Neutron Imaging at LANSCE—From Cold to Ultrafast
Abstract
:1. Introduction
2. Materials and Methods
3. Energy-Selective Neutron Imaging at 1FP-05
3.1. Instrument Setup
3.2. Data Processing
3.3. Application Examples
3.4. Water Transport in Plants
3.5. Large Area Thermal Neutron Imaging
4. High-Energy Neutron Imaging
4.1. The WNR 4FP60R Flight Path Imaging
4.2. Flat Panel Imaging System Results
4.3. High-Energy Neutron Time-of-Flight Imaging System Results
4.4. Multi-Modal and Multi-Energy Imaging
5. Cold Neutron Imaging at Target 1, Flight Path 11 (ASTERIX)
5.1. Lujan Center 1FP-11 Description
5.2. Phase Contrast Imaging Using a High Spatial Resolution Micro Channel Plate (MCP) Detector
5.3. Phase Contrast Imaging of Shielded Objects Using a–Si Detector
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kalimann, H. Neutron Radiography. Research 1948, 1, 254–260. [Google Scholar] [CrossRef]
- Brenizer, J.S. A review of significant advances in neutron imaging from conception to the present. Phys. Procedia 2013, 43, 10–20. [Google Scholar] [CrossRef]
- Peter, O. Neutronen-Durchleuchtung. Z. Naturforschung 1946, 1, 551–559. [Google Scholar]
- Berger, H. Neutron Radiography; Methods, Capabilities and Applications; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1965. [Google Scholar]
- Berger, H.; Iddings, F. Neutron Radiography—A State-of-the-Art Report. Nondestructive Testing Information Analysis Center Report NTIAC-SR-98-01. 1998. Available online: http://www.dtic.mil/get-tr-doc/pdf?AD=ADA355025 (accessed on 14 February 2018).
- Lehmann, E.H.; Vontobel, P.; Wiezel, L. Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestruct. Test. Eval. 2001, 16, 191–202. [Google Scholar] [CrossRef]
- Calzada, E.; Gruenauer, F.; Mühlbauer, M.; Schillinger, B.; Schulz, M. New design for the ANTARES-II facility for neutron imaging at FRM II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 605, 50–53. [Google Scholar] [CrossRef]
- Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Dawson, M.; Williams, S.; Banhart, J. Neutron tomography instrument CONRAD at HZB. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 651, 47–52. [Google Scholar] [CrossRef]
- Hussey, D.S.; Jacobson, D.L.; Arif, M.; Huffman, P.R.; Williams, R.E.; Cook, J.C. New neutron imaging facility at the NIST. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2005, 542, 9–15. [Google Scholar] [CrossRef]
- Kaestner, A.P.; Hartmann, S.; Kühne, G.; Frei, G.; Grünzweig, C.; Josic, L.; Schmid, F.; Lehmann, E.H. The ICON beamline—A facility for cold neutron imaging at SINQ. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 659, 387–393. [Google Scholar] [CrossRef]
- Sato, H.; Takada, O.; Iwase, K.; Kamiyama, T.; Kiyanagi, Y. Imaging of a spatial distribution of preferred orientation of crystallites by pulsed neutron Bragg edge transmission. J. Phys. Conf. Ser. 2010, 251, 012070. [Google Scholar] [CrossRef]
- Kiyanagi, Y.; Sato, H.; Kamiyama, T.; Shinohara, T. A new imaging method using pulsed neutron sources for visualizing structural and dynamical information. J. Phys. Conf. Ser. 2012, 340, 012010. [Google Scholar] [CrossRef]
- Kockelmann, W.; Zhang, S.Y.; Kelleher, J.F.; Nightingale, J.B.; Burca, G.; James, J.A. IMAT—A new imaging and diffraction instrument at ISIS. Phys. Procedia 2013, 43, 100–110. [Google Scholar] [CrossRef]
- RRDB Neutron Radiography Facilities. Available online: https://nucleus.iaea.org/RRDB/Content/Util /NeutronRadioGraphy.aspx (accessed on 14 February 2018).
