Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging
Abstract
:1. Introduction
2. Methods
2.1. Simulation Methods
2.1.1. Full-Field Illumination System
2.1.2. Scanning System
2.2. Calculation of Optical Properties
2.3. Spatial Resolution
2.4. Simulation of Autofluorescence
3. Results
3.1. Maps of Photons Distribution
3.2. Surface Radiance
3.3. Spatial Resolution
3.4. Influence of Autofluorescence on Surface Radiance and Spatial Resolution
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Point Spread Function
FWHM Trans | FWHM Reflec | |||
---|---|---|---|---|
600 nm | mm | mm | mm | mm |
700 nm | mm | mm | mm | mm |
800 nm | mm | mm | mm | mm |
900 nm | mm | mm | mm | mm |
Appendix B. Calculation of SNR
Symbol | Meaning | Value |
---|---|---|
read noise of the CCD | 5 electrons | |
dark current of the CCD | 0.01 electrons/pixel | |
pixel area element of the CCD at the object plane | cm2 | |
collection solid angle of the CCD | steradian | |
quantum efficiency of the CCD | 0.85 | |
integration time of the CCD | 60 s | |
quantum efficiency of the PMT | 0.3 | |
dark current of the PMT | A | |
B | bandwidth of the PMT | 3 MHz |
References
- Wong, F.C.; Kim, E.E. A review of molecular imaging studies reaching the clinical stage. Eur. J. Radiol. 2009, 70, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Balas, C. Review of biomedical optical imaging—A powerful, noninvasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol. 2009, 20, 104020. [Google Scholar] [CrossRef]
- Hassan, M.; Klaunberg, B.A. Biomedical Applications of Fluorescence Imaging In Vivo. Comp. Med. 2004, 54, 635–644. [Google Scholar] [PubMed]
- Leblond, F.; Davis, S.C.; Valdés, P.A.; Pogue, B.W. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photoch. Photobiol. B. 2010, 98, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, J.; Rusin, O.; Lim, S.; Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pansare, V.J.; Hejazi, S.; Faenza, W.J.; Prud’homme, R.K. Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores, and Multifunctional Nano Carriers. Chem. Mater. 2012, 24, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Njiojob, C.N.; Owens, E.A.; Narayana, L.; Hyun, H.; Choi, H.S.; Henary, M. Tailored Near-Infrared Contrast Agents for Image Guided Surgery. J. Med. Chem. 2015, 58, 2845–2854. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Wang, H.; Zhang, A.; Zhao, C.; Chen, Y.; Li, X. Bright and stable near-infrared Pluronic-silica nanoparticles as contrast agents for in vivo optical imaging. J. Mater. Chem. B 2016, 4, 5560–5566. [Google Scholar] [CrossRef]
- Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79. [Google Scholar] [CrossRef]
- Mazhar, A.; Cuccia, D.J.; Gioux, S.; Durkin, A.J.; Frangioni, J.V.; Tromberg, B.J. Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging. J. Biomed. Opt. 2010, 15, 010506. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, D.J.; Bevilacqua, F.P.; Durkin, A.J.; Ayers, F.R.; Tromberg, B.J. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 2009, 14, 024012. [Google Scholar] [CrossRef] [PubMed]
- Hillman, E.; Burgess, S. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser Photonics Rev. 2009, 3, 159–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantoni, F.; Hervé, L.; Poher, V.; Gioux, S.; Mars, J.I.; Dinten, J.M. Laser line scanning for fluorescence reflectance imaging: A phantom study and in vivo validation of the enhancement of contrast and resolution. J. Biomed. Opt. 2014, 19, 106003. [Google Scholar] [CrossRef] [PubMed]
- Fantoni, F.; Herve, L.; Poher, V.; Gioux, S.; Mars, J.; Dinten, J.M. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging. J. Biomed. Opt. 2015, 20, 106003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghani, H.; Eames, M.E.; Yalavarthy, P.K.; Davis, S.C.; Srinivasan, S.; Carpenter, C.M.; Pogue, B.W.; Paulsen, K.D. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Commun. Numer. Methods. Eng. 2008, 6, 711–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Mather, M.L.; Morgan, S.P. Numerical Investigation of the Mechanisms of Ultrasound-Modulated Bioluminescence Tomography. IEEE. Trans. Biomed. Eng. 2015, 62, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Pichaandi, J.; van Veggel, F.C. Near-infrared emitting quantum dots: Recent progress on their synthesis and characterization. Coord. Chem. Rev. 2014, 263–264, 138–150. [Google Scholar] [CrossRef]
- Yuan, B. Ultrasound-modulated fluorescence based on a fluorophore-quencher-labeled microbubble system. J. Biomed. Opt. 2009, 14, 024043-11. [Google Scholar] [CrossRef]
- Dong, C.; Ren, J. Measurements for molar extinction coefficients of aqueous quantum dots. Analyst 2010, 135, 1395–1399. [Google Scholar] [CrossRef]
- Justo, Y.; Geiregat, P.; van Hoecke, K.; Vanhaecke, F.; De Mello Donega, C.; Hens, Z. Optical Properties of PbS/CdS Core/Shell Quantum Dots. J. Phys. Chem. C 2013, 117, 20171–20177. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef]
- Tabulated Molar Extinction Coefficient for Hemoglobin in Water. Available online: http://omlc.org/spectra/hemoglobin/summary.html (accessed on 4 March 1998).
