Compton Camera X-Ray Fluorescence Imaging Design and Image Reconstruction Algorithm Optimization
Abstract
1. Introduction
2. Theory
2.1. Two-Dimensional Reconstruction Algorithm Optimization
BEGIN Step 1: Data Collection Step 2: Hierarchical Data Preprocessing Step 3: Compton Scattering Angle Calculation and Cone Back-projection Step 4: Construction of Dynamic System Matrix and Quantification of Voxel Contribution Step 5: Iterative Optimization with TV Regularization for Voxel Intensity Update Step 6: Intermediate Result Output and Monitoring Step 7: Final Result Output END |
2.1.1. Compton Scattering and Cone Back-Projection
2.1.2. Dynamic System Matrix Construction
2.1.3. Voxel Association
2.1.4. TV Regularization Fusion Iterative Update
2.2. Three-Dimensional Reconstruction
BEGIN Step 1: Data Preparation and Reading Step 2: Voxel Modeling and Data Preprocessing Step 3: Anisotropic TV Regularization Step 4: Sparse Constraint in Wavelet Domain Step 5: 3D Visualization and Rendering END |
2.2.1. Anisotropic TV Regularization and Wavelet Sparse Constraints
2.2.2. Three-Dimensional Visualization Technique Based on Isosurface Rendering
3. Experimental Design
3.1. System Construction and Parameter Design
3.2. Data Acquisition and Performance Indicator Analysis
3.2.1. Effective Compton Event
3.2.2. Angle Resolution and Energy Resolution
3.2.3. Contrast-to-Noise Ratio (CNR) and Signal-to-Noise Ratio (SNR)
4. Results
4.1. System Performance Simulation Results
4.2. Image Reconstruction Results and Quantitative Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, B.-G.; Tao, F.; Yang, Y.-M.; Hu, T.; Wang, F.-X.; Du, G.-H.; Xue, Y.-L.; Tong, Y.-J.; Sun, T.-X.; Deng, B.; et al. X-ray fluorescence microtomography based on polycapillary-focused X-rays from laboratory source. Nucl. Sci. Tech. 2018, 29, 85. [Google Scholar] [CrossRef]
- La Riviere, P.; Vargas, P.; Xia, D.; Pan, X. Region of interest reconstruction in x-ray fluorescence computed tomography for negligible attenuation. IEEE Trans. Nucl. Sci. 2010, 57, 234–241. [Google Scholar] [CrossRef]
- Feng, P.; Cong, W.; Wei, B.; Wang, G. Analytic comparison between X-ray fluorescence CT and K-edge CT. IEEE Trans. Biomed. Eng. 2013, 61, 975–985. [Google Scholar] [CrossRef]
- Gao, B.; Aelterman, J.; Laforce, B.; Van Hoorebeke, L.; Vincze, L.; Boone, M. Self-Absorption Correction in X-Ray Fluorescence-Computed Tomography with Deep Convolutional Neural Network. IEEE Trans. Nucl. Sci. 2021, 68, 1194–1206. [Google Scholar] [CrossRef]
- Dunning, C.A.S.; Bazalova-Carter, M. Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles. Med. Phys. 2018, 45, 2572–2582. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, S.; Li, R.; Chen, Z. Full-field fan-beam x-ray fluorescence computed tomography with a conventional x-ray tube and photon-counting detectors for fast nanoparticle bioimaging. Opt. Eng. 2017, 56, 043106. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Li, L. Experimental demonstration of X-Ray Fluorescence CT using a spatially distributed multi-beam X-Ray source. Front. Phys. 2020, 8, 587625. [Google Scholar] [CrossRef]
- Takeda, S.; Aono, H.; Okuyama, S.; Ishikawa, S.-N.; Odaka, H.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Nakazawa, K.; Tajima, H.; et al. Experimental results of the gamma-ray imaging capability with a Si/CdTe semiconductor Compton camera. IEEE Trans. Nucl. Sci. 2009, 56, 783–790. [Google Scholar] [CrossRef]
- Chu, J.; Streicher, M.; Fessler, J.A.; He, Z. Unbiased Filtered Back-Projection in $4\pi $ Compton Imaging with 3D Position Sensitive Detectors. IEEE Trans. Nucl. Sci. 2016, 63, 2750–2756. [Google Scholar] [CrossRef]
