No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.1.1. Applied IQA Databases
3.1.2. Evaluation
3.2. Methods
Feature Number | Input | Feature | Number of Features |
---|---|---|---|
f1-f5 | SURF [55], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f6-f10 | FAST [53], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f11-f15 | BRISK [56], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f16-f20 | KAZE [57], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f21-f25 | ORB [58], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f26-f30 | Harris [54], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f31-f35 | Minimum Eigenvalue [59], Grayscale image | mean, median, std, skewness, kurtosis | 5 |
f36-f40 | SURF [55], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f41-f45 | FAST [53], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f46-f50 | BRISK [56], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f51-f55 | KAZE [57], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f56-f60 | ORB [58], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f61-f65 | Harris [54], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f66-f70 | Minimum Eigenvalue [59], Filtered image | mean, median, std, skewness, kurtosis | 5 |
f71-f77 | Binary image | Hu invariant moments [60] | 7 |
f78-f87 | RGB image | Perceptual features | 10 |
f88 | GL-GM map | histogram variance | 1 |
f89 | GL-GM map | histogram variance | 1 |
f90 | GL-GM map | histogram variance | 1 |
f91 | GM map [61] | histogram variance | 1 |
f92 | RO map [61] | histogram variance | 1 |
f93 | RM map [61] | histogram variance | 1 |
3.3. Statistics of Local Feature Descriptors
3.4. Hu Invariant Moments
3.5. Perceptual Features
- Blur: It is probably the most dominant source of perceptual image quality deterioration in digital imaging [67]. To quantify the emergence of the blur effect, the blur metric of Crété-Roffet et al. [68], which is based on the measurements of intensity variations between neighboring pixels, was implemented due to its low computational costs.
- Colorfulness: In [69], Choi et al. pointed out that colorfulness is a critical component in human image quality judgment. We determined colorfulness using the following formula proposed by Hasler and Suesstrunk [70]:
- Chroma: It is one of the relevant image features among a series of color metrics in the CIELAB color space. Moreover, chroma is significantly correlated with haze, blur, or motion blur in the image [70]. It is defined as
- Color gradient: The estimated color gradient magnitude (CGM) map is defined as
- Dark channel feature (DCF): In the literature, Tang et al. [71] proposed DCF [72] for image quality assessment, since it can effectively identify haze effects in images. A dark channel is defined as
- Michelson contrast: Contrast is one of the most fundamental characteristics of an image, since it influences the ability to distinguish objects from each other in an image [73]. Thus, contrast information is built into our NR-IQA model. The Michelson contrast measures the difference between the maximum and minimum values of an image [74], defined as
- Root mean square (RMS) contrast is defined as
- Global contrast factor (GCF): Contrary to Michelson and RMS contrasts, GCF considers multiple resolution levels of an image to estimate human contrast perception [75]. It is defined as
- Entropy: It is a quantitative measure of the image’s carried information [76]. Typically, an image with better quality is able to transmit more information. This is why entropy was chosen as a quality-aware feature. The entropy of a grayscale image is defined as
