The First Application of a Gd3Al2Ga3O12:Ce Single-Crystal Scintillator to Neutron Radiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neutron-Imaging System and Experimental Conditions
2.2. Methods for Calculating Spatial Resolution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boillat, P.; Lehmann, E.H.; Trtik, P.; Cochet, M. Neutron imaging of fuel cells—Recent trends and future prospects. Curr. Opin. Electrochem. 2017, 5, 3–10. [Google Scholar] [CrossRef]
- Liu, D.Q.; Shadike, Z.; Lin, R.Q.; Qian, K.; Li, H.; Li, K.K.; Wang, S.W.; Yu, Q.P.; Liu, M.; Ganapathy, S.; et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, 1806620. [Google Scholar] [CrossRef] [PubMed]
- Morgano, M.; Trtik, P.; Meyer, M.; Lehmann, E.H.; Hovind, J.; Strobl, M. Unlocking high spatial resolution in neutron imaging through an add-on fibre optics taper. Opt. Express 2018, 26, 1809–1816. [Google Scholar] [CrossRef]
- Trtik, P.; Lehmann, E.H. Progress in high-resolution neutron imaging at the Paul Scherrer Institut—The neutron microscope project. J. Phys. Conf. Ser. 2016, 746, 012004. [Google Scholar] [CrossRef] [Green Version]
- Trtik, P.; Meyer, M.; Wehmann, T.; Tengattini, A.; Atkins, D.; Lehmann, E.H.; Strobl, M. PSI ‘neutron microscope’ at ILL-D50 beamline—First results. Mater. Res. Proc. 2020, 15, 23–28. [Google Scholar]
- Minniti, T.; Tremsin, A.S.; Vituccic, G.; Kockelmann, W. Towards high-resolution neutron imaging on IMAT. J. Instrum. 2018, 13, C01039. [Google Scholar] [CrossRef]
- Borges, N.P.; Losko, A.S.; Vogel, S.C. Event centroiding applied to energy-resolved neutron imaging at LANSCE. J. Imaging 2018, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Hussey, D.S.; LaManna, J.M.; Baltic, E.; Jacobson, D.L. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators. Nucl. Instrum. Methods Phys. Res. A 2017, 866, 9–12. [Google Scholar] [CrossRef]
- Faenov, A.; Matsubayashi, M.; Pikuz, T.; Fukuda, Y.; Kando, M.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.; Shiozawa, M.; et al. Using LiF crystals for high-performance neutron imaging with micron-scale resolution. High Power Laser Sci. Eng. 2015, 3, e27. [Google Scholar] [CrossRef] [Green Version]
- Hirota, K.; Ariga, T.; Hino, M.; Ichikawa, G.; Kawasaki, S.; Kitaguchi, M.; Mishima, K.; Muto, N.; Naganawa, N.; Shimizu, H.M. Neutron imaging using a fine-grained nuclear emulsion. J. Imaging 2021, 7, 4. [Google Scholar] [CrossRef]
- Liu, D.; Hussey, D.; Gubarev, M.V.; Ramsey, B.D.; Jacobson, D.; Arif, M.; Moncton, D.E.; Khaykovich, B. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors. Appl. Phys. Lett. 2013, 102, 183508. [Google Scholar] [CrossRef]
- Graafsma, H.; Martin, T. Detectors for synchrotron tomography. In Advanced Tomographic Methods in Materials Research and Engineering; Banhart, J., Ed.; Oxford University Press: Oxford, UK, 2008; pp. 277–302. [Google Scholar]
- Tengattini, A.; Lenoir, N.; Andò, E.; Giroud, B.; Atkins, D.; Beaucour, J.; Viggiani, G. NeXT-Grenoble, the neutron and X-ray tomograph in Grenoble. Nucl. Instrum. Methods Phys. Res. A 2020, 968, 163939. [Google Scholar] [CrossRef]
- Williams, S.H.; Hilger, A.; Kardjilov, N.; Manke, I.; Strobl, M.; Douissard, P.A.; Martin, T.; Riesemeier, H.; Banhart, J. Detection system for microimaging with neutrons. J. Instrum. 2012, 7, P02014. [Google Scholar] [CrossRef] [Green Version]
- Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, M.; Fujimoto, Y.; Yoshikawa, A. 2-inch size single crystal growth and scintillation properties of new scintillator; Ce:Gd3Al2Ga3O12. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 1927–1929. [Google Scholar]
- Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, M.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 2012, 352, 88–90. [Google Scholar] [CrossRef]