- Lehmann, E.H. Neutron Imaging Facilities in a Global Context. J. Imaging 2017, 3, 52. [Google Scholar] [CrossRef]
- Lehmann, E.; Trtik, P.; Ridikas, D. Status and perspectives of neutron imaging facilities. Phys. Procedia 2017, 88, 140–147. [Google Scholar] [CrossRef]
- McDonald, T.E.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C. Time-gated energy-selected cold neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1999, 424, 235–241. [Google Scholar] [CrossRef]
- Kiyanagi, Y.; Kamiyama, T.; Iwasa, H.; Hiraga, F. Characteristics of a new type neutron radiography using time-of-flight method. Key Eng. Mater. 2004, 270, 1371–1375. [Google Scholar] [CrossRef]
- Silver, R.N. The Los Alamos Neutron Scattering Center. Physica B+C 1986, 137, 359–372. [Google Scholar] [CrossRef]
- Sachs, R.D.; Morris, R.A. Fail-Safe Neutron Shutter Used for Thermal Neutron Radiography; Los Alamos National Laboratory Report LA-6527, UC-38; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1976.
- Feiertag, T. Thermal Neutron Radiography at Los Alamos. In Proceedings of the Neutron Resonance Radiography Workshop, Los Alamos, NM, USA, 27–29 July 1987; Los Alamos National Laboratory Report, LA·UR-87-2474; Los Alamos National Laboratory: Los Alamos, NM, USA.
- Barton, J.P.; Bryant, L.E.; Berry, P.C. Multi-Purpose Neutron Radiography System. In Proceedings of the 5th World Conference on Neutron Radiography, Berlin, Germany, 17–20 June 1996. LA-UR-96-1975. [Google Scholar]
- King, N.S.; Ables, E.; Adams, K.; Alrick, K.R.; Amann, J.F.; Balzar, S.; Barnes, P.D., Jr.; Crow, M.L.; Cushing, S.B.; Eddleman, J.C.; et al. An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1999, 424, 84–91. [Google Scholar] [CrossRef]
- Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Surveillance: Radiographic imaging with cosmic-ray muons. Nature 2003, 422, 277. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.L.; Bacon, J.; Ban, Y.; Borozdin, K.; Fabritius, J.M.; Izumi, M.; Miyadera, H.; Mizokami, S.; Otsuka, Y.; Perry, J.; et al. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor. Appl. Phys. Lett. 2014, 104, 024110. [Google Scholar] [CrossRef]
- Muon scans confirm complete reactor meltdown at Fukushima Reactor #1—ExtremeTech. Available online: https://www.extremetech.com/extreme/201706-muon-scans-confirm-complete-reactor-meltdown-at-fukushima-reactor-1 (accessed on 14 February 2018).
- Guardincerri, E.; Durham, J.M.; Morris, C.; Bacon, J.D.; Daughton, T.M.; Fellows, S.; Morley, D.J.; Johnson, O.R.; Plaud-Ramos, K.; Poulson, D.C.; et al. Imaging the inside of thick structures using cosmic rays. AIP Adv. 2016, 6, 015213. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Anderson, J.A.; El Bedwei, F.; Burkhard, J.; Fakhry, A.; Girgis, A.; Goneid, A.; Hassan, F.; Iverson, D.; Lynch, G.; et al. Search for hidden chambers in the pyramids. Science 1970, 167, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Morishima, K.; Kuno, M.; Nishio, A.; Kitagawa, N.; Manabe, Y.; Moto, M.; Takasaki, F.; Fujii, H.; Satoh, K.; Kodama, H.; et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 2017, 552, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Gavron, A.; Morley, K.B.; Morris, C.; Seestrom, S.J.; Ullmann, J.L.; Yates, G.J.; Zumbro, J.D. High Energy Neutron Radiography. In Proceedings of the 5th International Conference on Applications of Nuclear Techniques, Heraklion, Greece, 9–15 June 1996. [Google Scholar]
- Claytor, T.N.; Taddeucci, T.N.; Hills, C.R.; Summa, D.A.; Davis, A.W.; McDonald, T.E.; Schwab, M.J. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector. Appl. Radiat. Isot. 2004, 61, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, P.W.; Schoenberg, K.F. The Los Alamos neutron science center. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 562, 910–914. [Google Scholar] [CrossRef]
- Lisowski, P.W.; Bowman, C.D.; Russell, G.J.; Wender, S.A. The Los Alamos national laboratory spallation neutron sources. Nucl. Sci. Eng. 1990, 106, 208–218. [Google Scholar] [CrossRef]
- Fernández, J.C.; Cort Gautier, D.; Huang, C.; Palaniyappan, S.; Albright, B.J.; Bang, W.; Dyer, G.; Favalli, A.; Hunter, J.F.; Mendez, J.; et al. Laser-plasmas in the relativistic-transparency regime: Science and applications. Phys. Plasmas. 2017, 24, 056702. [Google Scholar] [CrossRef] [PubMed]