3.6. Relative Grünwald–Letnikov Derivative and Gradient Statistics
4. Results
4.1. Ablation Study
4.2. Comparison to the State-of-the-Art
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRIEF | binary robust independent elementary features |
BRISK | binary robust invariant scalable keypoints |
CGM | color gradient magnitude |
CNN | convolutional neural network |
CPU | central processing unit |
DCF | dark channel feature |
DCT | discrete cosine transform |
DF | decision fusion |
DSC | digital still camera |
DSLR | digital single-lens reflex camera |
FAST | features from accelerated segment test |
FR | full-reference |
GGD | generalized Gaussian distribution |
GL | Grünwald–Letnikov |
GM | gradient magnitude |
GPU | graphics processing unit |
GPR | Gaussian process regression |
IQA | image quality assessment |
KROCC | Kendall’s rank-order correlation coefficient |
MOS | mean opinion score |
MSCN | mean subtracted contrast normalized |
NIQE | naturalness image quality evaluator |
NR | no-reference |
NSS | natural scene statistics |
ORB | oriented FAST and rotated BRIEF |
PIQE | perception-based image quality evaluator |
PLCC | Pearson’s linear correlation coefficient |
RBF | radial basis function |
RM | relative gradient magnitude |
RMS | root mean square |
RO | relative gradient orientation |
RR | reduced-reference |
SPHN | smartphone |
SROCC | Spearman’s rank-order correlation coefficient |
SVR | support vector regressor |
References
- Torr, P.H.; Zissermann, A. Performance characterization of fundamental matrix estimation under image degradation. Mach. Vis. Appl. 1997, 9, 321–333. [Google Scholar] [CrossRef]
- Zhao, Q. The Application of Augmented Reality Visual Communication in Network Teaching. Int. J. Emerg. Technol. Learn. 2018, 13, 57. [Google Scholar] [CrossRef]
- Shen, T.W.; Li, C.C.; Lin, W.F.; Tseng, Y.H.; Wu, W.F.; Wu, S.; Tseng, Z.L.; Hsu, M.H. Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter. Appl. Sci. 2022, 12, 3320. [Google Scholar] [CrossRef]
- Esteban, O.; Birman, D.; Schaer, M.; Koyejo, O.O.; Poldrack, R.A.; Gorgolewski, K.J. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 2017, 12, e0184661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Yeganeh, H.; Zeng, K.; Wang, Z. High dynamic range image compression by optimizing tone mapped image quality index. IEEE Trans. Image Process. 2015, 24, 3086–3097. [Google Scholar]
- Goyal, B.; Gupta, A.; Dogra, A.; Koundal, D. An adaptive bitonic filtering based edge fusion algorithm for Gaussian denoising. Int. J. Cogn. Comput. Eng. 2022, 3, 90–97. [Google Scholar] [CrossRef]
- Zhai, G.; Min, X. Perceptual image quality assessment: A survey. Sci. China Inf. Sci. 2020, 63, 1–52. [Google Scholar] [CrossRef]
- Kamble, V.; Bhurchandi, K. No-reference image quality assessment algorithms: A survey. Optik 2015, 126, 1090–1097. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Liu, L.; Dong, H.; Huang, H.; Bovik, A.C. No-reference image quality assessment in curvelet domain. Signal Process. Image Commun. 2014, 29, 494–505. [Google Scholar] [CrossRef]
- Xue, W.; Mou, X.; Zhang, L.; Bovik, A.C.; Feng, X. Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 2014, 23, 4850–4862. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Zhai, G.; Gu, K.; Liu, Y.; Yang, X. Blind image quality estimation via distortion aggravation. IEEE Trans. Broadcast. 2018, 64, 508–517. [Google Scholar] [CrossRef]
