The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. General Pipeline
2.2. Neural Network Architecture
2.3. Dataset Preparation
2.4. Neural Network Training
2.4.1. Voxel Loss
2.4.2. Centerline Loss
2.4.3. Loss Normalization
2.4.4. Training Hyperparameters
3. Results
3.1. Evaluation Metrics
3.2. Comparative Results of Proposed Method with Other Baseline Methods
3.3. Robustness Comparison of the Proposed Algorithm and VMTK for Centerline Extraction
3.4. Robustness Evaluation of the Proposed Method Under CTA Image Artifacts
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Task Name | Segmentation | Centerline Extraction | ||||
---|---|---|---|---|---|---|
Architecture | Max BS ↑ | VD (%) ↑ | SD-1 (%) ↑ | SD-3 (%) ↑ | HD (mm) ↓ | ASSD (mm) ↓ |
Resnet 18 | 4 | 89.362.01 | 69.748.67 | 97.482.41 | 3.011.88 | 1.010.24 |
Resnet 34 | 2 | 87.784.56 | 25.8113.49 | 63.9819.01 | 8.073.44 | 3.131.31 |
Resnet 50 | 1 | 86.415.18 | 29.7815.89 | 66.3925.59 | 21.2719.21 | 4.854.22 |
Densenet 121 | 1 | 85.186.17 | 19.0111.08 | 49.2523.76 | 19.6411.57 | 5.513.74 |
EffitientnetV2 b0 | 4 | 91.09 ± 0.02 | 72.52 ± 8.96 | 97.65 ± 2.07 | 2.74 ± 0.81 | 0.93 ± 0.21 |
Appendix B
SD-1 (%) ↑ | SD-3 (%) ↑ | HD (mm) ↓ | ASSD (mm) ↓ |
---|---|---|---|
72.080.38 | 97.460.21 | 2.690.04 | 0.930.04 |
Appendix C
Appendix D
VD (%) ↑ | |
---|---|
nnU-net | 91.93 ± 0.02 |
Proposed NN | 91.090.02 |
Proposed NN only mask segmentation | 90.830.02 |
References
- Boix-Garibo, R.; Uzzaman, M.M.; Bapat, V.N. Review of minimally invasive aortic valve surgery. Interv. Cardiol. Rev. 2015, 10, 144. [Google Scholar] [CrossRef]
- Luo, Z.; Cai, J.; Peters, T.M.; Gu, L. Intra-operative 2-D ultrasound and dynamic 3-D aortic model registration for magnetic navigation of transcatheter aortic valve implantation. IEEE Trans. Med. Imaging 2013, 32, 2152–2165. [Google Scholar]
- Shimura, S.; Odagiri, S.; Furuya, H.; Okada, K.; Ozawa, K.; Nagase, H.; Yamaguchi, M.; Cho, Y. Echocardiography-guided aortic cannulation by the Seldinger technique for type A dissection with cerebral malperfusion. J. Thorac. Cardiovasc. Surg. 2020, 159, 784–793. [Google Scholar] [CrossRef]
- Kumar, P.; Bhatia, M. Role of computed tomography in postoperative follow-up of arterial switch operation. J. Cardiovasc. Imaging 2020, 29, 1. [Google Scholar] [CrossRef]
- Buijs, R.V.; Zeebregts, C.J.; Willems, T.P.; Vainas, T.; Tielliu, I.F. Endograft sizing for endovascular aortic repair and incidence of endoleak type 1A. PLoS ONE 2016, 11, e0158042. [Google Scholar] [CrossRef]
- Chiesa, R.; Melissano, G.; Zangrillo, A.; Coselli, J.S. Thoraco-Abdominal Aorta: Surgical and Anesthetic Management; Springer: Berlin/Heidelberg, Germany, 2011; Volume 783. [Google Scholar]
- Fedotova, Y.; Kalachev, I.; Epifanov, R.; Totmina, E.; Borisova, K.; Lysikov, D.; Karpenko, A.; Mullyadzhanov, R. Association of hemodynamics and morphology with local surface growth of abdominal aortic aneurysm using spatial pattern analysis. Phys. Fluids 2025, 37, 021919. [Google Scholar] [CrossRef]
- Simakov, S.S. Modern methods of mathematical modeling of blood flow using reduced order methods. Comput. Res. Model. 2018, 10, 581–604. [Google Scholar] [CrossRef]
- Yagis, E.; Aslani, S.; Jain, Y.; Zhou, Y.; Rahmani, S.; Brunet, J.; Bellier, A.; Werlein, C.; Ackermann, M.; Jonigk, D.; et al. Deep Learning for Vascular Segmentation and Applications in Phase Contrast Tomography Imaging. arXiv 2023, arXiv:2311.13319. [Google Scholar]