- Guler, N.; Volegov, P.; Favalli, A.; Merrill, F.E.; Falk, K.; Jung, D.; Tybo, J.L.; Wilde, C.H.; Croft, S.; Danly, C.; et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility. J. Appl. Phys. 2016, 120, 154901. [Google Scholar] [CrossRef]
- Roth, M.; Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.; Gautier, D.; Geissel, M.; et al. Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 2013, 110, 044802. [Google Scholar] [CrossRef] [PubMed]
- Ino, T.; Ooi, M.; Kiyanagi, Y.; Kasugai, Y.; Maekawa, F.; Takada, H.; Muhrer, G.; Pitcher, E.J.; Russell, G.J. Measurement of neutron beam characteristics at the Manuel Lujan Jr. neutron scattering center. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2004, 525, 496–510. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Feller, W.B.; Downing, R.G. Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10 B doping. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2005, 539, 278–311. [Google Scholar] [CrossRef]
- Siegmund, O.H.; Vallerga, J.V.; Tremsin, A.S.; Mcphate, J.; Feller, B. High spatial resolution neutron sensing microchannel plate detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 576, 178–182. [Google Scholar] [CrossRef]
- Tremsin, A.S.; McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.; Feller, W.B.; Lehmann, E.; Dawson, M. Improved efficiency of high resolution thermal and cold neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 628, 415–418. [Google Scholar] [CrossRef]
- Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; et al. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC. J. Phys. Conf. Ser. 2016, 746, 012007. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Kockelmann, W.; Pooley, D.E.; Feller, W.B. Spatially resolved remote measurement of temperature by neutron resonance absorption. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 803, 15–23. [Google Scholar] [CrossRef]
- Mocko, M.; Muhrer, G.; Tovesson, F. Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 589, 455–464. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Vogel, S.C.; Mocko, M.; Bourke, M.A.; Yuan, V.; Nelson, R.O.; Brown, D.W.; Feller, W.B. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography. J. Nucl. Mater. 2013, 440, 633–646. [Google Scholar] [CrossRef]
- Yen, Y.F.; Bowman, J.D.; Bolton, R.D.; Crawford, B.E.; Delheij, P.P.J.; Hart, G.W.; Haseyama, T.; Frankle, C.M.; Iinuma, M.; Knudson, J.N.; et al. A high-rate 10 B-loaded liquid scintillation detector for parity-violation studies in neutron resonances. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2000, 447, 476–489. [Google Scholar] [CrossRef]
- Watanabe, K.; Minniti, T.; Kockelmann, W.; Dalgliesh, R.; Burca, G.; Tremsin, A.S. Evaluation of Wavelength-Dependent Detection Efficiency of Neutron-Sensitive Microchannel Plate Detector. Sens. Mater. 2017, 29, 1447–1453. [Google Scholar]
- Lynn, J.E.; Trela, W.J. Resonance neutron methods for determining statistical properties of phonon spectra. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 108, 147–158. [Google Scholar] [CrossRef]
- Lynn, J.E.; Trela, W.J.; Meggers, K. Neutron Doppler broadening studies of tantalum and tungsten metal. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2002, 192, 318–330. [Google Scholar] [CrossRef]
- Yuan, V.W.; Bowman, J.D.; Funk, D.J.; Morgan, G.L.; Rabie, R.L.; Ragan, C.E.; Quintana, J.P.; Stacy, H.L. Shock temperature measurement using neutron resonance spectroscopy. Phys. Rev. Lett. 2005, 94, 125504. [Google Scholar] [CrossRef] [PubMed]
- Lynn, J.E.; Kwei, G.H.; Trela, W.J.; Yuan, V.W.; Cort, B.; Martinez, R.J.; Vigil, F.A. Vibrational properties of Pu and Ga in a Pu-Ga alloy from neutron-resonance Doppler spectroscopy. Phys. Rev. B 1998, 58, 11408. [Google Scholar] [CrossRef]
- Tokuda, K.; Kamiyama, T.; Kiyanagi, Y.; Moreh, R.; Ikeda, S. Direct observation of effective temperature of Ta atom in layer compound TaS2 by neutron resonance absorption spectrometer. Jpn. J. Appl. Phys. 2001, 40, 1504. [Google Scholar] [CrossRef]
- Larson, N.M. Updated Users’ Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations; ORNL/TM-9179/R8; ENDF-364/R2; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2008. Available online: https://info.ornl.gov/sites/publications/files/Pub13056.pdf (accessed on 14 February 2018).
