Signal Retrieval from Non-Sinusoidal Intensity Modulations in X-ray and Neutron Interferometry Using Piecewise-Defined Polynomial Function
Abstract
:1. Introduction
2. Methods
2.1. Periodic Polynomial (PP) Intensity Modulation (IM) Function
2.2. Processing
2.3. Periodic Artifacts
3. Simulation Results
3.1. Simulation of the Grating Interferometer Data
3.2. Comparison of Sinusoidal and PP Approach for Interferometric IMs
3.3. Periodic Fringe Artifacts Due to Sampling and Phase-Stepping Jitter
3.3.1. Simulated 2-Grating Interferometer with Precise Step Positions
3.3.2. Simulated 2-Grating Interferometer with Phase-Stepping Jitter
4. Experimental Results
4.1. Data Acquisition
4.2. Data Processing
4.2.1. Phase Retrieval from a Single Grating X-ray Interferometer
4.2.2. Dark-Field Signal from a Neutron Talbot–Lau Interferometer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DC | duty cycle |
DF | dark-field |
DPC | differential-phase contrast |
EM | expectation maximization |
IM | intensity modulation |
LS | least-square |
PP | periodic polynomial |
PPEM | periodic polynomial expectation maximization |
PPLS | periodic polynomial least square |
PSF | point spread function |
RMS | root-mean-square |
RSS | residual sum of squares |
SEM | sinusoidal expectation maximization |
SLS | sinusoidal least square |
References
- Bonse, U.; Hart, M. An X-ray Interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Ingal, V.N.; Beliaevskaya, E.A. X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J. Phys. D Appl. Phys. 1995, 28, 2314–2317. [Google Scholar] [CrossRef]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 356–358. [Google Scholar] [CrossRef]
- Momose, A.; Kawamoto, S.; Koyama, I.; Hamaishi, Y.; Takai, K.; Suzuki, Y. Demonstration of X-ray Talbot Interferometry. Jpn. J. Appl. Phys. 2003, 42, L866–L868. [Google Scholar] [CrossRef]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Grünzweig, C.; Bunk, O.; Frei, G.; Lehmann, E.; David, C. Neutron Phase Imaging and Tomography. Phys. Rev. Lett. 2006, 96, 215505. [Google Scholar] [CrossRef] [Green Version]
- Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Kohlbrecher, J.; Schäfer, R.; Lejcek, P.; Rønnow, H.M.R.; et al. Neutron Decoherence Imaging for Visualizing Bulk Magnetic Domain Structures. Phys. Rev. Lett. 2008, 101, 025504. [Google Scholar] [CrossRef] [Green Version]
- Munro, P.R.; Ignatyev, K.; Speller, R.D.; Olivo, A. Phase and absorption retrieval using incoherent X-ray sources. Proc. Natl. Acad. Sci. USA 2012, 109, 13922–13927. [Google Scholar] [CrossRef] [Green Version]
- Zanette, I.; Zhou, T.; Burvall, A.; Lundström, U.; Larsson, D.H.; Zdora, M.; Thibault, P.; Pfeiffer, F.; Hertz, H.M. Speckle-Based X-ray Phase-Contrast and Dark-Field Imaging with a Laboratory Source. Phys. Rev. Lett. 2014, 112, 253903. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef]
- Morgan, K.S.; Paganin, D.M.; Siu, K.K.W. Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid. Opt. Express 2011, 19, 19781. [Google Scholar] [CrossRef] [PubMed]
- Chabior, M. Contributions to the Characterization of Grating-Based X-ray Phase-Contrast Imaging. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2011. [Google Scholar]
- Weitkamp, T.; David, C.; Kottler, C.; Bunk, O.; Pfeiffer, F. Tomography with grating interferometers at low-brilliance sources. Dev. X-ray Tomogr. V 2006, 6318, 63180S. [Google Scholar] [CrossRef]
- Yaroshenko, A.; Bech, M.; Potdevin, G.; Malecki, A.; Biernath, T.; Wolf, J.; Tapfer, A.; Schüttler, M.; Meiser, J.; Kunka, D.; et al. Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer. Opt. Express 2014, 22, 547. [Google Scholar] [CrossRef]
- Suleski, T.J. Generation of Lohmann images from binary-phase Talbot array illuminators. Appl. Opt. 1997, 36, 4686–4691. [Google Scholar] [CrossRef]
- Hellbach, K.; Baehr, A.; De Marco, F.; Willer, K.; Gromann, L.B.; Herzen, J.; Dmochewitz, M.; Auweter, S.; Fingerle, A.A.; Noël, P.B.; et al. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography. Sci. Rep. 2018, 8, 2602. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Chen, J.; Zhu, P.; Yang, J.; Deng, S.; Shi, W.; Zhang, K.; Guo, J.; Zhang, H.; Zheng, H.; et al. Dual phase grating based X-ray differential phase contrast imaging with source grating: Theory and validation. Opt. Express 2020, 28, 9786–9801. [Google Scholar] [CrossRef]
- Chabior, M.; Schuster, M.; Goldammer, M.; Schroer, C.; Pfeiffer, F. Influence of the grating profiles on the image quality in grating-based x-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2012, 683, 71–77. [Google Scholar] [CrossRef]
- Revol, V.; Kottler, C.; Kaufmann, R.; Straumann, U.; Urban, C. Noise analysis of grating-based x-ray differential phase contrast imaging. Rev. Sci. Instrum. 2010, 81, 073709. [Google Scholar] [CrossRef]