- Li, Z.; Feng, J.; Feng, Z.; An, Y.; Gao, Y.; Lu, B.; Zhou, J. Lumen segmentation of aortic dissection with cascaded convolutional network. In Proceedings of the Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges: 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Revised Selected Papers 9. Springer: Berlin/Heidelberg, Germany, 2019; pp. 122–130. [Google Scholar]
- Dou, Q.; Yu, L.; Chen, H.; Jin, Y.; Yang, X.; Qin, J.; Heng, P.A. 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 2017, 41, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Shi, R.; Ge, Y.; Xing, L.; Zuo, P.; Jia, Y.; Liu, J.; He, Y.; Wang, X.; Luan, S.; et al. Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning. Eur. J. Radiol. 2019, 121, 108713. [Google Scholar] [CrossRef] [PubMed]
- Epifanov, R.U.; Nikitin, N.A.; Rabtsun, A.A.; Kurdyukov, L.N.; Karpenko, A.A.; Mullyadzhanov, R.I. Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case. Computer Optics 2024, 48, 418–424. [Google Scholar] [CrossRef]
- Sveinsson Cepero, N.; Shadden, S.C. SeqSeg: Learning Local Segments for Automatic Vascular Model Construction. Ann. Biomed. Eng. 2024, 53, 158–179. [Google Scholar] [CrossRef]
- Sobiecki, A.; Yasan, H.C.; Jalba, A.C.; Telea, A.C. Qualitative comparison of contraction-based curve skeletonization methods. In Proceedings of the Mathematical Morphology and Its Applications to Signal and Image Processing: 11th International Symposium, ISMM 2013, Uppsala, Sweden, 27–29 May 2013; Proceedings 11. Springer: Berlin/Heidelberg, Germany, 2013; pp. 425–439. [Google Scholar]
- Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 2008, 46, 1097–1112. [Google Scholar] [CrossRef]
- Wang, Z.; Chi, Y.; Huang, W.; Venkatesh, S.K.; Tian, Q.; Oo, T.; Zhou, J.; Xiong, W.; Liu, J. Comparisons of centerline extraction methods for liver blood vessels in ImageJ and 3D slicer. In Proceedings of the 2nd Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2010, Biopolis, Singapore, 14–17 December 2010; pp. 276–279. [Google Scholar]
- Arthurs, C.J.; Khlebnikov, R.; Melville, A.; Marčan, M.; Gomez, A.; Dillon-Murphy, D.; Cuomo, F.; Silva Vieira, M.; Schollenberger, J.; Lynch, S.R.; et al. CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation. PLoS Comput. Biol. 2021, 17, e1008881. [Google Scholar] [CrossRef]
- Piccinelli, M.; Veneziani, A.; Steinman, D.A.; Remuzzi, A.; Antiga, L. A framework for geometric analysis of vascular structures: Application to cerebral aneurysms. IEEE Trans. Med. Imaging 2009, 28, 1141–1155. [Google Scholar] [CrossRef]
- Rezaeitaleshmahalleh, M.; Mu, N.; Lyu, Z.; Gemmete, J.; Pandey, A.; Jiang, J. Developing a nearly automated open-source pipeline for conducting computational fluid dynamics simulations in anterior brain vasculature: A feasibility study. Sci. Rep. 2024, 14, 30181. [Google Scholar] [CrossRef]
- Vigneshwaran, V.; Sands, G.B.; LeGrice, I.J.; Smaill, B.H.; Smith, N.P. Reconstruction of coronary circulation networks: A review of methods. Microcirculation 2019, 26, e12542. [Google Scholar] [CrossRef]
- Au, O.K.C.; Tai, C.L.; Chu, H.K.; Cohen-Or, D.; Lee, T.Y. Skeleton extraction by mesh contraction. ACM Trans. Graph. (TOG) 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Bai, X.; Latecki, L.J.; Liu, W.Y. Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 449–462. [Google Scholar] [CrossRef]
- Danilov, A.; Ivanov, Y.; Pryamonosov, R.; Vassilevski, Y. Methods of graph network reconstruction in personalized medicine. Int. J. Numer. Methods Biomed. Eng. 2016, 32, e02754. [Google Scholar] [CrossRef]
- Aylward, S.R.; Bullitt, E. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 2002, 21, 61–75. [Google Scholar] [CrossRef]
