On the Use of Deep Active Semi-Supervised Learning for Fast Rendering in Global Illumination
Abstract
:1. Introduction
- We used active semi-supervised learning for efficient stochastic noise detection in global illumination rendering algorithms.
- We combined active and semi-supervised learning to minimize the effect of imbalanced image classification in order to model the capability of the deep feature distribution for efficient noise detection.
- We extensively evaluated our algorithm on different global illumination scenes with different resolutions containing diffuse and specular surfaces. The proposed algorithm demonstrates outstanding performance compared with state-of-the-art algorithms applied for accelerating global illumination rendering.
- We made a comparative study based on memory space and computation time. We showed that our model is computational efficient for real world applications because it yielded a small questioning time on a block of images.
2. Related Work on Active Semi-Supervised Learning
3. Design of the Image Quality Database
4. The Proposed Method
4.1. Architecture of the Convolution Neural Network
4.2. Active Semi-Supervised Learning of Noise Features
4.2.1. Active Learning
4.2.2. Deep Semi-Supervised Learning
Algorithm 1 Deep active semi-supervised learning algorithm |
Require:Set of scenes; P: Number of iterations of active learning; S: Number of iterations of semi-supervised learning. |
|
5. Experimental Results
5.1. Experimental Setup
5.2. Parameter Fine-Tuning
5.3. Performance Comparison
5.3.1. Comparative Study with SVM
5.3.2. Comparison Based on Memory Space and Time Complexities
5.3.3. Comparison with Other State-of-the-Art Deep Learning Models
5.3.4. Comparison between Active and Semi-Supervised Learning
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Code and Data Availability Policies
References
- Wang, B.; Meng, X.; Xu, Y.; Song, X. Fast Point Based Global Illumination. In Proceedings of the 2011 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), Jinan, China, 15–17 September 2011; pp. 93–98. [Google Scholar]
- Ikeda, S.; Watanabe, S.; Raytchev, B.; Tamaki, T.; Kaneda, K. Spectral Rendering of Interference Phenomena Caused by Multilayer Films Under Global Illumination Environment. ITE Trans. Media Technol. Appl. 2015, 3, 76–84. [Google Scholar] [CrossRef]
- Popov, S.; Ramamoorthi, R.; Durand, F.; Drettakis, G. Probabilistic connections for bidirectional path tracing. Comput. Graph. Forum 2015, 34, 75–86. [Google Scholar] [CrossRef]
- Takouachet, N.; Delepoulle, S.; Renaud, C. A perceptual stopping condition for global illumination computations. In Proceedings of the 23rd Spring Conference on Computer Graphics, Budmerice, Slovakia, 26–28 April 2007; pp. 61–68. [Google Scholar]
- Lubin, J. A visual discrimination model for imaging system design and evaluation. In Vision Models for Target Detection and Recognition; Peli, E., Ed.; World Scientific: Singapore, 1995; pp. 245–283. [Google Scholar]
- Longhurst, P.; Chalmers, A. User validation of image quality assessment algorithms. In Proceedings of the TPCG 04: Theory and Practice of Computer Graphics, Bournemouth, UK, 8–10 June 2004; IEEE Computer Society: Washington, DC, USA, 2004; pp. 196–202, ISBN 0-7695-2137-1. [Google Scholar]
- Constantin, J.; Bigand, A.; Constantin, I. Pooling spike neural network for fast rendering in global illumination. Neural Comput. Appl. 2019, 69, 49–58. [Google Scholar] [CrossRef]
- Constantin, J.; Bigand, A.; Constantin, I.; Hamad, D. Image Noise Detection in Global Illumination Methods based on FRVM. NeuroComputing 2015, 64, 82–95. [Google Scholar] [CrossRef]