- Mohammadi, P.; Ebrahimi-Moghadam, A.; Shirani, S. Subjective and objective quality assessment of image: A survey. arXiv 2014, arXiv:1406.7799. [Google Scholar]
- Yang, X.; Li, F.; Liu, H. A survey of DNN methods for blind image quality assessment. IEEE Access 2019, 7, 123788–123806. [Google Scholar] [CrossRef]
- Xu, L.; Lin, W.; Kuo, C.C.J. Visual Quality Assessment by Machine Learning; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Bombay, India, 27 February–1 March 2015; pp. 1–6. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Bovik, A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhang, X.; Chen, H.; Wang, D.; Deng, J. VP-NIQE: An opinion-unaware visual perception natural image quality evaluator. Neurocomputing 2021, 463, 17–28. [Google Scholar] [CrossRef]
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 1943, 35, 99–109. [Google Scholar]
- Leonardi, M.; Napoletano, P.; Schettini, R.; Rozza, A. No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection. Sensors 2021, 21, 994. [Google Scholar] [CrossRef]
- Reinagel, P.; Zador, A.M. Natural scene statistics at the centre of gaze. Netw. Comput. Neural Syst. 1999, 10, 341. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. Blind image quality assessment: A natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 2012, 21, 3339–3352. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, A.K.; Bovik, A.C. A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 2010, 17, 513–516. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 2011, 20, 3350–3364. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Joshi, N.; Kapoor, A. Learning a blind measure of perceptual image quality. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 305–312. [Google Scholar]
- Wang, Q.; Chu, J.; Xu, L.; Chen, Q. A new blind image quality framework based on natural color statistic. Neurocomputing 2016, 173, 1798–1810. [Google Scholar] [CrossRef]
- Wu, J.; Lin, W.; Shi, G. Image quality assessment with degradation on spatial structure. IEEE Signal Process. Lett. 2014, 21, 437–440. [Google Scholar] [CrossRef]
- Freitas, P.G.; Akamine, W.Y.; Farias, M.C. No-reference image quality assessment based on statistics of local ternary pattern. In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016; pp. 1–6. [Google Scholar]
- Freitas, P.G.; Akamine, W.Y.; Farias, M.C. No-reference image quality assessment using orthogonal color planes patterns. IEEE Trans. Multimed. 2018, 20, 3353–3360. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Garcia Freitas, P.; Da Eira, L.P.; Santos, S.S.; Farias, M.C.Q.d. On the Application LBP Texture Descriptors and Its Variants for No-Reference Image Quality Assessment. J. Imaging 2018, 4, 114. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Doermann, D. No-reference image quality assessment based on visual codebook. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 3089–3092. [Google Scholar]
- Ye, P.; Doermann, D. No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 2012, 21, 3129–3138. [Google Scholar]
- Ye, P.; Kumar, J.; Kang, L.; Doermann, D. Unsupervised feature learning framework for no-reference image quality assessment. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1098–1105. [Google Scholar]
- Kang, L.; Ye, P.; Li, Y.; Doermann, D. Convolutional neural networks for no-reference image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1733–1740. [Google Scholar]