- Tremsin, A.S.; Losko, A.S.; Vogel, S.C.; Byler, D.D.; McClellan, K.J.; Bourke, M.A.; Vallerga, J.V. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging. AIP Adv. 2017, 7, 015315. [Google Scholar] [CrossRef]
- Morris, C.L.; Bourke, M.; Byler, D.D.; Chen, C.F.; Hogan, G.; Hunter, J.F.; Kwiatkowski, K.; Mariam, F.G.; McClellan, K.J.; Merrill, F.; et al. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets. Rev. Sci. Instrum. 2013, 84, 023902. [Google Scholar] [CrossRef] [PubMed]
- Tremsin, A.S.; Makowska, M.G.; Perrodin, D.; Shalapska, T.; Khodyuk, I.V.; Trtik, P.; Boillat, P.; Vogel, S.C.; Losko, A.S.; Strobl, M.; et al. In situ diagnostics of the crystal-growth process through neutron imaging: Application to scintillators. J. Appl. Crystallogr. 2016, 49, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Tremsin, A.S.; Perrodin, D.; Losko, A.S.; Vogel, S.C.; Shinohara, T.; Oikawa, K.; Peterson, J.H.; Zhang, C.; Derby, J.J.; Zlokapa, A.M.; et al. In-situ Observation of Phase Separation During Growth of Cs2LiLaBr6: Ce Crystals Using Energy-Resolved Neutron Imaging. Cryst. Growth Des. 2017, 17, 6372–6381. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Perrodin, D.; Losko, A.S.; Vogel, S.C.; Bourke, M.A.; Bizarri, G.A.; Bourret, E.D. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Tremsin, A.S.; Rakovan, J.; Shinohara, T.; Kockelmann, W.; Losko, A.S.; Vogel, S.C. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging. Sci. Rep. 2017, 7, 40759. [Google Scholar] [CrossRef] [PubMed]
- Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration. Forests 2017, 8, 350. [Google Scholar] [CrossRef]
- Windt, C.W.; Vergeldt, F.J.; DeJager, P.A.; VanAs, H. MRI of long-distance water transport: A comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006, 29, 1715–1729. [Google Scholar] [CrossRef] [PubMed]
- Edwards, W.; Jarvis, P. A method for measuring radial differences in water content of intact tree stems by attenuation of gamma radiation. Plant Cell Environ. 1983, 6, 255–260. [Google Scholar]
- Malone, M.W.; Yoder, J.; Hunter, J.F.; Espy, M.A.; Dickman, L.T.; Nelson, R.O.; Vogel, S.C.; Sandin, H.; Sevanto, S. In vivo observation of tree drought response with low-field NMR and neutron imaging. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Grodzins, L. Nuclear techniques for finding chemical explosives in airport luggage. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1991, 56, 829–833. [Google Scholar] [CrossRef]
- Vartsky, D.; Mor, I.; Goldberg, M.B.; Bar, D.; Feldman, G.; Dangendorf, V.; Tittelmeier, K.; Weierganz, M.; Bromberger, B.; Breskin, A. Novel detectors for fast-neutron resonance radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2010, 623, 603–605. [Google Scholar] [CrossRef]
- Bogue, R. Detecting explosives and chemical weapons: A review of recent developments. Sens. Rev. 2015, 35, 237–243. [Google Scholar] [CrossRef]