- Phillips, G.W. Gamma-ray imaging with Compton cameras. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 99, 674–677. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Xu, Q.; Yan, L.-T.; Li, L.; Feng, S.-L.; Feng, X.-Q. Attenuation correction of L-shell X-ray fluorescence computed tomography imaging. Chin. Phys. C 2015, 39, 038203. [Google Scholar] [CrossRef]
- Jiang, S.; He, P.; Deng, L.; Chen, M.; Wei, B. Monte Carlo simulation for polychromatic x-ray fluorescence computed tomography with sheet-beam geometry. Int. J. Biomed. Imaging 2017, 2017, 7916260. [Google Scholar] [CrossRef]
- Yan, L.; Peng, F.; Ruge, Z.; Yi, Z.; Kang, A.; Peng, H.; Shenghao, Y.; Xiansheng, Z. Simulation research of potential contrast agents for x-ray fluorescence CT with photon counting detectors. Front. Phys. 2021, 9, 686988. [Google Scholar] [CrossRef]
- Vernekohl, D.; Ahmad, M.; Chinn, G.; Xing, L. X-ray fluorescence computed tomography with a compton camera for a clinical application. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; IEEE: New York, NY, USA, 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Vernekohl, D.; Ahmad, M.; Chinn, G.; Xing, L. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans. Phys. Med. Biol. 2016, 61, 8521. [Google Scholar] [CrossRef]
- Wu, C.; Wen, J.; Zhang, Y.; Zeng, M.; Li, L. Timepix3-based Single Layer X-ray Fluorescence Compton Camera. In Proceedings of the 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Piscataway, NJ, USA, 16–23 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wu, C.; Li, L. First results on Compton camera system used for x-ray fluorescence computed tomography. In Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography, Baltimore, MD, USA, 12–16 June 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12304, pp. 252–256. [Google Scholar] [CrossRef]
- Wu, C.; Li, L. First demonstration of Compton camera used for X-ray fluorescence imaging. IEEE Trans. Med. Imaging 2022, 42, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Salvo, K.; Defrise, M. A convergence proof of MLEM and MLEM-3 with fixed background. IEEE Trans. Med. Imaging 2018, 38, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Caucci, L.; Hunter, W.C.J.; Furenlid, L.R.; Barrett, H.H. List-mode MLEM image reconstruction from 3D ML position estimates. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; IEEE: New York, NY, USA, 2010; pp. 2643–2647. [Google Scholar] [CrossRef]
- Ren, Y.; Geng, C.; Yang, X.; Tang, L.; Tian, F.; Tang, X. Compton-camera-based radiopharmaceutical imaging with an attenuation-corrected LM-MLEM reconstruction strategy. Radiat. Meas. 2025, 181, 107379. [Google Scholar] [CrossRef]
- Le, N.; Snoussi, H.; Hmissi, Z.; Iltis, A.; Lebonvallet, G.; Zeufack, G.; Lyoussi, A.; D’eRrico, F.; Carette, M.; Joyce, M.; et al. An extended list-mode MLEM algorithm for 3D Compton image reconstruction from multi-view data. EPJ Web Conf. EDP Sci. 2023, 288, 06003. [Google Scholar] [CrossRef]
- Parajuli, R.K.; Sakai, M.; Parajuli, R.; Tashiro, M. Development and applications of Compton camera—A review. Sensors 2022, 22, 7374. [Google Scholar] [CrossRef]
- Zheng, Y.; Frame, E.A.; Caravaca, J.; Gullberg, G.T.; Vetter, K.; Seo, Y. A generalization of the maximum likelihood expectation maximization (MLEM) method: Masked-MLEM. Phys. Med. Biol. 2023, 68, 245014. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.P.; de Sá, L.V.; A Kitamikado, R.; Sapienza, M.T.; Bonifacio, D.A.B. Optimized Monte Carlo simulations for voxel-based internal dosimetry. Phys. Med. Biol. 2023, 68, 115004. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Belchior, A.; Beuve, M.; Chen, Y.; Di Maria, S.; Friedland, W.; Gervais, B.; Heide, B.; Hocine, N.; Ipatov, A.; et al. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys. Medica 2020, 69, 147–163. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.; Cheng, Y.; Su, C.; Liang, H.; Zhu, J. 3-D Image-Domain Least-Squares Reverse Time Migration with L1 Norm Constraint and Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 14. [Google Scholar] [CrossRef]
