Advanced Computational Methods for Oncological Image Analysis
Acknowledgments
References
- Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.; Sardanelli, F. AI Applications to Medical Images: From Machine Learning to Deep Learning. Phys. Med. 2021, 83, 9–24. [Google Scholar] [CrossRef]
- Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A Survey on Nature-Inspired Medical Image Analysis: A Step Further in Biomedical Data Integration. Fund. Inform. 2019, 171, 345–365. [Google Scholar] [CrossRef]
- Badr, E. Images in Space and Time. ACM Comput. Surv. 2021, 54, 345–365. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Conti, V.; Militello, C.; Rundo, L.; Vitabile, S. A Novel Bio-Inspired Approach for High-Performance Management in Service-Oriented Networks. IEEE Trans. Emerg. Top. Comput. 2020. [Google Scholar] [CrossRef]
- Zaccagna, F.; Ganeshan, B.; Arca, M.; Rengo, M.; Napoli, A.; Rundo, L.; Groves, A.M.; Laghi, A.; Carbone, I.; Menezes, L.J. CT Texture-Based Radiomics Analysis of Carotid Arteries Identifies Vulnerable Patients: A Preliminary Outcome Study. Neuroradiology 2021, 63, 1043–1052. [Google Scholar] [CrossRef]
- Han, C.; Rundo, L.; Murao, K.; Nemoto, T.; Nakayama, H. Bridging the Gap Between AI and Healthcare Sides: Towards Developing Clinically Relevant AI-Powered Diagnosis Systems. In Proceedings of the 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, 5–7 June 2020; pp. 320–333. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Rundo, L.; Pirrone, R.; Vitabile, S.; Sala, E.; Gambino, O. Recent Advances of HCI in Decision-Making Tasks for Optimized Clinical Workflows and Precision Medicine. J. Biomed. Inform. 2020, 108, 103479. [Google Scholar] [CrossRef]
- Marias, K. The Constantly Evolving Role of Medical Image Processing in Oncology: From Traditional Medical Image Processing to Imaging Biomarkers and Radiomics. J. Imaging 2021, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Michael, E.; Ma, H.; Li, H.; Kulwa, F.; Li, J. Breast Cancer Segmentation Methods: Current Status and Future Potentials. Biomed Res. Int. 2021, 2021, 9962109. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, Z. A Review on Image-Based Approaches for Breast Cancer Detection, Segmentation, and Classification. Expert Syst. Appl. 2021, 182, 115204. [Google Scholar] [CrossRef]
- Mendes, J.; Matela, N. Breast Cancer Risk Assessment: A Review on Mammography-Based Approaches. J. Imaging 2021, 7, 98. [Google Scholar] [CrossRef]
- Ibrahim, S.; Nazir, S.; Velastin, S.A. Feature Selection Using Correlation Analysis and Principal Component Analysis for Accurate Breast Cancer Diagnosis. J. Imaging 2021, 7, 225. [Google Scholar] [CrossRef]
- Viegas, L.; Domingues, I.; Mendes, M. Study on Data Partition for Delimitation of Masses in Mammography. J. Imaging 2021, 7, 174. [Google Scholar] [CrossRef]
- Cuccaro, A.; Dell’Aversano, A.; Ruvio, G.; Browne, J.; Solimene, R. Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms. J. Imaging 2021, 7, 23. [Google Scholar] [CrossRef]
- Kurrant, D.; Omer, M.; Abdollahi, N.; Mojabi, P.; Fear, E.; LoVetri, J. Evaluating Performance of Microwave Image Reconstruction Algorithms: Extracting Tissue Types with Segmentation Using Machine Learning. J. Imaging 2021, 7, 5. [Google Scholar] [CrossRef]
- Providência, L.; Domingues, I.; Santos, J. An Iterative Algorithm for Semisupervised Classification of Hotspots on Bone Scintigraphies of Patients with Prostate Cancer. J. Imaging 2021, 7, 148. [Google Scholar] [CrossRef]
- Rundo, F.; Banna, G.L.; Prezzavento, L.; Trenta, F.; Conoci, S.; Battiato, S. 3D Non-Local Neural Network: A Non-Invasive Biomarker for Immunotherapy Treatment Outcome Prediction. Case-Study: Metastatic Urothelial Carcinoma. J. Imaging 2020, 6, 133. [Google Scholar] [CrossRef]
- Biratu, E.S.; Schwenker, F.; Debelee, T.G.; Kebede, S.R.; Negera, W.G.; Molla, H.T. Enhanced Region Growing for Brain Tumor MR Image Segmentation. J. Imaging 2021, 7, 22. [Google Scholar] [CrossRef]
- Magadza, T.; Viriri, S. Deep Learning for Brain Tumor Segmentation: A Survey of State-of-the-Art. J. Imaging 2021, 7, 19. [Google Scholar] [CrossRef]
- Biratu, E.S.; Schwenker, F.; Ayano, Y.M.; Debelee, T.G. A Survey of Brain Tumor Segmentation and Classification Algorithms. J. Imaging 2021, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Militello, C.; Rundo, L.; Vicari, F.; Agnello, L.; Borasi, G.; Vitabile, S.; Russo, G. A Computational Study on Temperature Variations in MRgFUS Treatments Using PRF Thermometry Techniques and Optical Probes. J. Imaging 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Sandeep Kumar, E.; Satya Jayadev, P. Deep learning for clinical decision support systems: A review from the panorama of smart healthcare. In Studies in Big Data; Springer: Cham, Switzerland, 2020; pp. 79–99. ISBN 9783030339654. [Google Scholar]
- Choi, G.H.; Yun, J.; Choi, J.; Lee, D.; Shim, J.H.; Lee, H.C.; Chung, Y.-H.; Lee, Y.S.; Park, B.; Kim, N.; et al. Development of Machine Learning-Based Clinical Decision Support System for Hepatocellular Carcinoma. Sci. Rep. 2020, 10, 14855. [Google Scholar] [CrossRef] [PubMed]
- Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al. USE-Net: Incorporating Squeeze-and-Excitation Blocks into U-Net for Prostate Zonal Segmentation of Multi-Institutional MRI Datasets. Neurocomputing 2019, 365, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M.; Pellino, S. Bucket of Deep Transfer Learning Features and Classification Models for Melanoma Detection. J. Imaging 2020, 6, 129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rundo, L.; Militello, C.; Conti, V.; Zaccagna, F.; Han, C. Advanced Computational Methods for Oncological Image Analysis. J. Imaging 2021, 7, 237. https://doi.org/10.3390/jimaging7110237
Rundo L, Militello C, Conti V, Zaccagna F, Han C. Advanced Computational Methods for Oncological Image Analysis. Journal of Imaging. 2021; 7(11):237. https://doi.org/10.3390/jimaging7110237
Chicago/Turabian StyleRundo, Leonardo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna, and Changhee Han. 2021. "Advanced Computational Methods for Oncological Image Analysis" Journal of Imaging 7, no. 11: 237. https://doi.org/10.3390/jimaging7110237
APA StyleRundo, L., Militello, C., Conti, V., Zaccagna, F., & Han, C. (2021). Advanced Computational Methods for Oncological Image Analysis. Journal of Imaging, 7(11), 237. https://doi.org/10.3390/jimaging7110237