- Takouachet, N.; Delepoulle, S.; Renaud, C.; Zoghlami, N.; Tavares, J.R. Perception of noise and Global Illumination: Towards an automatic stopping criterion based on SVM. Comput. Graph. 2017, 69, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Wu, X.; Bongard, J.C. Active learning through adaptive heterogeneous ensembling. IEEE Trans. Knowl. Data Eng. 2015, 27, 368–381. [Google Scholar] [CrossRef]
- Xu, L.; Li, B.; Chen, E. Ensemble pruning via constrained eigenoptimization. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, ICDM, Brussels, Belgium, 10–13 December 2012; pp. 715–724. [Google Scholar]
- Maulik, U.; Chakraborty, D. A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognit. 2011, 44, 615–623. [Google Scholar] [CrossRef]
- Bianco, S.; Celona, L.; Napoletano, P.; Schettin, R. On the use of Deep Learning for Blind Image quality Assessment. arXiv 2016, arXiv:1602.05531, 1–7, 1–7. [Google Scholar] [CrossRef]
- Guo, H.; Wang, W. An Active Learning-based SVM Multi-Class Classification Model. Pattern Recognit. 2015, 48, 130–135. [Google Scholar] [CrossRef]
- Rhee, P.K.; Erdenee, E.; Kyun, S.D.; Ahmed, M.U.; Jin, S. Active and semi-supervised learning for object detection with imperfect data. Cogn. Syst. Res. 2017, 45, 109–1231. [Google Scholar] [CrossRef]
- Guangwu, A.; Minggang, S. Semi-Supervised Learning Based Social Image Semantic Mining Algorithm. J. Multimed. 2014, 9, 245–252. [Google Scholar]
- Richarz, J.; Vajda, S.; Grzeszick, R.; Fink, G. Semi-supervised learning for character recognition in historical archive documents. J. Pattern Recognit. 2014, 47, 1011–1020. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Litterature Survey; University of Wisconsin-Madison: Madison, WI, USA, 2009. [Google Scholar]
- Huang, T.; Yu, Y.; Guo, G. A classification algorithm based on local clusters with a few labeled training examples. Knowl. Based Syst. 2010, 23, 563–571. [Google Scholar] [CrossRef]
- Dornaika, F.; Traboulsi, Y.E.; Assoum, A. Inductive and Flexible Feature Extraction for Semi-Supervised Pattern Categorization. Pattern Recognit. 2016. [Google Scholar] [CrossRef]
- Ruz, G.A. Improving the performance of inductive learning classifiers through the presentation order of the training patterns. Expert Syst. Appl. 2016, 58, 1–9. [Google Scholar] [CrossRef]
- Zhu, R.; Dornaika, F.; Ruichek, Y. Semi-supervised elastic manifold embedding with deep learning architecture. Pattern Recognit. 2020, 107, 107425. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17, 1529–1541. [Google Scholar] [CrossRef] [Green Version]
- Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; Raiko, T. Semisupervised learning with ladder networks. Adv. Neural Inf. Process 2015, 14, 3546–3554. [Google Scholar]
- Tran, P.V. Semi-Supervised Learning with Self-Supervised Networks. Machine learning. CoRR 2019. Available online: https://128.84.21.199/abs/1906.10343v1 (accessed on 2 September 2020).
- Zhai, X.; Oliver, A.; Kolesnikov, A.; Beyer, L. Self-Supervised Semi-Supervised Learning. Computer Vision and Pattern Recognition. CoRR 2019. Available online: https://arxiv.org/pdf/1905.03670.pdf (accessed on 2 September 2020).
- Yan, W.; Sun, Q.; Sun, H.; Li, Y. Semi-supervised learning framework based on statiscal analysis for image set classification. Pattern Recognit. 2020, 107, 107500. [Google Scholar] [CrossRef]
- Li, C.; Wu, C. A new semi-supervised support vector machine learning algorithm based on active learning. In Proceedings of the International Conference on Future Computer and Communication, Wuhan, China, 21–24 May 2010; pp. 638–641. [Google Scholar]
- Leng, Y.; Xu, X.; Qi, G. Combining active learning and semi-supervised learning to construct SVM classifier. Knowl. Based Syst. 2013, 44, 121–131. [Google Scholar] [CrossRef]
- He, X.; Ji, M.; Bao, H. A Unified Active and Semi-supervised Learning Framework for Image Compression. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 65–72. [Google Scholar]