- Bianco, S.; Celona, L.; Napoletano, P.; Schettini, R. On the use of deep learning for blind image quality assessment. Signal Image Video Process. 2018, 12, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Yu, J.; Zhu, S.; Huang, Q.; Tian, Q. Blind image quality prediction by exploiting multi-level deep representations. Pattern Recognit. 2018, 81, 432–442. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, Q.; Lin, W.; Wang, Y. Sgdnet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1383–1391. [Google Scholar]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 2014, 23, 4270–4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Van De Weijer, J.; Bagdanov, A.D. Rankiqa: Learning from rankings for no-reference image quality assessment. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1040–1049. [Google Scholar]
- Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.; Hamilton, N.; Hullender, G. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 89–96. [Google Scholar]
- Li, D.; Jiang, T.; Jiang, M. Norm-in-norm loss with faster convergence and better performance for image quality assessment. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 789–797. [Google Scholar]
- Celona, L.; Schettini, R. Blind quality assessment of authentically distorted images. JOSA A 2022, 39, B1–B10. [Google Scholar] [CrossRef]
- Ghadiyaram, D.; Bovik, A.C. Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 2015, 25, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Hosu, V.; Saupe, D. KonIQ-10K: Towards an ecologically valid and large-scale IQA database. arXiv 2018, arXiv:1803.08489. [Google Scholar]
- Fang, Y.; Zhu, H.; Zeng, Y.; Ma, K.; Wang, Z. Perceptual quality assessment of smartphone photography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3677–3686. [Google Scholar]
- Guan, X.; Li, F.; He, L. Quality Assessment on Authentically Distorted Images by Expanding Proxy Labels. Electronics 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y. Visual Quality Assessment for Natural and Medical Image; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef]
- Varga, D. No-Reference Image Quality Assessment with Global Statistical Features. J. Imaging 2021, 7, 29. [Google Scholar] [CrossRef]
- Krig, S. Computer Vision Metrics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rosten, E.; Drummond, T. Fusing points and lines for high performance tracking. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21 October 2005; Volume 2, pp. 1508–1515. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; Volume 15, pp. 10–5244. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Gool, L.V. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Las Vegas, NV, USA, 18–21 July 2011; pp. 2548–2555. [Google Scholar]
- Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE features. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 214–227. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Las Vegas, NV, USA, 18–21 July 2011; pp. 2564–2571. [Google Scholar]
- Shi, J.; Tomasi. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Hu, M.K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187. [Google Scholar]
- Liu, L.; Hua, Y.; Zhao, Q.; Huang, H.; Bovik, A.C. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process. Image Commun. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Moreno, P.; Bernardino, A.; Santos-Victor, J. Improving the SIFT descriptor with smooth derivative filters. Pattern Recognit. Lett. 2009, 30, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London Ser. B. Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Huang, J.S.; Tseng, D.H. Statistical theory of edge detection. Comput. Vis. Graph. Image Process. 1988, 43, 337–346. [Google Scholar] [CrossRef]
