mm) | Anode Pixel Pitch (mm) | Anode Matrix |
---|---|---|---|---|---|---|
CrystalCam [43,45,48,49] | CdZnTe + x2 XAIM ASICs | 39 × 39 × 5 | - | 1.86 × 1.86 | 2.46 a | 16 × 16 |
MediPROBEMedipix2ASIC [7] | CdTe:Cl + Medipix2 ASIC | - × - × 1 | 14.08 × 14.08 | 0.045 × 0.045 | 0.055 | 256 × 256 |
MediPROBETimepixASIC [7,9,114] | CdTe:Cl + Timepix ASIC | - × - ×t 1 | 14.08 × 14.08 | 0.045 × 0.045 | 0.11 | 128 × 128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farnworth, A.L.; Bugby, S.L. Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook. J. Imaging 2023, 9, 102. https://doi.org/10.3390/jimaging9050102
Farnworth AL, Bugby SL. Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook. Journal of Imaging. 2023; 9(5):102. https://doi.org/10.3390/jimaging9050102
Chicago/Turabian StyleFarnworth, Andrew L., and Sarah L. Bugby. 2023. "Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook" Journal of Imaging 9, no. 5: 102. https://doi.org/10.3390/jimaging9050102
APA StyleFarnworth, A. L., & Bugby, S. L. (2023). Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook. Journal of Imaging, 9(5), 102. https://doi.org/10.3390/jimaging9050102