From Brain Lobes to Neurons: Navigating the Brain Using Advanced 3D Modeling and Visualization Tools
Abstract
1. Introduction
2. Materials and Methods
- Step 1: Downloaded raw images from the source.
- Step 2: Edit the raw images in Photoshop to isolate the brain from remaining structures of the head.
- Step 3: Import the edited image sequence into Fiji.
- Step 4: Stack the images in Fiji to create a 3D form.
- Step 5: Export the 3D form from Fiji to a .obj file format.
- Step 6: Import the 3D form into Rhino 6 for visual inspection.
- Step 7: Import the 3D form into Meshlab to apply post-processing, which includes cleaning the model, smoothing the surface, and then exporting again.
- Step 8: Import the 3D form into Houdini Fx.
- Step 9: Apply and animate an effect to slice the 3D form.
- Step 10: Export the animation as frames in .png format.
- Step 11: Apply and animate the painting and rotation of the 3D form.
- Step 12: Export the animation as frames .png format.
- Step 13: Apply and animate the growth form effect into the 3D form.
- Step 14: Export the animation as frames in .png format.
- Step 15: Apply neuron sculpting and animation in Cinema 4D.
- Step 16: Export animation as frames in .png format.
- Step 17: Create cortical column assembly in Cinema 4D.
- Step 18: Export animation as frames in .png format.
- Step 19: Import all rendered frames into Adobe After Effects.
- Step 20: Compile the imported frames in a layered sequence.
- Step 21: Apply annotation, color grading, and animations imported files.
- Step 22: Export as a single edited video in .mp4 file format.
2.1. Data Collection
2.2. Computer-Aided Modeling
2.3. Procedural Modeling
- Geometry: Within this component, we integrated models from prior steps and executed specific actions. For instance, ‘slicing’ was employed to segment the model, revealing particular sections, while ‘paint’ facilitated manual selection and animation of brain regions.
- Light: We chose specific lighting types to accentuate the model’s textures and details. Both ‘Area Light’ and ‘Spot Light’ were utilized, with adjustments made to their color, intensity, and spatial positioning.
- Camera: This represents the rendering scene’s viewpoint. We fine-tuned various parameters, including aperture, focal length, and clipping plane, to achieve the desired rendering effects.
- Material Palette: Within the ‘geometry’ component, the selected object’s material can be tailored. Our material strategy aimed to replicate a realistic appearance.
2.4. Video Compilation and Editing
2.5. Study Design and Hypotheses
2.6. Anatomical Validation
3. Results
3.1. Gross Brain Structure
3.2. Cortical Column
3.3. Pyramidal Neuron Morphology
3.4. Final Video
3.5. Classroom Study Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amunts, K.; Lepage, C.; Borgeat, L.; Mohlberg, H.; Dickscheid, T.; Rousseau, M.; Bludau, S.; Bazin, P.-L.; Lewis, L.B.; Ana-Maria Oros-Peusquens, N.; et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 2013, 340, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- DeFelipe, J.; Fariñas, I. The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 1992, 39, 563–607. [Google Scholar] [CrossRef]
- Sporns, O.; Chialvo, D.R.; Kaiser, M.; Hilgetag, C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 2004, 8, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.T.; Germine, L.T.; Ressler, K.J.; Rauch, S.L.; Carlezon, W.A. Digital devices and continuous telemetry: Opportunities for aligning psychiatry and neuroscience. Neuropsychopharmacology 2018, 43, 2499–2503. [Google Scholar] [CrossRef]
