What Binarization Method Is the Best for Amplitude Inline Fresnel Holograms Synthesized for Divergent Beams Using the Direct Search with Random Trajectory Technique?
Abstract
:1. Introduction
2. The Methods
2.1. The Method of Synthesis of Binary Inline Fresnel Holograms
- As a first approximation of the DOE, random amplitude is generated. It is multiplied by the amplitude and phase of a spherical wavefront of a given curvature.
- The Fresnel transform is applied to get into object plane.
- The amplitude of the obtained distribution is replaced by the required one, and the phase remains unchanged.
- An inverse Fresnel transform is applied to get into the hologram plane.
- The phase of the obtained distribution is replaced by a spherical one, and the amplitude remains unchanged.
2.2. Binarization Methods
3. Numerical Experiments
3.1. Numerical Experiment Conditions
3.2. Error Metrics
3.3. Results of Numerical Experiments
4. Optical Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kompanets, I.N.; Andreev, A.L. Microdisplays in spatial light modulators. Quantum Electron. 2017, 47, 294–302. [Google Scholar] [CrossRef]
- Chen, D.; Gu, S.; Chen, S.-C. Study of Optical Modulation based on Binary Masks with Finite Pixels. Opt. Lasers Eng. 2021, 142, 106604. [Google Scholar] [CrossRef]
- Benzie, P.; Watson, J.; Surman, P.; Rakkolainen, I.; Hopf, K.; Urey, H.; Sainov, V.; von Kopylow, C. A Survey of 3DTV Displays: Techniques and Technologies. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 1647–1658. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, J.; Li, X.; Wang, Y. A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems. IEEE Trans. Ind. Inform. 2016, 12, 1599–1610. [Google Scholar] [CrossRef]
- Takahashi, T.; Shimobaba, T.; Kakue, T.; Ito, T. Time-Division Color Holographic Projection in Large Size Using a Digital Micromirror Device. Appl. Sci. 2021, 11, 6277. [Google Scholar] [CrossRef]
- Conkey, D.B.; Caravaca-Aguirre, A.M.; Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 2012, 20, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-K.; Yang, Y.; Liu, J.-R.; Wei, N.; Wang, S.-F. Secondary Complementary Balancing Compressive Imaging with a Free-Space Balanced Amplified Photodetector. Sensors 2022, 22, 3801. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Wang, D.; Chen, P.; Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 2019, 10, 21–79. [Google Scholar] [CrossRef] [Green Version]
- Correa-Rojas, N.A.; Gallego-Ruiz, R.D.; Álvarez-Castaño, M.I. Generation of linearly polarized modes using a digital micromirror device and phase optimization. Comput. Opt. 2022, 46, 30–38. [Google Scholar] [CrossRef]
- Cebeci, D.; Mankani, B.R.; Ben-Amotz, D. Recent Trends in Compressive Raman Spectroscopy Using DMD-Based Binary Detection. J. Imaging 2019, 5, 1. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Kurbatova, E.A.; Evtikhiev, N.N.; Krasnov, V.V.; Rodin, V.G.; Starikov, R.S. Adaptive Digital Hologram Binarization Method Based on Local Thresholding, Block Division and Error Diffusion. J. Imaging 2022, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-P.; Tsai, C.-M. Binary Computer-Generated Holograms by Simulated-Annealing Binary Search. Photonics 2022, 9, 581. [Google Scholar] [CrossRef]
- Osorio, J.A.J.; Bustamante, S.; Muñoz, B.; Velez-Zea, A.; Barrera-Ramírez, J.F.; Torroba, R. Experimental Fresnel and Fourier digital holography using a digital micro-mirror device. J. Opt. 2021, 23, 035701. [Google Scholar] [CrossRef]