- Hoyos, M.H.; Orłowski, P.; Piątkowska-Janko, E.; Bogorodzki, P.; Orkisz, M. Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement. Int. J. Comput. Assist. Radiol. Surg. 2006, 1, 51–61. [Google Scholar] [CrossRef]
- Krissian, K.; Malandain, G.; Ayache, N.; Vaillant, R.; Trousset, Y. Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 2000, 80, 130–171. [Google Scholar] [CrossRef]
- Flasque, N.; Desvignes, M.; Constans, J.M.; Revenu, M. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med. Image Anal. 2001, 5, 173–183. [Google Scholar] [CrossRef]
- Tyrrell, J.A.; di Tomaso, E.; Fuja, D.; Tong, R.; Kozak, K.; Jain, R.K.; Roysam, B. Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imaging 2007, 26, 223–237. [Google Scholar] [CrossRef]
- Sironi, A.; Türetken, E.; Lepetit, V.; Fua, P. Multiscale centerline detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1327–1341. [Google Scholar] [CrossRef]
- Schneider, M.; Hirsch, S.; Weber, B.; Székely, G.; Menze, B.H. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters. Med. Image Anal. 2015, 19, 220–249. [Google Scholar] [CrossRef]
- Chen, Z.; Molloi, S. Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 2003, 27, 469–479. [Google Scholar] [CrossRef]
- Soltanian-Zadeh, H.; Shahrokni, A.; Khalighi, M.M.; Zhang, Z.G.; Zoroofi, R.A.; Maddah, M.; Chopp, M. 3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxel-coding. Comput. Biol. Med. 2005, 35, 791–813. [Google Scholar] [CrossRef]
- Tetteh, G.; Efremov, V.; Forkert, N.D.; Schneider, M.; Kirschke, J.; Weber, B.; Zimmer, C.; Piraud, M.; Menze, B.H. Deepvesselnet: Vessel segmentation, centerline prediction, and bifurcation detection in 3-d angiographic volumes. Front. Neurosci. 2020, 14, 592352. [Google Scholar] [CrossRef]
- Kromm, C.; Rohr, K. Inception capsule network for retinal blood vessel segmentation and centerline extraction. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1223–1226. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Zhao, Y.; Wang, X.; Che, T.; Bao, G.; Li, S. Multi-task deep learning for medical image computing and analysis: A review. Comput. Biol. Med. 2023, 153, 106496. [Google Scholar] [CrossRef] [PubMed]
- Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 311–320. [Google Scholar]
- Chen, S.; Bortsova, G.; García-Uceda Juárez, A.; Van Tulder, G.; De Bruijne, M. Multi-task attention-based semi-supervised learning for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings, Part III 22. Springer: Berlin/Heidelberg, Germany, 2019; pp. 457–465. [Google Scholar]
- Wang, S.; He, K.; Nie, D.; Zhou, S.; Gao, Y.; Shen, D. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Med. Image Anal. 2019, 54, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Xin, B.; Wang, D.; Wang, X. Radiomics-enhanced multi-task neural network for non-invasive glioma subtyping and segmentation. In Proceedings of the International Workshop on Radiomics and Radiogenomics in Neuro-Oncology, Shenzhen, China, 13 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–90. [Google Scholar]
- Cao, L.; Li, L.; Zheng, J.; Fan, X.; Yin, F.; Shen, H.; Zhang, J. Multi-task neural networks for joint hippocampus segmentation and clinical score regression. Multimed. Tools Appl. 2018, 77, 29669–29686. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, D.; Marshall, H.; Miao, T.; Cossetto, T.; Chan, I.; Daher, O.; Accorsi, F.; Goela, A.; Li, S. MB-FSGAN: Joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network. Med. Image Anal. 2020, 64, 101721. [Google Scholar] [CrossRef]