- Dombrowski, T.; Rankovic, V.; Moser, T. Toward the Optical Cochlear Implant. Cold Spring Harb. Perspect. Med. 2019, 9, a033225. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Atli, M.; Bennett, J.C.; Croal, M.; DeBattista, C.; Dunlop, B.W.; Feifel, D.; Hellerstein, D.J.; et al. Single-dose psilocybin for a treatment-resistant episode of major depression: Impact on patient-reported depression severity, anxiety, function, and quality of life. J. Affect. Disord. 2023, 327, 120–127. [Google Scholar] [CrossRef]
- Tyler, S.L.; Maltby, J.; Paterson, K.B.; Hutchinson, C.V. Reduced Vision-Related Quality of Life in Dementia: A Preliminary Report. J. Alzheimer’s Dis. 2022, 87, 239–246. [Google Scholar] [CrossRef]
- Brown, R.; Lau, H.; LeDoux, J.E. Understanding the Higher-Order Approach to Consciousness. Trends Cogn. Sci. 2019, 23, 754–768. [Google Scholar] [CrossRef]
- Seth, A.K.; Bayne, T. Theories of consciousness. Nat. Rev. Neurosci. 2022, 23, 439–452. [Google Scholar] [CrossRef]
- Tononi, G.; Edelman, G.M. Consciousness and Complexity. Science 1998, 282, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, J.M.; Roehrig, G.; Varma, S. Infusing Neuroscience Into Teacher Professional Development. Educ. Res. 2013, 42, 317–329. [Google Scholar] [CrossRef]
- Im, S.; Cho, J.-Y.; Dubinsky, J.M.; Varma, S. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths. PLoS ONE 2018, 13, e0192163. [Google Scholar] [CrossRef]
- Farmakopoulou, I.; Theodoratou, M.; Gkintoni, E. Neuroscience as a Component in Educational Setting. An Interpretive Overview. Tech. Educ. Humanit. 2023, 4, 1–7. [Google Scholar] [CrossRef]
- Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K. The WU-Minn Human Connectome Project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Amunts, K.; Hawrylycz, M.J.; Van Essen, D.C.; Van Horn, J.D.; Harel, N.; Poline, J.-B.; De Martino, F.; Bjaalie, J.G.; Dehaene-Lambertz, G.; Dehaene, S.; et al. Interoperable atlases of the human brain. Neuroimage 2014, 99, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Robert McNeel & Associates. Rhinoceros 3D for Windows, Version 6.0; Robert McNeel & Associates: Seattle, WA, USA, 2018. Available online: https://www.rhino3d.com/download/ (accessed on 28 October 2023).
- SideFX. SideFX Houdini for Windows, Version 18.5.596; SideFX: Toronto, ON, Canada, 2019. Available online: https://www.sidefx.com/buy/#houdini-free (accessed on 1 October 2023).
- Naiman, J.P.; Borkiewicz, K.; Christensen, A.J. Houdini for Astrophysical Visualization. Publ. Astron. Soc. Pac. 2017, 129, 058008. [Google Scholar] [CrossRef]
- Maxon. Maxon Cinema 4D for Windows, Version 2023.2.2; Maxon: Friedrichsdorf, Germany, 2013. Available online: https://www.maxon.net/en/downloads/cinema-4d-2023-downloads (accessed on 28 October 2023).
- Adobe Inc. Adobe After Effects for Windows, Version 2022; Adobe Inc.: San Jose, CA, USA, 2022. Available online: https://www.adobe.com/sa_en/products/aftereffects.html (accessed on 1 October 2023).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Method. 2012, 9, 676–682. [Google Scholar] [CrossRef]
- ISTI-CNR. Visual Computing Lab of ISTI-CNR Meshlab for Windows, Version 2022; ISTI-CNR: Pisa, Italy, 2022. Available online: https://www.meshlab.net/#download (accessed on 1 October 2023).
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–3 July 2008; pp. 129–136. [Google Scholar]
- Micheau, A.; Hoa, D. e-Anatomy. 2008. Available online: https://doi.org/10.37019/e-anatomy (accessed on 28 October 2023).
- Fischl, B. Freesurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- ImageJ. ImageJ Fiji for Windows 64-bit, Version 8; ImageJ: Bethesda, MD, USA, 2017. Available online: https://imagej.net/software/fiji/downloads (accessed on 29 October 2023).