- Zhang, C.; Yen, K.S. Denoising on textured image using total generalized variation with overlapping group sparsity based on fast split bregman method. IEEE Access 2024, 12, 19145–19157. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Q.; Ning, J.; Muniru, A.N.; Shi, Z. A region fusion based split Bregman method for TV Denoising algorithm. Multimed. Tools Appl. 2021, 80, 15875–15900. [Google Scholar] [CrossRef]
- Guven, G.; Ates, H.F.; Ugurdag, H.F. X2V: 3D Organ Volume Reconstruction from a Planar X-Ray Image with Neural Implicit Methods. IEEE Access 2024, 12, 50898–50910. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, Y.; Fu, Y.; Zhou, H.; Chen, Z.; Xiao, C. Sparse RGB-D images create a real thing: A flexible voxel based 3D reconstruction pipeline for single object. Vis. Inform. 2023, 7, 66–76. [Google Scholar] [CrossRef]
- Qin, X.; Gao, X.; Yang, X.; Xie, M. Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization. Photonics 2024, 11, 71. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Liu, D. A nonlinear weighted anisotropic total variation regularization for electrical impedance tomography. arXiv 2022. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, Y.; Hu, F.; Zhang, S.; Wu, F.; Lin, F. NieR: Normal-Based Lighting Scene Rendering. arXiv 2024, arXiv:2405.13097. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, R. Animation rendering optimization based on ray tracing and distributed algorithm. Comput.-Aided Des. Appl. 2024, 32–47. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Salvat, F.; Fernández-Varea, J.; Sempau, J. PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport. In Proceedings of the Workshop Proceedings, Barcelona, Spain, 4–7 July 2006. [Google Scholar] [CrossRef]
- Sordo, S.D.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Szeles, C.; Bale, D.; Grosholz, J., Jr.; Smith, G.L.; Blostein, M.; Eger, J. Fabrication of high-performance CdZnTe quasi-hemispherical gamma-ray CAPture plus detectors. In Proceedings of the Hard X-Ray and Gamma-Ray Detector Physics and Penetrating Radiation Systems VIII, San Diego, CA, USA, 13–17 August 2006; SPIE: Bellingham, WA, USA, 2006; Volume 6319, pp. 37–45. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Ganesan, S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J. Nanomater. 2012, 2012, 734398. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Zhang, W.; Lu, H. Full-field in vivo imaging of nanoparticles using benchtop cone-beam XFCT system with pixelated photon counting detector. Phys. Med. Biol. 2023, 68, 035020. [Google Scholar] [CrossRef]
- Maki, K.; Inou, N.; Takanishi, A.; Miller, A.J. Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam X-ray computed tomography. Orthod. Craniofacial Res. 2003, 6, 95–101. [Google Scholar] [CrossRef]
- Tanguay, J.; Kim, J.; Kim, H.K.; Iniewski, K.; Cunningham, I.A. Frequency-dependent signal and noise in spectroscopic x-ray imaging. Med. Phys. 2020, 47, 2881–2901. [Google Scholar] [CrossRef]
- Fukazawa, Y.; Nakamoto, T.; Sawamoto, N.; Uno, S.; Ohsugi, T.; Tajima, H.; Takahashi, T.; Mitani, T.; Tanaka, T.; Nakazawa, K. Development of low-noise double-sided silicon strip detector for cosmic soft gamma-ray Compton Camera. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 541, 342–349. [Google Scholar] [CrossRef]
- Orita, T.; Yabu, G.; Yoneda, H.; Takeda, S.; Caradonna, P.; Takahashi, T.; Watanabe, S.; Uchida, Y.; Moriyama, F.; Sugawara, H.; et al. Double-photon emission imaging with high-resolution Si/CdTe Compton cameras. IEEE Trans. Nucl. Sci. 2021, 68, 2279–2285. [Google Scholar] [CrossRef]