- Barakat, R. Application of Apodization to Increase Two-Point Resolution by the Sparrow Criterion. I. Coherent Illumination. J. Opt. Soc. Am. 1962, 52, 276–283. [Google Scholar] [CrossRef]
- O’Leary, M.A.; Boas, D.A.; Chance, B.; Yodh, A.G. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography. Opt. Lett. 1995, 20, 426–428. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.A. Imaging with Diffuse Photon Density Waves. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 1995. [Google Scholar]
- Gardner, C.M.; Jacques, S.L.; Welch, A.J. Fluorescence spectroscopy of tissue: Recovery of intrinsic fluorescence from measured fluorescence. Appl. Opt. 1996, 35, 1780–1792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Theoretical Examinations of Optical Tomography through Scattering Medium. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2015. [Google Scholar]
- Strangman, G.E.; Li, Z.; Zhang, Q. Depth Sensitivity and Source-Detector Separations for Near Infrared Spectroscopy Based on the Colin27 Brain Template. PlOS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Hayashi, T.; Kato, T.; Okada, E. Evaluation of spatial resolution of near-infrared topography using spatial sensitivity profile. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 22 June 2003; Volume 5138, p. 5138. [Google Scholar] [CrossRef]
- Jin, T.; Imamura, Y. Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second OpticalWindow. ECS J. Solid State Sci. Technol. 2016, 5, R3138–R3145. [Google Scholar] [CrossRef]
- Hong, G.; Dai, H. In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes. In Vivo Fluorescence Imaging: Methods and Protocols; Bai, M., Ed.; Springer: New York, NY, USA, 2016; pp. 167–181. [Google Scholar]
- Tanner, M.G.; Choudhary, T.R.; Craven, T.H.; Mills, B.; Bradley, M.; Henderson, R.K.; Dhaliwal, K.; Thomson, R.R. Ballistic and snake photon imaging for locating optical endomicroscopy fibres. Biomed. Opt. Express 2017, 8, 4077–4095. [Google Scholar] [CrossRef]
- Duma, V.F.; Tankam, P.; Huang, J.; Won, J.; Rolland, J.P. Optimization of galvanometer scanning for optical coherence tomography. Appl. Opt. 2015, 54, 5495–5507. [Google Scholar] [CrossRef]
- Rice, B.W.; Cable, M.D.; Nelson, M.B. In vivo imaging of light-emitting probes. J. Biomed. Opt. 2001, 6, 432–440. [Google Scholar] [CrossRef]
- Industries, B. Photomultiplier Handbook; Burle Industries: Lancaster, PA, USA, 1980; pp. 60–61. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Grabowska, A.M.; Clarke, P.A.; Morgan, S.P. Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging. J. Imaging 2019, 5, 83. https://doi.org/10.3390/jimaging5110083
Zhang Q, Grabowska AM, Clarke PA, Morgan SP. Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging. Journal of Imaging. 2019; 5(11):83. https://doi.org/10.3390/jimaging5110083
Chicago/Turabian StyleZhang, Qimei, Anna M. Grabowska, Philip A. Clarke, and Stephen P. Morgan. 2019. "Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging" Journal of Imaging 5, no. 11: 83. https://doi.org/10.3390/jimaging5110083
APA StyleZhang, Q., Grabowska, A. M., Clarke, P. A., & Morgan, S. P. (2019). Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging. Journal of Imaging, 5(11), 83. https://doi.org/10.3390/jimaging5110083