- Yu, D.; Varadarajan, B.; Deng, L.; Acero, A. Active learning and semisupervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion. Comput. Speech Lang. 2010, 24, 433–444. [Google Scholar] [CrossRef]
- Li, H.; Liao, X.; Carin, L. Active learning for semi-supervised multitask learning. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 1637–1640. [Google Scholar]
- Constantin, J.; Constantin, I.; Bigand, A.; Hamad, D. Perception of noise in Global Illumination based on Inductive Learning. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 5021–5028. [Google Scholar]
- Liu, X.; Pedersen, M.; Hardeberg, J. CID:IQ A New Image Quality Database. Image Signal Process. 2014, 8509, 193–202. [Google Scholar]
- Virtanen, T.; Nuutinen, M.; Vaahteranoksa, M.; Oittinen, P.; Häkkinen, J. CID2013: A Database for Evaluating No-Reference Image Quality Assessment algorithms. IEEE Trans. Image Process. 2015, 24, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Wald, I.; Kollig, T.; Benthin, C.; Keller, A.; Slusalleki, P. Interactive Global Illumination using Fast Ray Tracing. In Proceedings of the 13th Eurographics Workshop on Rendering, Pisa, Italy, 26–28 June 2002; pp. 15–24. [Google Scholar]
- Kollig, T.; Keller, A. Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration. In Monte Carlo and Quasi-Monte Carlo Methods 2000; Niederreiter, H., Fang, K., Hickernell, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 290–305. ISBN 978-3-540-42718-6. [Google Scholar]
- Hedman, P.; Karras, T.; Lehtinen, J. Sequential Monte Carlo instant radiosity. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Redmond, WA, USA, 26–28 February 2016; pp. 121–128. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNNfeatures off-the-shelf: An astounding baseline for recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition CVPR Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813. [Google Scholar]
- Makandar, A.; Halalli, B. Image Enhancement Techniques using Highpass and Lowpass Filters. Int. J. Comput. Appl. 2015, 109, 21–27. [Google Scholar] [CrossRef]
- Dawood, F.; Rahmat, R.; Kadiman, S.; Abdullah, L.; Zamrin, M. Effect Comparison of Speckle Noise Reduction Filters on 2D-echocardiographic. World Acad. Sci. Eng. Technol. 2012, 6, 425–430. [Google Scholar]
- Biswas, P.; Sarkar, A.; Mynuddin, M. Deblurring Images using a Wiener Filter. Int. J. Comput. Appl. 2015, 109, 36–38. [Google Scholar] [CrossRef]
- Gao, D.; Liao, Z.; Lv, Z.; Lu, Y. Multi-scale Statistical Signal Processing of Cutting Force in Cutting Tool Condition Monitoring. Int. J. Adv. Manuf. Technol. 2015, 90, 1843–1853. [Google Scholar] [CrossRef]
- Gou, H.; Swaminathan, A.; Wu, M. Intrinsic Sensor Noise Features for Forensic Analysis on Scanners and Scanned Images. IEEE Trans. Inf. Forensics Secur. 2009, 4, 476–491. [Google Scholar]
- Fernandez-Maloigne, C.; Robert-Inacio, F.; Macaire, L. Digital Color: Acquisition, Perception, Coding and Rendering; Chapter 9: Quality Assessment Approaches, 314 Pages; Wiley-ISTE: London, UK, 2012; ISBN 978-1-848-21346-3. [Google Scholar]
- Abin, A.A.; Beigy, H. Active selection of clustering constraints: A sequential approach. Pattern Recognit. 2014, 47, 443–458. [Google Scholar] [CrossRef]
- Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 1014–1031. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Koller, D. Support Vector Machine Active Learning with Applications to Text Classification. J. Mach. Learn. Res. 2000, 2, 45–66. [Google Scholar]
- Chapelle, O.; Scholkopf, B.; Zien, A. Semi-Supervised Learning; MIT Press: Cambridge, MA, USA, 2006; 528p, ISBN 9780262033589. [Google Scholar]
- Amorin, W.; Rosa, G.; Thomazella, R.; Castanho, J.E.C.; Dotto, F.R.L.; Junior, U.P.R.; Marana, A.N.; Beigy, J.P.P. Semi-supervised learning with connectivity-driven convolutional neural networks. Pattern Recognit. Lett. 2019, 128, 16–22. [Google Scholar] [CrossRef]