- Schnars, U.; Falldorf, C.; Watson, J.; Jüptner, W. Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed.; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Matsushima, K. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Stoykova, E.S.E.; Kang, H.K.H.; Park, J.P.J. Twin-image problem in digital holography—A survey (Invited Paper). Chin. Opt. Lett. 2014, 12, 060013–60024. [Google Scholar] [CrossRef] [Green Version]
- Evtikhiev, N.N.; Starikov, S.N.; Cheremkhin, P.A.; Kurbatova, E.A. Evaluation of Diffraction Efficiency and Image Quality in Optical Reconstruction of Digital Fresnel Holograms. Radiophys. Quantum Electron. 2015, 57, 635–649. [Google Scholar] [CrossRef]
- Cai, Y.; Yan, S.; Wang, Z.; Li, R.; Liang, Y.; Zhou, Y.; Li, X.; Yu, X.; Lei, M.; Yao, B. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers. Opt. Express 2020, 28, 12729–12739. [Google Scholar] [CrossRef]
- Velez-Zea, A.; Quinchia, S.B.; Barrera-Ramírez, J.F.; Torroba, R. Generation and experimental reconstruction of optimized Fresnel random phase-only holograms. J. Opt. 2021, 23, 055602. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, X.; Pang, H.; Liu, L.; Xue, L.; Liu, W.; Shi, L.; Cao, A.; Deng, Q. Error tracking-control-reduction algorithm for designing diffractive optical element with high image reconstruction quality. Opt. Express 2020, 28, 10090–10103. [Google Scholar] [CrossRef]
- Gerchberg, R.W.; Saxton, W.O. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik 1971, 2, 237–246. [Google Scholar] [CrossRef]
- Zlokazov, E.Y. Methods and algorithms for computer synthesis of holographic elements to obtain a complex impulse response of optical information processing systems based on modern spatial light modulators. Quantum Electron. 2020, 50, 643–652. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Evtikhiev, N.N.; Krasnov, V.V.; Starikov, R.S.; Zlokazov, E.Y. Iterative synthesis of binary inline Fresnel holograms for high-quality reconstruction in divergent beams with DMD. Opt. Lasers Eng. 2022, 150, 106859. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Evtikhiev, N.N.; Krasnov, V.V.; Starikov, S.N. A method of generating amplitude masks with a constant power spectra and using them to measure the two-dimensional modulation-transfer functions of optical systems. J. Opt. Technol. 2013, 80, 294–300. [Google Scholar] [CrossRef]
- Bondareva, A.P.; Cheremkhin, P.A.; Evtikhiev, N.N.; Krasnov, V.V.; Rodin, V.G.; Starikov, S.N. Increasing quality of computer-generated kinoforms using direct search with random trajectory method. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 17–21 August 2014; p. 92161J. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Kurbatova, E.A. Comparative appraisal of global and local thresholding methods for binarisation of off-axis digital holograms. Opt. Lasers Eng. 2019, 115, 119–130. [Google Scholar] [CrossRef]
- Yang, G.; Jiao, S.; Liu, J.-P.; Lei, T.; Yuan, X. Error diffusion method with optimized weighting coefficients for binary hologram generation. Appl. Opt. 2019, 58, 5547. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; A Kurbatova, E.; Evtikhiev, N.N.; Krasnov, V.V.; Rodin, V.G.; Starikov, R.S. Comparative analysis of off-axis digital hologram binarization by error diffusion. J. Opt. 2021, 23, 075703. [Google Scholar] [CrossRef]
- Seldowitz, M.A.; Allebach, J.P.; Sweeney, D.W. Synthesis of digital holograms by direct binary search. Appl. Opt. 1987, 26, 2788–2798. [Google Scholar] [CrossRef]