- Wang, Z.; Han, B. Advanced iterative algorithm for randomly phase-shifted interferograms with intra- and inter-frame intensity variations. Opt. Lasers Eng. 2007, 45, 274–280. [Google Scholar] [CrossRef]
- Marschner, M.; Willner, M.; Potdevin, G.; Fehringer, A.; Noël, P.B.; Pfeiffer, F.; Herzen, J. Helical X-ray phase-contrast computed tomography without phase stepping. Sci. Rep. 2016, 6, 23953. [Google Scholar] [CrossRef]
- Vargas, J.; Quiroga, J.A.; Belenguer, T. Phase-shifting interferometry based on principal component analysis. Opt. Lett. 2011, 36, 1326–1328. [Google Scholar] [CrossRef] [Green Version]
- Pelzer, G.; Rieger, J.; Hauke, C.; Horn, F.; Michel, T.; Seifert, M.; Anton, G. Reconstruction method for grating-based x-ray phase-contrast images without knowledge of the grating positions. J. Instrum. 2015, 10, P12017. [Google Scholar] [CrossRef]
- Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G. Optimisation of image reconstruction for phase-contrast x-ray Talbot–Lau imaging with regard to mechanical robustness. Phys. Med. Biol. 2016, 61, 6441–6464. [Google Scholar] [CrossRef]
- Kaeppler, S.; Rieger, J.; Pelzer, G.; Horn, F.; Michel, T.; Maier, A.; Anton, G.; Riess, C. Improved reconstruction of phase-stepping data for Talbot-Lau x-ray imaging. J. Med. Imaging 2017, 4, 1–13. [Google Scholar] [CrossRef]
- De Marco, F.; Marschner, M.; Birnbacher, L.; Noël, P.; Herzen, J.; Pfeiffer, F. Analysis and correction of bias induced by phase stepping jitter in grating-based X-ray phase-contrast imaging. Opt. Express 2018, 26, 12707–12722. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Takano, H.; Momose, A. Improved reconstruction method for phase stepping data with stepping errors and dose fluctuations. Opt. Express 2020, 28, 16363. [Google Scholar] [CrossRef]
- Zdora, M.C. State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field Imaging. J. Imaging 2018, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Lian, S.; Yang, H.; Kudo, H.; Takano, H.; Momose, A. Phase shifting method for non-sinusoidal interference fringes with phase shift error. Jpn. J. Appl. Phys. 2019, 58, 112005. [Google Scholar] [CrossRef]
- Wilde, F.; Ogurreck, M.; Greving, I.; Hammel, J.U.; Beckmann, F.; Hipp, A.; Lottermoser, L.; Khokhriakov, I.; Lytaev, P.; Dose, T.; et al. Micro-CT at the imaging beamline P05 at PETRA III. AIP Conf. Proc. 2016, 1741, 030035. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Schillinger, B. ANTARES: Cold neutron radiography and tomography facility. J. Large-Scale Res. Facil. JLSRF 2015, 1, A17. [Google Scholar] [CrossRef] [Green Version]
- Neuwirth, T.; Backs, A.; Gustschin, A.; Vogt, S.; Pfeiffer, F.; Böni, P.; Schulz, M. A high visibility Talbot-Lau neutron grating interferometer to investigate stress-induced magnetic degradation in electrical steel. Sci. Rep. 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Gustschin, A.; Neuwirth, T.; Backs, A.; Schulz, M.; Pfeiffer, F. Fabrication of gadolinium particle-based absorption gratings for neutron grating interferometry. Rev. Sci. Instrum. 2018, 89, 103702. [Google Scholar] [CrossRef] [PubMed]
System | Source/Detector PSF | G DC | G DC | G DC |
---|---|---|---|---|
3-gratings | - | 0.2 | 0.5 | 0.4 |
2-gratings | 0.05 | - | 0.333 | 0.4 |
1-grating | 0.02 | - | 0.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzek, S.; Gustschin, A.; Neuwirth, T.; Backs, A.; Schulz, M.; Herzen, J.; Pfeiffer, F. Signal Retrieval from Non-Sinusoidal Intensity Modulations in X-ray and Neutron Interferometry Using Piecewise-Defined Polynomial Function. J. Imaging 2021, 7, 209. https://doi.org/10.3390/jimaging7100209
Pinzek S, Gustschin A, Neuwirth T, Backs A, Schulz M, Herzen J, Pfeiffer F. Signal Retrieval from Non-Sinusoidal Intensity Modulations in X-ray and Neutron Interferometry Using Piecewise-Defined Polynomial Function. Journal of Imaging. 2021; 7(10):209. https://doi.org/10.3390/jimaging7100209
Chicago/Turabian StylePinzek, Simon, Alex Gustschin, Tobias Neuwirth, Alexander Backs, Michael Schulz, Julia Herzen, and Franz Pfeiffer. 2021. "Signal Retrieval from Non-Sinusoidal Intensity Modulations in X-ray and Neutron Interferometry Using Piecewise-Defined Polynomial Function" Journal of Imaging 7, no. 10: 209. https://doi.org/10.3390/jimaging7100209
APA StylePinzek, S., Gustschin, A., Neuwirth, T., Backs, A., Schulz, M., Herzen, J., & Pfeiffer, F. (2021). Signal Retrieval from Non-Sinusoidal Intensity Modulations in X-ray and Neutron Interferometry Using Piecewise-Defined Polynomial Function. Journal of Imaging, 7(10), 209. https://doi.org/10.3390/jimaging7100209