- Jenadeleh, M. Blind Image and Video Quality Assessment. Ph.D. Thesis, University of Konstanz, Konstanz, Germany, 2018. [Google Scholar]
- Kurimo, E.; Lepistö, L.; Nikkanen, J.; Grén, J.; Kunttu, I.; Laaksonen, J. The effect of motion blur and signal noise on image quality in low light imaging. In Proceedings of the Scandinavian Conference on Image Analysis, Oslo, Norway, 15–18 June; pp. 81–90.
- Crété-Roffet, F.; Dolmiere, T.; Ladret, P.; Nicolas, M. The blur effect: Perception and estimation with a new no-reference perceptual blur metric. In Proceedings of the SPIE Electronic Imaging Symposium Conf Human Vision and Electronic Imaging, San Jose, CA, USA, 29 January 29–1 February 2007. [Google Scholar]
- Choi, S.Y.; Luo, M.R.; Pointer, M.R.; Rhodes, P.A. Predicting perceived colorfulness, contrast, naturalness and quality for color images reproduced on a large display. In Proceedings of the Color and Imaging Conference, Society for Imaging Science and Technology, Portland, OR, USA, 10–14 November 2008; Volume 2008, pp. 158–164. [Google Scholar]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. In Proceedings of the Human Vision and Electronic Imaging VIII: International Society for Optics and Photonics, Santa Clara, CA, USA, 21–24 January 2003; Volume 5007, pp. 87–95. [Google Scholar]
- Tang, X.; Luo, W.; Wang, X. Content-based photo quality assessment. IEEE Trans. Multimed. 2013, 15, 1930–1943. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Kukkonen, H.; Rovamo, J.; Tiippana, K.; Näsänen, R. Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold. Vis. Res. 1993, 33, 1431–1436. [Google Scholar] [CrossRef]
- Michelson, A.A. Studies in Optics; Courier Corporation: Chelmsford, MA, USA, 1995. [Google Scholar]
- Matkovic, K.; Neumann, L.; Neumann, A.; Psik, T.; Purgathofer, W. Global contrast factor-a new approach to image contrast. In Proceedings of the Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging 2005, Girona, Spain, 18–20 May 2005; pp. 159–167. [Google Scholar]
- Tsai, D.Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J. Digit. Imaging 2008, 21, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, V.S.; Xydeas, C.S. Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 2004, 13, 228–237. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Kobayashi, T.; Otsu, N. Image feature extraction using gradient local auto-correlations. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 346–358. [Google Scholar]
- Chiberre, P.; Perot, E.; Sironi, A.; Lepetit, V. Detecting Stable Keypoints from Events through Image Gradient Prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1387–1394. [Google Scholar]
- Liu, A.; Lin, W.; Narwaria, M. Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 2011, 21, 1500–1512. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 223–276. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4. [Google Scholar]
- Motłoch, S.; Sarwas, G.; Dzieliński, A. Fractional Derivatives Application to Image Fusion Problems. Sensors 2022, 22, 1049. [Google Scholar] [CrossRef] [PubMed]
- Varga, D. Full-Reference Image Quality Assessment Based on Grünwald–Letnikov Derivative, Image Gradients, and Visual Saliency. Electronics 2022, 11, 559. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Elsevier: Amsterdam, The Netherlands, 1992; pp. 249–256. [Google Scholar]