- Kang, J.-H.; Leportier, T.; Kim, M.; Park, M.-C. Non-iterative direct binary search algorithm for fast generation of binary holograms. Opt. Lasers Eng. 2019, 122, 312–318. [Google Scholar] [CrossRef]
- Sulaiman, A.; Omar, K.; Nasrudin, M.F. Degraded Historical Document Binarization: A Review on Issues, Challenges, Techniques, and Future Directions. J. Imaging 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Lins, R.D.; Bernardino, R.; Barboza, R.D.S.; De Oliveira, R.C. Using Paper Texture for Choosing a Suitable Algorithm for Scanned Document Image Binarization. J. Imaging 2022, 8, 272. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Li, C.H.; Lee, C.K. Minimum cross entropy thresholding. Pattern Recognit. 1993, 26, 617–625. [Google Scholar] [CrossRef]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Ridler, T.W.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- Huang, L.-K.; Wang, M.-J.J. Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. 1995, 28, 41–51. [Google Scholar] [CrossRef]
- Prewitt, J.M.S.; Mendelsohn, M.L. THE ANALYSIS OF CELL IMAGES. Ann. N. Y. Acad. Sci. 1966, 128, 1035–1053. [Google Scholar] [CrossRef] [PubMed]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Glasbey, C.A. An Analysis of Histogram-Based Thresholding Algorithms. CVGIP Graph. Model. Image Process. 1993, 55, 532–537. [Google Scholar] [CrossRef]
- Tsai, W.-H. Moment-preserving thresholding: A new approach. Comput. Vision, Graph. Image Process. 1985, 29, 377–393. [Google Scholar] [CrossRef]
- Doyle, W. Operations Useful for Similarity-Invariant Pattern Recognition. J. ACM 1962, 9, 259–267. [Google Scholar] [CrossRef]
- Shanbhag, A. Utilization of Information Measure as a Means of Image Thresholding. CVGIP Graph. Model. Image Process. 1994, 56, 414–419. [Google Scholar] [CrossRef]
- Yen, J.-C.; Chang, F.-J.; Chang, S. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 1995, 4, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Niblack, W. An Introduction to Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1986. [Google Scholar]
- Sauvola, J.; Pietikainen, M. Adaptive Document Image Binarization. In Proceedings of the Fourth International Conference Document Analysis and Recognition (IEEE), Ulm, Germany, 18–20 August 1997; pp. 147–152. [Google Scholar]
- Zhang, Z.; Tan, C.L. Restoration of Images Scanned from Thick Bound Documents. In Proceedings of the 2001 International Conference on Image Processing (Cat. No.01CH37205), Thessaloniki, Greece, 7–10 October 2001; pp. 1074–1077. [Google Scholar] [CrossRef]
- Khurshid, K.; Siddiqi, I.; Faure, C.; Vincent, N. Comparison of Niblack inspired Binarization methods for ancient documents. In Proceedings of the Document Recognition and Retrieval XVI, San Jose, CA, USA, 20–22 January 2009; p. 72470U. [Google Scholar]
- Wolf, C.; Jolion, J.-M. Extraction and recognition of artificial text in multimedia documents. Pattern Anal. Appl. 2004, 6, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Phansalkar, N.; More, S.; Sabale, A.; Joshi, M. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In Proceedings of the 2011 International Conference on Communications and Signal Processing, Calicut, India, 10–12 February 2011; pp. 218–220. [Google Scholar]
- Floyd, R.W.; Steinberg, L.A. Survey of Techniques for the Display of Continuous-Tone Pictures on Bilevel Displays. Comput. Proc. Soc. Inf. Disp. 1976, 17, 75–77. [Google Scholar]
- Jarvis, J.F.; Judice, C.N.; Ninke, W.H. A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graph. Image Process. 1976, 5, 13–40. [Google Scholar] [CrossRef]