- Ascoli, G.A.; Donohue, D.E.; Halavi, M. NeuroMorpho.Org: A central resource for neuronal morphologies. J. Neurosci. 2007, 27, 9247–9251. [Google Scholar] [CrossRef] [PubMed]
- Molnár, Z.; Rockland, K.S. Cortical Columns. In Neural Circuit and Cognitive Development; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–126. [Google Scholar] [CrossRef]
- Warling, A.; McDermott, C.L.; Liu, S.; Seidlitz, J.; Rodrigue, A.L.; Nadig, A.; Gur, R.C.; Gur, R.E.; Roalf, D.; Moore, T.M.; et al. Regional White Matter Scaling in the Human Brain. J. Neurosci. 2021, 41, 7015–7028. [Google Scholar] [CrossRef] [PubMed]
- Adobe Inc. Adobe Photoshop for Windows, Version 2022; Adobe Inc.: San Jose, CA, USA, 2022. Available online: https://www.adobe.com/products/photoshop.html (accessed on 1 October 2023).
- Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 1968, 195, 215–243. [Google Scholar] [CrossRef]
- Mountcastle, V.B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 1957, 20, 408–434. [Google Scholar] [CrossRef]
- Thomson, A.M. Functional maps of neocortical local circuitry. Front. Neurosci. 2007, 1, 19–42. [Google Scholar] [CrossRef]
- Glasser, M.F.; Coalson, T.S.; Robinson, E.C.; Hacker, C.D.; Harwell, J.; Yacoub, E.; Ugurbil, K.; Andersson, J.; Beckmann, C.F.; Jenkinson, M.; et al. A multi-modal parcellation of human cerebral cortex. Nature 2016, 536, 171–178. [Google Scholar] [CrossRef]
- Movshon, J.A.; Kiorpes, L. Analysis of the development of spatial contrast sensitivity in monkey and human infants. J. Opt. Soc. Am. A 1988, 5, 2166–2172. [Google Scholar] [CrossRef]
- Kapadia, M.K.; Ito, M.; Gilbert, C.D.; Westheimer, G. Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in VI of alert monkeys. Neuron 1995, 15, 843–856. [Google Scholar] [CrossRef]
- Braddick, O.J.; Atkinson, J. Development of human visual function. Vis. Res. 2011, 51, 1588–1609. [Google Scholar] [CrossRef]
- Atkinson, J. Visual brain development: A review of “dorsal stream vulnerability” motion, mathematics, amblyopia, actions, and attention. J. Vis. 2017, 17, 1–24. [Google Scholar] [CrossRef]
- Danka Mohammed, C.P.; Khalil, R. Postnatal Development of Visual Cortical Function in the Mammalian Brain. Front. Syst. Neurosci. 2020, 14, 29. [Google Scholar] [CrossRef]
- Khalil, R.; Farhat, A.; Dłotko, P. Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster Analysis. Front. Comput. Neurosci. 2021, 15, 667696. [Google Scholar] [CrossRef]
- Ahmed, N.; Fashner, J. Eye Conditions in Infants and Children: Amblyopia and Strabismus. FP Essent. 2019, 484, 18–22. [Google Scholar]
- Fakheir, Y.; Khalil, R. The effects of abnormal visual experience on neurodevelopmental disorders. Dev. Psychobiol. 2023, 65, e22408. [Google Scholar] [CrossRef]
- Bader, C.; Costa, J.; Lee, N.; Smith, R.; Ri, R.; Weaver, J.C.; Oxman, N. Computational methods for the characterization of Apis mellifera comb architecture. Commun. Biol. 2022, 5, 468. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Greuter, L.; De Rosa, A.; Cattin, P.; Croci, D.M.; Soleman, J.; Guzman, R. Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy. Neurosurg. Focus 2021, 51, E18. [Google Scholar] [CrossRef]