- Salahuddin, Z.; Lenga, M.; Nickisch, H. Multi-resolution 3d convolutional neural networks for automatic coronary centerline extraction in cardiac CT angiography scans. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 91–95. [Google Scholar]
- Dorobanțiu, A.; Ogrean, V.; Brad, R. Coronary centerline extraction from ccta using 3d-unet. Future Internet 2021, 13, 101. [Google Scholar] [CrossRef]
- Xu, R.; Liu, T.; Ye, X.; Liu, F.; Lin, L.; Li, L.; Tanaka, S.; Chen, Y.W. Joint extraction of retinal vessels and centerlines based on deep semantics and multi-scaled cross-task aggregation. IEEE J. Biomed. Health Inform. 2020, 25, 2722–2732. [Google Scholar] [CrossRef] [PubMed]
- Shit, S.; Paetzold, J.C.; Sekuboyina, A.; Ezhov, I.; Unger, A.; Zhylka, A.; Pluim, J.P.; Bauer, U.; Menze, B.H. clDice-a novel topology-preserving loss function for tubular structure segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 16560–16569. [Google Scholar]
- Pan, L.; Zhang, Z.; Zheng, S.; Huang, L. MSC-net: Multitask learning network for retinal vessel segmentation and centerline extraction. Appl. Sci. 2021, 12, 403. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, J.; Lu, Y.; Wang, X.; Cao, K.; Song, Q.; Sonka, M.; Yin, Y. Deepcenterline: A multi-task fully convolutional network for centerline extraction. In Proceedings of the International Conference on Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 441–453. [Google Scholar]
- Rougé, P.; Passat, N.; Merveille, O. Topology aware multitask cascaded U-Net for cerebrovascular segmentation. PLoS ONE 2024, 19, e0311439. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; PMLR, 2021. pp. 10096–10106. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Yaushev, F.; Nogina, D.; Samokhin, V.; Dugova, M.; Petrash, E.; Sevryukov, D.; Belyaev, M.; Pisov, M. Robust Curve Detection in Volumetric Medical Imaging via Attraction Field. In Proceedings of the International Workshop on Shape in Medical Imaging, Marrakesh, Morocco, 7 October 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 84–96. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; proceedings, part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30, 1025–1035. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Bai, H.; Ge, C.; Yang, J.; Zhu, Y.; Zhang, R.; Li, Z.; Zhanng, L.; Ma, W.; Wan, X.; et al. Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. Adv. Neural Inf. Process. Syst. 2022, 35, 36722–36732. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Cardoso, M.J.; Arbel, T.; Carneiro, G.; Syeda-Mahmood, T.; Tavares, J.M.R.; Moradi, M.; Bradley, A.; Greenspan, H.; Papa, J.P.; Madabhushi, A.; et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10553. [Google Scholar]
- Fan, H.; Su, H.; Guibas, L.J. A point set generation network for 3d object reconstruction from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 26 July 2017; pp. 605–613. [Google Scholar]
- Loshchilov, I.; Hutter, F. Fixing weight decay regularization in adam. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef]
- Raut, S.S.; Chandra, S.; Shum, J.; Finol, E.A. The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann. Biomed. Eng. 2013, 41, 1459–1477. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Silversmith, W.; Bae, J.; Li, P.; Wilson, A. Kimimaro: Skeletonize densely labeled 3D image segmentations. Zenodo 2021, 5539913. [Google Scholar] [CrossRef]
- Izzo, R.; Steinman, D.; Manini, S.; Antiga, L. The vascular modeling toolkit: A python library for the analysis of tubular structures in medical images. J. Open Source Softw. 2018, 3, 745. [Google Scholar] [CrossRef]