- Seckar, J.; Pokorny, P. Relation of statistical information and visual quality in halftone images. In Proceedings of the 21st International DAAAM Symposium ‘‘Intelligent Manufacturing & Automation’’ (DAAAM International), Zadar, Croatia, 20–23 October 2010; pp. 1419–1420. [Google Scholar]
- Knuth, D.E. Digital halftones by dot diffusion. ACM Trans. Graph. 1987, 6, 245–273. [Google Scholar] [CrossRef]
- Guo, J.M.; Sankarasrinivasan, S. Digital Halftone Database (DHD): A Comprehensive Analysis on Halftone Types. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 1091–1099. [Google Scholar]
- Liu, Y.-F.; Guo, J.-M. Dot-Diffused Halftoning With Improved Homogeneity. IEEE Trans. Image Process. 2015, 24, 4581–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, S.H.; Maiti, A.K.; Chaki, N. A new image binarization method using iterative partitioning. Mach. Vis. Appl. 2013, 24, 337–350. [Google Scholar] [CrossRef]
- Kurbatova, E.A.; Rodin, V.G.; Cheremkhin, P.A. Iterative Binarization of Digital Holograms Using Error Diffusion Method. Optoelectron. Instrum. Data Process. 2020, 56, 205–211. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Object | Baboon | House | Tree |
---|---|---|---|
SSIM | 1.0 | 0.999 | 0.999 |
DE | 0.047 | 0.050 | 0.045 |
MSE, 10−4 | 5.8 | 4.8 | 14.7 |
Object | Baboon | House | Tree | |||||
---|---|---|---|---|---|---|---|---|
Method | Otsu | Sauvola | Li | Huang | Otsu | Sauvola | Otsu | Sauvola |
SSIM | 0.87 | 0.90 | 0.89 | 0.87 | 0.71 | 0.75 | 0.85 | 0.87 |
DE | 0.063 | 0.086 | 0.077 | 0.065 | 0.063 | 0.084 | 0.064 | 0.082 |
MSE, 10−3 | 3.6 | 3.4 | 2.0 | 3.3 | 1.7 | 1.3 | 2.1 | 1.3 |
Stage | Binarization | DSRT | ||||||
---|---|---|---|---|---|---|---|---|
Method | Baboon | Tree | Baboon | Tree | ||||
Otsu | Sauvola | Otsu | Sauvola | Otsu | Sauvola | Otsu | Sauvola | |
SSIM | 0.093 | 0.151 | 0.107 | 0.174 | 0.099 | 0.171 | 0.124 | 0.185 |
DErel | 1 | 1.33 | 1 | 1.22 | 1 | 1.03 | 1 | 1.07 |
MSE, 10−2 | 16.2 | 14.7 | 14.8 | 10.1 | 12.7 | 11.5 | 11.8 | 10.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, A.S.; Krasnov, V.V.; Cheremkhin, P.A.; Rodin, V.G.; Savchenkova, E.A.; Starikov, R.S.; Evtikhiev, N.N. What Binarization Method Is the Best for Amplitude Inline Fresnel Holograms Synthesized for Divergent Beams Using the Direct Search with Random Trajectory Technique? J. Imaging 2023, 9, 28. https://doi.org/10.3390/jimaging9020028
Ovchinnikov AS, Krasnov VV, Cheremkhin PA, Rodin VG, Savchenkova EA, Starikov RS, Evtikhiev NN. What Binarization Method Is the Best for Amplitude Inline Fresnel Holograms Synthesized for Divergent Beams Using the Direct Search with Random Trajectory Technique? Journal of Imaging. 2023; 9(2):28. https://doi.org/10.3390/jimaging9020028
Chicago/Turabian StyleOvchinnikov, Andrey S., Vitaly V. Krasnov, Pavel A. Cheremkhin, Vladislav G. Rodin, Ekaterina A. Savchenkova, Rostislav S. Starikov, and Nikolay N. Evtikhiev. 2023. "What Binarization Method Is the Best for Amplitude Inline Fresnel Holograms Synthesized for Divergent Beams Using the Direct Search with Random Trajectory Technique?" Journal of Imaging 9, no. 2: 28. https://doi.org/10.3390/jimaging9020028
APA StyleOvchinnikov, A. S., Krasnov, V. V., Cheremkhin, P. A., Rodin, V. G., Savchenkova, E. A., Starikov, R. S., & Evtikhiev, N. N. (2023). What Binarization Method Is the Best for Amplitude Inline Fresnel Holograms Synthesized for Divergent Beams Using the Direct Search with Random Trajectory Technique? Journal of Imaging, 9(2), 28. https://doi.org/10.3390/jimaging9020028