- Chen, D.G.; Wang, H.Y.; Tsang, E.C. Generalized Mercer theorem and its application to feature space related to indefinite kernels. In Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; Volume 2, pp. 774–777. [Google Scholar]
- Lipton, Z.; Elkan, C.; Narayanaswamy, B. Thresholding Classifiers to Maximize F1 Score. arXiv 2014, arXiv:1402.1892. [Google Scholar]
- Chollet, F. Deep Learning with Python; Manning Publications: Greenwich, CT, USA, 2017; 384p, ISBN 9781617294433. [Google Scholar]
- Falk, M.; Grottel, S.; Krone, M.; Reina, G. Interactive GPU-Based Visualization of Large Dynamic Particle Data; Morgan & Claypool: San Rafael, CA, USA, 2016; 122p, ISBN 978-1627052856. [Google Scholar]
Scenes with Resolution | Number of Paths between Two Successive Sub-Images | Largest Number of Paths |
---|---|---|
(g) | 5 | 700 |
(h) | 50 | 5000 |
(i) | 10 | 950 |
(j) | 50 | 5000 |
(k) | 10 | 950 |
(l) | 50 | 5000 |
Layers | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size | ||||||||||||
Padding | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Learning Model | Penality Factor C | Standard Deviation | Precision | Mean Number of Kernels |
---|---|---|---|---|
SVM | 8 | 50 | 96.24% | 1750 |
DSVM | 8 | 70 | 90.7% | 1970 |
Learning Model | Penality Factor C | Standard Deviation | Precision | Mean Number of Kernels |
---|---|---|---|---|
SVM | 8 | 70 | 97.50% | 1770 |
DSVM | 8 | 120 | 83.22% | 5350 |
Scenes | SVM | DSVM | ||
---|---|---|---|---|
(a) | 0 | [0–0.01] | [0–0.15] | [0–0.13] |
(b) | [0–0.07] | [0–0.02] | [0–0.14] | [0–0.14] |
(c) | [0–0.07] | 0 | [0–0.13] | [0–0.11] |
(d) | [0–0.06] | 0 | [0–0.07] | [0–0.05] |
(e) | [0–0.07] | [0–0.01] | [0–0.1] | [0-0.07] |
(f) | [0.04–0.13] | [0–0.09] | [0–0.09] | [0–0.07] |
Scenes | SVM | DSVM | ||
---|---|---|---|---|
(a) | 1 | 0.99 | 0.92 | 0.93 |
(b) | 0.95 | 0.99 | 0.94 | 0.95 |
(c) | 0.95 | 1 | 0.91 | 0.95 |
(d) | 0.96 | 1 | 0.94 | 0.97 |
(e) | 0.95 | 0.99 | 0.94 | 0.96 |
(f) | 0.86 | 0.97 | 0.92 | 0.95 |
Scenes | SVM | DSVM | ||
---|---|---|---|---|
(g) | 0 | [0–0.03] | [0–0.09] | [0.01–0.15] |
(h) | [0.15–0.27] | [0–0.03] | [0.07–0.19] | [0.03–0.15] |
(i) | [0–0.15] | [0–0.15] | [0–0.13] | [0–0.07] |
(j) | [0.05–0.13] | [0–0.01] | [0-0.11] | [0–0.11] |
(k) | [0.07–0.35] | [0–0.03] | [0-0.11] | [0–0.11] |
(l) | [0–0.05] | [0–0.03] | [0–0.09] | [0–0.05] |
Scenes | SVM | DSVM | ||
---|---|---|---|---|
(g) | 1 | 0.99 | 0.90 | 0.90 |
(h) | 0.63 | 0.99 | 0.77 | 0.85 |
(i) | 0.91 | 0.98 | 0.93 | 0.97 |
(j) | 0.90 | 0.99 | 0.91 | 0.95 |
(k) | 0.67 | 0.99 | 0.93 | 0.96 |
(l) | 0.97 | 0.99 | 0.96 | 0.97 |
Model | No. of Parameters | Learning Time (s) | Testing Time (s) |
---|---|---|---|
SVM | 20,038,855 | 4 | 0.17 |
DSVM | 42,120 | 1 | 0.008 |
16,106,455 | 8053 | 0.15 | |
69,768 | 2095 | 0.008 |
Model | Precision (%) |
---|---|
InceptionV3 | 76 |
MobileNet | 75 |
Resnet210 | 81 |
VGG19 | 86 |
99 | |
91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, I.; Constantin, J.; Bigand, A. On the Use of Deep Active Semi-Supervised Learning for Fast Rendering in Global Illumination. J. Imaging 2020, 6, 91. https://doi.org/10.3390/jimaging6090091
Constantin I, Constantin J, Bigand A. On the Use of Deep Active Semi-Supervised Learning for Fast Rendering in Global Illumination. Journal of Imaging. 2020; 6(9):91. https://doi.org/10.3390/jimaging6090091
Chicago/Turabian StyleConstantin, Ibtissam, Joseph Constantin, and André Bigand. 2020. "On the Use of Deep Active Semi-Supervised Learning for Fast Rendering in Global Illumination" Journal of Imaging 6, no. 9: 91. https://doi.org/10.3390/jimaging6090091
APA StyleConstantin, I., Constantin, J., & Bigand, A. (2020). On the Use of Deep Active Semi-Supervised Learning for Fast Rendering in Global Illumination. Journal of Imaging, 6(9), 91. https://doi.org/10.3390/jimaging6090091