- Babai, R.W.; Sabo-Napadensky, I.; Bar, D.; Mor, I.; Tamim, N.; Dangendorf, V.; Tittelmeier, K.; Bromberger, B.; Weierganz, M. Fast Neutron Tomography of low-Z object in high-Z material shielding. Phys. Procedia 2015, 69, 275–283. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Watterson, J.I. Factors affecting image formation in accelerator-based fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1998, 139, 279–285. [Google Scholar] [CrossRef]
- Rahmanian, H.; Ambrosi, R.M.; Watterson, J.I. Optimisation of resolution in accelerator-based fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 477, 378–382. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Watterson, J.I. The effect of the imaging geometry and the impact of neutron scatter on the detection of small features in accelerator-based fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2004, 524, 340–354. [Google Scholar] [CrossRef]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; et al. Initial MCNP6 release overview. Nucl. Technol. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Medical Flat Panel Detectors | Varex. Available online: https://www.vareximaging.com/products/medical-flat-panel-detectors (accessed on 14 February 2018).
- Produkte Unsere Auswahl an Szintillatoren für die Bildgebung mittels Neutronen. Available online: http://www.rctritec.com/105/szintillatoren/produkte.html (accessed on 14 February 2018).
- Yoshii, K.; Miya, K. A study on the development of a fast neutron television converter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1993, 335, 513–522. [Google Scholar] [CrossRef]
- Princeton Instruments—PI-MAX4 emICCD and ICCD. Available online: https://www.princetoninstruments.com/products/PI-MAX4-emICCD (accessed on 14 February 2018).
- Spectral Instruments, Inc., 800S CCD Camera. Available online: http://www.specinst.com/Brochures% 20Rev%20B/800S-camera-broch_revB.pdf (accessed on 14 February 2018).
- Image Intensifiers—Products—Photek Limited. Available online: http://www.photek.com/products/image-intensifiers.html (accessed on 14 February 2018).
- Organic Scintillation Materials | Saint-Gobain Crystals. Available online: https://www.crystals.saint-gobain.com/products/organic-scintillation-materials (accessed on 14 February 2018).
- Eljen Technology—Organic Scintillators—Plastic Scintillators. Available online: http://www.eljentechnology.com/products/plastic-scintillators (accessed on 14 February 2018).
- Winch, N.M.; Madden, A.C.; Hunter, J.F.; Nelson, R.O. Detector Performance for Fast Neutron Radiography and Computed Tomography. IEEE Trans. Nucl. Sci. 2018. in preparation. [Google Scholar]
- Swift, A.; Schirato, R.; McKigney, E.; Hunter, J.; Temple, B. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE. Proc. SPIE 2015, 9595. [Google Scholar] [CrossRef]
- Madden, A.C.; Schirato, R.C.; Swift, A.L.; Cutler, T.E.; Mayo, D.R.; Hunter, J.F. Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System. IEEE Trans. Nucl. Sci. 2017, 64, 1810–1816. [Google Scholar] [CrossRef]
- Vansyoc, K.G.; Taddeucci, T.N.; Ragan, C.E., III; Claytor, T.N. Neutron-Transmission Techniques for Measurement of Hydrogen Loading in Organic Hydrogen Getters; Los Alamos National Laboratory Report LA-UR-05-2059; Los Alamos National Laboratory: Los Alamos, NM, USA, 2005.