- Odaka, H.; Takeda, S.; Watanabe, S.; Ishikawa, S.-N.; Ushio, M.; Tanaka, T.; Nakazawa, K.; Takahashi, T.; Tajima, H.; Fukazawa, Y. Performance study of Si/CdTe semiconductor Compton telescopes with Monte Carlo simulation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 579, 878–885. [Google Scholar] [CrossRef]
- Wu, C.; Li, L. Progress in Compton Camera Imaging Technology. Nucl. Technol. 2021, 44, 43–54. [Google Scholar]
- Yang, H.; Yuan, Z.; Xuem, D.; Jiang, J. Novel geometric design of circular absorber for improving detection efficiency of Compton cameras. J. Beijing Norm. Univ. (Nat. Sci.) 2023, 59, 230–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, Q.; Hao, F.; Guo, X.; Xiang, Y.; Chu, C.; Zeng, J.; Luo, F.; Ze, R. Evaluation of nuclear warhead symmetry detection by compton camera. Nucl. Technol. 2018, 204, 83–93. [Google Scholar] [CrossRef]
- Wagner, A.; Tan, W.; Chalut, K.; Charity, R.; Davin, B.; Larochelle, Y.; Lennek, M.; Liu, T.; Liu, X.; Lynch, W.; et al. Energy resolution and energy–light response of CsI (Tl) scintillators for charged particle detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 456, 290–299. [Google Scholar] [CrossRef]
- Delogu, P.; Di Trapani, V.; Brombal, L.; Mettivier, G.; Taibi, A.; Oliva, P. Optimization of the energy for breast monochromatic absorption X-ray Computed Tomography. Sci. Rep. 2019, 9, 13135. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zeng, L.; Yu, W.; Gong, C. Noise suppression–guided image filtering for low-SNR CT reconstruction. Med. Biol. Eng. Comput. 2020, 58, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
Algorithm Steps | Traditional LM-MLEM | Optimized Algorithm |
---|---|---|
Data preprocessing | Collecting Compton scattered photons | Add a noise filtering mechanism to eliminate invalid events |
System matrix | Fixed preset matrix | Collect effective Compton scattered photons and dynamically generate a system matrix |
Iterative process | Standard MLEM iterative updates are susceptible to noise induced oscillations | Introducing Total Variation (TV) regularization to suppress image noise and artifacts |
Rebuilding dimensions | 2D | 2D and 3D |
Energy (keV) | N | ||
---|---|---|---|
entry 1 | data | data | |
100 | 77.53 | 10.82 | 13,750 |
150 | 75.12 | 8.97 | 8323 |
200 | 74.30 | 7.70 | 6062 |
250 | 65.49 | 6.21 | 4988 |
300 | 53.06 | 5.65 | 4003 |
Algorithm Name | Traditional LM-MLEM | Optimized Algorithm |
---|---|---|
Hardware | I5-13500H processor, 16 GB, 12 cores and 16 threads, baseband of 2.5 GHz, maximum accelerated clock frequency of 4.7 GHz | |
Reconstruction time (h) | 5.2 | 3.3 |
Iteration time (mins) | 7 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Peng, K.; Feng, P.; Lin, C.; Geng, Q.; Zhang, J. Compton Camera X-Ray Fluorescence Imaging Design and Image Reconstruction Algorithm Optimization. J. Imaging 2025, 11, 300. https://doi.org/10.3390/jimaging11090300
Lu S, Peng K, Feng P, Lin C, Geng Q, Zhang J. Compton Camera X-Ray Fluorescence Imaging Design and Image Reconstruction Algorithm Optimization. Journal of Imaging. 2025; 11(9):300. https://doi.org/10.3390/jimaging11090300
Chicago/Turabian StyleLu, Shunmei, Kexin Peng, Peng Feng, Cheng Lin, Qingqing Geng, and Junrui Zhang. 2025. "Compton Camera X-Ray Fluorescence Imaging Design and Image Reconstruction Algorithm Optimization" Journal of Imaging 11, no. 9: 300. https://doi.org/10.3390/jimaging11090300
APA StyleLu, S., Peng, K., Feng, P., Lin, C., Geng, Q., & Zhang, J. (2025). Compton Camera X-Ray Fluorescence Imaging Design and Image Reconstruction Algorithm Optimization. Journal of Imaging, 11(9), 300. https://doi.org/10.3390/jimaging11090300