- Kurosawa, S.; Shoji, Y.; Yokota, Y.; Kamada, K.; Chani, V.I.; Yoshikawa, A. Czochralski growth of Gd3(Al5−xGax)O12 (GAGG) single crystals and their scintillation properties. J. Cryst. Growth 2014, 393, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Som, S.; Jain, R.; Kunti, A.K. Spectral and CIE parameters of red emitting Gd3Ga5O12:Eu3+ phosphor. J. Lumin. 2015, 159, 317–324. [Google Scholar] [CrossRef]
- Taggart, M.P.; Nakhostin, M.; Sellin, P.J. Investigation into the potential of GAGG:Ce as a neutron detector. Nucl. Instrum. Methods. Phys. Res. A 2019, 931, 121–126. [Google Scholar] [CrossRef]
- Shinohara, T.; Kai, T.; Oikawa, K.; Nakatani, T.; Segawa, M.; Hiroi, K.; Su, Y.; Ooi, M.; Harada, M.; Iikura, H.; et al. The energy-resolved neutron imaging system, RADEN. Rev. Sci. Instrum. 2020, 91, 043302. [Google Scholar] [CrossRef] [PubMed]
- Grünzweig, C.; Frei, G.; Lehmann, E.; Kühne, G.; David, C. Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. Rev. Sci. Instrum. 2007, 78, 053708. [Google Scholar] [CrossRef] [PubMed]
- Spiegler, P.; Norman, A. The total unsharpness in radiography. Phys. Med. Biol. 1973, 18, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.A.; Wyman, D.R. Mathematics and Physics of Neutron Radiography; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1986; pp. 27–43. [Google Scholar]
- Tobin, K.W.; Bingham, P.R.; Gregor, J. Mathematics of neutron imaging. In Neutron Imaging and Applications; Anderson, I.S., McGreevy, R., Bilheux, H.Z., Eds.; Springer: Berlin, Germany, 2009; pp. 109–127. [Google Scholar]
- Martin, T.; Douissard, P.-A.; Seeley, Z.; Cherepy, N.; Payne, S.; Mathieu, E.; Schuladen, J. New high stopping power thin scintillators based on Lu2O3 and Lu3Ga5−xInxO12 for high resolution X-ray imaging. IEEE Trans. Nuclear Sci. 2012, 59, 2269–2274. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Pattanaboonmee, N.; Sakthong, O.; Chewpraditkul, W.; Yoshino, M.; Horiai, T.; Yoshikawa, A.; Gushchina, L.; Kamada, K.; Kurosawa, S.; et al. Luminescence and scintillation properties of Mg2+-codoped Lu0.6Gd2.4Al2Ga3O12:Ce single crystal. IEEE Trans. Nuclear Sci. 2020, 67, 904–909. [Google Scholar] [CrossRef]
- Kozlova, N.S.; Buzanov, O.A.; Kasimova, V.M.; Kozlova, A.P.; Zabelina, E.V. Optical characteristics of single crystal Gd3Al2Ga3O12:Ce. Mod. Electron. Mater. 2018, 4, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Kasimova, V.M.; Kozlova, N.S.; Buzanov, O.A.; Zabelina, E.V. Effect of Ca2+ and Zr4+ co-doping on the optical properties of Gd3Al2Ga3O12:Ce single crystals. Mod. Electron. Mater. 2019, 5, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Kochurikhin, V.; Kamada, K.; Kim, K.; Ivanov, M.; Gushchina, L.; Shoji, Y.; Yoshino, M.; Yoshikawa, A. Czochralski growth of 4-inch diameter Ce: Gd3Al2Ga3O12 single crystals for scintillator applications. J. Cryst. Growth 2020, 531, 125384. [Google Scholar] [CrossRef]
Spatial Resolution/μm | ||||
---|---|---|---|---|
Magnification | 1× | 2× | ||
FoV/mm2 | 13.3 × 13.3 | 6.6 × 6.6 | ||
L/D | 230 | 400 | 180 | 300 |
P43 (10 μm) | 23.8 | 25.5 | 12.9 | 13.8 |
GAGG (100 μm) | 16.6 | 15.0 | 13.0 | 10.5 |
GAGG (10 μm) | 12.6 | 11.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isegawa, K.; Setoyama, D.; Kimura, H.; Shinohara, T. The First Application of a Gd3Al2Ga3O12:Ce Single-Crystal Scintillator to Neutron Radiography. J. Imaging 2021, 7, 232. https://doi.org/10.3390/jimaging7110232
Isegawa K, Setoyama D, Kimura H, Shinohara T. The First Application of a Gd3Al2Ga3O12:Ce Single-Crystal Scintillator to Neutron Radiography. Journal of Imaging. 2021; 7(11):232. https://doi.org/10.3390/jimaging7110232
Chicago/Turabian StyleIsegawa, Kazuhisa, Daigo Setoyama, Hidehiko Kimura, and Takenao Shinohara. 2021. "The First Application of a Gd3Al2Ga3O12:Ce Single-Crystal Scintillator to Neutron Radiography" Journal of Imaging 7, no. 11: 232. https://doi.org/10.3390/jimaging7110232
APA StyleIsegawa, K., Setoyama, D., Kimura, H., & Shinohara, T. (2021). The First Application of a Gd3Al2Ga3O12:Ce Single-Crystal Scintillator to Neutron Radiography. Journal of Imaging, 7(11), 232. https://doi.org/10.3390/jimaging7110232