- Schlenker, M.; Bauspiess, W.; Graeff, W.; Bonse, U.; Rauch, H. Imaging of ferromagnetic domains by neutron interferometry. J. Magn. Magn. Mater. 1980, 15, 1507–1509. [Google Scholar] [CrossRef]
- Allman, B.E.; McMahon, P.J.; Nugent, K.A.; Paganin, D.; Jacobson, D.L.; Arif, M.; Werner, S.A. Imaging: Phase radiography with neutrons. Nature 2000, 408, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Strobl, M.; Kardjilov, N.; Hilger, A.; Kühne, G.; Frei, G.; Manke, I. High-resolution investigations of edge effects in neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 604, 640–645. [Google Scholar] [CrossRef]
- Sato, H.; Sasaki, T.; Moriya, T.; Ishikawa, H.; Kamiyama, T.; Furusaka, M. High wavelength-resolution Bragg-edge/dip transmission imaging instrument with a supermirror guide-tube coupled to a decoupled thermal-neutron moderator at Hokkaido University Neutron Source. Phys. B Condens. Matter 2017. in proof. [Google Scholar] [CrossRef]
Flight Path/Instrument | En Range | Station Distance | L/D (Minimum) | Beam Dimensions | Integrated Flux 1 (n/cm2 s) |
---|---|---|---|---|---|
1FP-11 ASTERIX | 0.5–20 meV | 18–22 m | 1000 | 6 cm × 6 cm | 4.0 × 107 |
1FP-05 | 25 meV–10 keV | 6–10 m | 100 | 8 cm dia | 4.0 × 107 |
58–61 m | 725 | ~100 cm dia | 6.0 × 105 | ||
4FP-60R | 0.6–400 MeV | 20–23 m | 300(H)/700(V) | ≤30 cm × 20 cm | 2.0 × 106 |
Instrument | Scintillator Screen/Detector | Detector Pixel Pitch | Active Area/Field of View |
---|---|---|---|
Storage Phosphor Image Plate | Long-lived phosphor, Gd | ~70 µm | 20 cm × 25 cm to 40 cm × 40 cm |
a-Si Flat Panel | GadOx/ZnS:Cu | 100 or 200 µm | 400 mm × 400 mm |
Cooled CCD camera | Fast plastic, ZnS:Ag or Cu | 100 µm, typ. | ~200 mm dia. |
iCCD camera | Fast plastic | ~200 µm, typ. | ~200 mm dia. |
Doped MCP | 10B/Gd-doped glass MCP | 55 µm, 22 µm with centroiding | 28 mm × 28 mm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, R.O.; Vogel, S.C.; Hunter, J.F.; Watkins, E.B.; Losko, A.S.; Tremsin, A.S.; Borges, N.P.; Cutler, T.E.; Dickman, L.T.; Espy, M.A.; et al. Neutron Imaging at LANSCE—From Cold to Ultrafast. J. Imaging 2018, 4, 45. https://doi.org/10.3390/jimaging4020045
Nelson RO, Vogel SC, Hunter JF, Watkins EB, Losko AS, Tremsin AS, Borges NP, Cutler TE, Dickman LT, Espy MA, et al. Neutron Imaging at LANSCE—From Cold to Ultrafast. Journal of Imaging. 2018; 4(2):45. https://doi.org/10.3390/jimaging4020045
Chicago/Turabian StyleNelson, Ronald O., Sven C. Vogel, James F. Hunter, Erik B. Watkins, Adrian S. Losko, Anton S. Tremsin, Nicholas P. Borges, Theresa E. Cutler, Lee T. Dickman, Michelle A. Espy, and et al. 2018. "Neutron Imaging at LANSCE—From Cold to Ultrafast" Journal of Imaging 4, no. 2: 45. https://doi.org/10.3390/jimaging4020045
APA StyleNelson, R. O., Vogel, S. C., Hunter, J. F., Watkins, E. B., Losko, A. S., Tremsin, A. S., Borges, N. P., Cutler, T. E., Dickman, L. T., Espy, M. A., Gautier, D. C., Madden, A. C., Majewski, J., Malone, M. W., Mayo, D. R., McClellan, K. J., Montgomery, D. S., Mosby, S. M., Nelson, A. T., ... Winch, N. M. (2018). Neutron Imaging at LANSCE—From Cold to Ultrafast. Journal of Imaging, 4(2), 45. https://doi.org/10.3390/jimaging4020045