- Robnik-Šikonja, M.; Kononenko, I. An adaptation of Relief for attribute estimation in regression. In Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), San Francisco, CA, USA, 8–12 July 1997; Volume 5, pp. 296–304. [Google Scholar]
- Chen, X.; Zhang, Q.; Lin, M.; Yang, G.; He, C. No-reference color image quality assessment: From entropy to perceptual quality. EURASIP J. Image Video Process. 2019, 2019, 77. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lin, W.; Fang, Y. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 2016, 23, 541–545. [Google Scholar] [CrossRef]
- Ou, F.Z.; Wang, Y.G.; Zhu, G. A novel blind image quality assessment method based on refined natural scene statistics. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–29 September 2019; pp. 1004–1008. [Google Scholar]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
Attribute | CLIVE [45] | KonIQ-10k [46] | SPAQ [47] |
---|---|---|---|
#Images | 1162 | 10,073 | 11,125 |
Resolution | |||
#Subjects | 8100 | 1,467 | 600 |
#Annotations | 1400 | 1,200,000 | 186,400 |
Scale of quality scores | 0–100 | 1–5 | 0–100 |
Subjective methodology | Crowdsourcing | Crowdsourcing | Laboratory |
Types of cameras | DSLR/DSC/SPHN | DSLR/DSC/SPHN | SPHN |
Year of publication | 2017 | 2018 | 2020 |
Computer model | STRIX Z270H Gaming |
Operating system | Windows 10 |
CPU | Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores) |
Memory | 15 GB |
GPU | Nvidia GeForce GTX 1080 |
Blur | 0.412 | 0.362 | 0.315 | 0.285 | 0.329 |
Colorfulness | 0.046 | 0.038 | 0.042 | 0.045 | 0.072 |
Chroma | 15.510 | 13.681 | 14.995 | 15.409 | 21.977 |
Color gradient-mean | 92.801 | 116.884 | 154.651 | 189.795 | 196.287 |
Color gradient-std | 132.693 | 163.876 | 207.837 | 244.420 | 235.855 |
DCF | 0.217 | 0.211 | 0.197 | 0.220 | 0.192 |
Michelson contrast | 2.804 | 2.832 | 2.911 | 2.937 | 2.953 |
RMS contrast | 0.201 | 0.201 | 0.219 | 0.222 | 0.223 |
GCF | 5.304 | 5.488 | 6.602 | 6.264 | 6.796 |
Entropy | 6.832 | 6.985 | 7.182 | 7.413 | 7.583 |
Blur | 0.109 | 0.096 | 0.075 | 0.067 | 0.093 |
Colorfulness | 0.050 | 0.033 | 0.037 | 0.039 | 0.049 |
Chroma | 12.698 | 8.143 | 9.680 | 8.927 | 11.720 |
Color gradient-mean | 45.480 | 66.164 | 89.762 | 96.283 | 99.800 |
Color gradient-std | 58.236 | 71.187 | 82.104 | 84.179 | 78.250 |
DCF | 0.141 | 0.122 | 0.117 | 0.115 | 0.105 |
Michelson contrast | 0.328 | 0.252 | 0.173 | 0.143 | 0.140 |
RMS contrast | 0.080 | 0.068 | 0.065 | 0.056 | 0.051 |
GCF | 1.934 | 1.665 | 1.761 | 1.857 | 1.746 |
Entropy | 1.019 | 0.966 | 0.748 | 0.532 | 0.227 |
SVR | GPR | |||||
---|---|---|---|---|---|---|
Method | PLCC | SROCC | KROCC | PLCC | SROCC | KROCC |
Feature descriptors, RGB image | 0.518 | 0.484 | 0.337 | 0.578 | 0.523 | 0.364 |
Feature descriptors, filtered image | 0.529 | 0.488 | 0.338 | 0.582 | 0.527 | 0.364 |
Hu invariant moments | 0.302 | 0.295 | 0.199 | 0.328 | 0.320 | 0.219 |
Perceptual features | 0.607 | 0.588 | 0.420 | 0.626 | 0.598 | 0.425 |
GL and gradient statistics | 0.528 | 0.492 | 0.343 | 0.541 | 0.495 | 0.343 |
All | 0.636 | 0.604 | 0.428 | 0.685 | 0.644 | 0.466 |
CLIVE [45] | KonIQ-10k [46] | |||||
---|---|---|---|---|---|---|
Method | PLCC | SROCC | KROCC | PLCC | SROCC | KROCC |
BLIINDS-II [23] | 0.473 | 0.442 | 0.291 | 0.574 | 0.575 | 0.414 |
BMPRI [12] | 0.541 | 0.487 | 0.333 | 0.637 | 0.619 | 0.421 |
BRISQUE [9] | 0.524 | 0.497 | 0.345 | 0.707 | 0.677 | 0.494 |
CurveletQA [10] | 0.636 | 0.621 | 0.421 | 0.730 | 0.718 | 0.495 |
DIIVINE [25] | 0.617 | 0.580 | 0.405 | 0.709 | 0.693 | 0.471 |
ENIQA [89] | 0.596 | 0.564 | 0.376 | 0.761 | 0.745 | 0.544 |