- Schloss, K.B.; Schoenlein, M.A.; Tredinnick, R.S.; Simon, M.; Nathaniel, R.; Chris, C.; Rokers, B. The UW Virtual Brain Project: An immersive approach to teaching functional neuroanatomy. Transl. Issues Psychol. Sci. 2021, 7, 297. [Google Scholar] [CrossRef]
- Hernández-Aceituno, J.; Arnay, R.; Hernández, G.; Ezama, L.; Janssen, N. Teaching the Virtual Brain. J. Digit. Imaging 2022, 35, 1599–1610. [Google Scholar] [CrossRef]
- García-Robles, P.; Cortés-Pérez, I.; Nieto-Escámez, F.A.; García-López, H.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Immersive VR and AR in anatomy education: A systematic review and meta-analysis. Anat. Sci. Educat. 2024, 17, 514–528. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Dun, A.; Zhong, N.; Ye, Z. 3D visualization technology for Learning human anatomy among medical students and residents: A meta- and regression analysis. BMC Med. Educ. 2024, 24, 461. [Google Scholar] [CrossRef]
- Aridan, N.; Bernstein-Eliav, M.; Gamzo, D.; Schmeidler, M.; Tik, N.; Tavor, I. Neuroanatomy in virtual reality: Development and pedagogical evaluation of photogrammetry-based 3D brain models. Anat. Sci. Educ. 2024, 17, 239–248. [Google Scholar] [CrossRef]
- Hanalioglu, S.; Gurses, M.E.; Baylarov, B.; Tunc, O.; Isikay, I.; Cagiltay, N.E.; Tatar, I.; Berker, M. Quantitative assessment and objective improvement of the accuracy of neurosurgical planning through digital patient-specific 3D models. Front. Surg. 2024, 11, 1386091. [Google Scholar] [CrossRef] [PubMed]
Term | Odds Ratio | 95% CI (Lower) | 95% CI (Upper) | p-Value |
---|---|---|---|---|
Group (Exp vs. Ctrl) | 1.91 | 1.04 | 3.51 | 0.038 |
Time (Post vs. Pre) | 2.11 | 1.5 | 2.96 | <0.001 |
Interaction | 1.07 | 0.65 | 1.74 | 0.801 |
Likert2 vs. Likert1 | 1.58 | 1.19 | 2.09 | 0.001 |
Likert3 vs. Likert1 | 3.57 | 2.42 | 5.28 | <0.001 |
Group | Item | Median Pre | Median Post | p-Value |
---|---|---|---|---|
Control | Likert 1 | 2 | 3 | 0.0001 |
Control | Likert 2 | 3 | 3 | 0.0325 |
Control | Likert 3 | 3 | 4 | 0.227 |
Experimental | Likert 1 | 3 | 4 | <0.0001 |
Experimental | Likert 2 | 3 | 3 | 0.0465 |
Experimental | Likert 3 | 4 | 4 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowaizak, M.; Farhat, A.; Khalil, R. From Brain Lobes to Neurons: Navigating the Brain Using Advanced 3D Modeling and Visualization Tools. J. Imaging 2025, 11, 298. https://doi.org/10.3390/jimaging11090298
Rowaizak M, Farhat A, Khalil R. From Brain Lobes to Neurons: Navigating the Brain Using Advanced 3D Modeling and Visualization Tools. Journal of Imaging. 2025; 11(9):298. https://doi.org/10.3390/jimaging11090298
Chicago/Turabian StyleRowaizak, Mohamed, Ahmad Farhat, and Reem Khalil. 2025. "From Brain Lobes to Neurons: Navigating the Brain Using Advanced 3D Modeling and Visualization Tools" Journal of Imaging 11, no. 9: 298. https://doi.org/10.3390/jimaging11090298
APA StyleRowaizak, M., Farhat, A., & Khalil, R. (2025). From Brain Lobes to Neurons: Navigating the Brain Using Advanced 3D Modeling and Visualization Tools. Journal of Imaging, 11(9), 298. https://doi.org/10.3390/jimaging11090298