GRAD-LOG-CP [11] | 0.607 | 0.604 | 0.383 | 0.705 | 0.696 | 0.501 |
GWH-GLBP [90] | 0.584 | 0.559 | 0.395 | 0.723 | 0.698 | 0.507 |
NBIQA [91] | 0.629 | 0.604 | 0.427 | 0.771 | 0.749 | 0.515 |
OG-IQA [61] | 0.545 | 0.505 | 0.364 | 0.652 | 0.635 | 0.447 |
PIQE [16] | 0.172 | 0.108 | 0.081 | 0.208 | 0.246 | 0.172 |
SSEQ [92] | 0.487 | 0.436 | 0.309 | 0.589 | 0.572 | 0.423 |
FLG-IQA | 0.685 | 0.644 | 0.466 | 0.806 | 0.771 | 0.578 |
Method | PLCC | SROCC | KROCC |
---|---|---|---|
BLIINDS-II [23] | 0.676 | 0.675 | 0.486 |
BMPRI [12] | 0.739 | 0.734 | 0.506 |
BRISQUE [9] | 0.726 | 0.720 | 0.518 |
CurveletQA [10] | 0.793 | 0.774 | 0.503 |
DIIVINE [25] | 0.774 | 0.756 | 0.514 |
ENIQA [89] | 0.813 | 0.804 | 0.603 |
GRAD-LOG-CP [11] | 0.786 | 0.782 | 0.572 |
GWH-GLBP [90] | 0.801 | 0.796 | 0.542 |
NBIQA [91] | 0.802 | 0.793 | 0.539 |
OG-IQA [61] | 0.726 | 0.724 | 0.594 |
PIQE [16] | 0.211 | 0.156 | 0.091 |
SSEQ [92] | 0.745 | 0.742 | 0.549 |
FLG-IQA | 0.850 | 0.845 | 0.640 |
Direct Average | Weighted Average | |||||
---|---|---|---|---|---|---|
Method | PLCC | SROCC | KROCC | PLCC | SROCC | KROCC |
BLIINDS-II [23] | 0.574 | 0.564 | 0.397 | 0.620 | 0.618 | 0.443 |
BMPRI [12] | 0.639 | 0.613 | 0.420 | 0.683 | 0.669 | 0.459 |
BRISQUE [9] | 0.652 | 0.631 | 0.452 | 0.707 | 0.689 | 0.498 |
CurveletQA [10] | 0.720 | 0.704 | 0.473 | 0.756 | 0.741 | 0.495 |
DIIVINE [25] | 0.700 | 0.676 | 0.463 | 0.737 | 0.718 | 0.489 |
ENIQA [89] | 0.723 | 0.704 | 0.508 | 0.778 | 0.765 | 0.565 |
GRAD-LOG-CP [11] | 0.699 | 0.694 | 0.485 | 0.740 | 0.734 | 0.530 |
GWH-GLBP [90] | 0.703 | 0.684 | 0.481 | 0.755 | 0.740 | 0.519 |
NBIQA [91] | 0.734 | 0.715 | 0.494 | 0.779 | 0.763 | 0.522 |
OG-IQA [61] | 0.641 | 0.621 | 0.468 | 0.683 | 0.673 | 0.516 |
PIQE [16] | 0.197 | 0.170 | 0.115 | 0.208 | 0.194 | 0.127 |
SSEQ [92] | 0.607 | 0.583 | 0.427 | 0.661 | 0.650 | 0.480 |
FLG-IQA | 0.780 | 0.753 | 0.561 | 0.822 | 0.801 | 0.603 |
Method | CLIVE [45] | KonIQ-10k [46] | SPAQ [47] |
---|---|---|---|
BLIINDS-II [23] | 1 | 1 | 1 |
BMPRI [12] | 1 | 1 | 1 |
BRISQUE [9] | 1 | 1 | 1 |
CurveletQA [10] | 1 | 1 | 1 |
DIIVINE [25] | 1 | 1 | 1 |
ENIQA [89] | 1 | 1 | 1 |
GRAD-LOG-CP [11] | 1 | 1 | 1 |
GWH-GLBP [90] | 1 | 1 | 1 |
NBIQA [91] | 1 | 1 | 1 |
OG-IQA [61] | 1 | 1 | 1 |
PIQE [16] | 1 | 1 | 1 |
SSEQ [92] | 1 | 1 | 1 |
Method | PLCC | SROCC | KROCC |
---|---|---|---|
BLIINDS-II [23] | 0.107 | 0.090 | 0.063 |
BMPRI [12] | 0.453 | 0.389 | 0.298 |
BRISQUE [9] | 0.509 | 0.460 | 0.310 |
CurveletQA [10] | 0.496 | 0.505 | 0.347 |
DIIVINE [25] | 0.479 | 0.434 | 0.299 |
ENIQA [89] | 0.428 | 0.386 | 0.272 |
GRAD-LOG-CP [11] | 0.427 | 0.384 | 0.261 |
GWH-GLBP [90] | 0.480 | 0.479 | 0.328 |
NBIQA [91] | 0.503 | 0.509 | 0.284 |
OG-IQA [61] | 0.442 | 0.427 | 0.289 |
SSEQ [92] | 0.270 | 0.256 | 0.170 |
FLG-IQA | 0.613 | 0.571 | 0.399 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, D. No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features. J. Imaging 2022, 8, 173. https://doi.org/10.3390/jimaging8060173
Varga D. No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features. Journal of Imaging. 2022; 8(6):173. https://doi.org/10.3390/jimaging8060173
Chicago/Turabian StyleVarga, Domonkos. 2022. "No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features" Journal of Imaging 8, no. 6: 173. https://doi.org/10.3390/jimaging8060173
APA StyleVarga, D. (2022). No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features. Journal of Imaging, 8(6), 173. https://doi.org/10.3390/jimaging8060173