- Pieper, S.; Halle, M.; Kikinis, R. 3D Slicer. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 15–18 April 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 632–635. [Google Scholar]
- Lehmann, T.M.; Gonner, C.; Spitzer, K. Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imaging 1999, 18, 1049–1075. [Google Scholar] [CrossRef]
- Schaerer, J.; Roche, F.; Belaroussi, B. A generic interpolator for multi-label images. Insight J. 2014, 950, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Qasim, S.R.; Kieseler, J.; Iiyama, Y.; Pierini, M. Learning representations of irregular particle-detector geometry with distance-weighted graph networks. Eur. Phys. J. C 2019, 79, 608. [Google Scholar] [CrossRef]
- Graham, R.L.; Hell, P. On the history of the minimum spanning tree problem. Ann. Hist. Comput. 1985, 7, 43–57. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhan, Z.H.; Zhang, J. Distributed minimum spanning tree differential evolution for multimodal optimization problems. Soft Comput. 2019, 23, 13339–13349. [Google Scholar] [CrossRef]
- Li, Z.; Dankelman, J.; De Momi, E. Path planning for endovascular catheterization under curvature constraints via two-phase searching approach. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 619–627. [Google Scholar] [CrossRef]
- Glocker, B.; Zikic, D.; Konukoglu, E.; Haynor, D.R.; Criminisi, A. Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013; Proceedings, Part II 16. Springer: Berlin/Heidelberg, Germany, 2013; pp. 262–270. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
Task Name | Segmentation | Centerline Extraction | ||||
---|---|---|---|---|---|---|
VD (%) ↑ | SD-1 (%) ↑ | SD-3 (%) ↑ | HD (mm) ↓ | ASSD (mm) ↓ | ||
Mass centroid | CM1 | - | 64.89 ± 11.18 | 89.17 ± 6.02 | 8.68 ± 3.72 | 8.68 ± 3.72 |
Thinning | CM2 | - | 58.63 ± 11.28 | 92.72 ± 8.86 | 4.88 ± 4.56 | 1.43 ± 0.68 |
Kimimaro | CM3 | - | 66.93 ± 11.92 | 95.77 ± 2.80 | 3.67 ± 1.69 | 1.17 ± 0.30 |
VMTK * | CM4 | - | 66.29 ± 10.73 | 95.99 ± 3.00 | 3.28 ± 1.62 | 1.09 ± 0.27 |
Tetteh et al. [34] | NM1 | - | 58.70 ± 7.02 | 95.24 ± 3.59 | 7.87 ± 17.09 | 1.51 ± 1.15 |
Yaushev et al. [54] | NM2 | - | 56.00 ± 20.00 | 97.00 ± 4.00 | 15.00 ± 16.00 | 1.4 ± 1.1 |
Proposed NN | 91.09 ± 0.02 | 72.52 ± 8.96 | 97.65 ± 2.07 | 2.74 ± 0.81 | 0.93 ± 0.21 | |
Proposed NN only centerline extraction | - | 70.01 ± 10.37 | 96.71 ± 2.30 | 5.85 ± 9.12 | 1.15 ± 0.52 | |
Proposed NN only mask segmentation | 90.83 ± 0.02 | - | - | - | - |
Task Name | Segmentation | Centerline Extraction | |||
---|---|---|---|---|---|
VD (%) ↑ | SD-1 (%) ↑ | SD-3 (%) ↑ | HD (mm) ↓ | ASSD (mm) ↓ | |
Noised data | 91.090.02 | 72.378.21 | 97.611.89 | 2.740.94 | 0.930.23 |
Data with calibration artefacts | 91.090.03 | 72.697.58 | 97.671.75 | 2.720.89 | 0.920.21 |
Motion blurred data | 91.090.03 | 67.5611.31 | 95.884.78 | 3.42.33 | 1.080.37 |
Original data | 91.09 ± 0.02 | 72.52 ± 8.96 | 97.65 ± 2.07 | 2.74 ± 0.81 | 0.93 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epifanov, R.; Fedotova, Y.; Dyachuk, S.; Gostev, A.; Karpenko, A.; Mullyadzhanov, R. The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach. J. Imaging 2025, 11, 209. https://doi.org/10.3390/jimaging11070209
Epifanov R, Fedotova Y, Dyachuk S, Gostev A, Karpenko A, Mullyadzhanov R. The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach. Journal of Imaging. 2025; 11(7):209. https://doi.org/10.3390/jimaging11070209
Chicago/Turabian StyleEpifanov, Rostislav, Yana Fedotova, Savely Dyachuk, Alexandr Gostev, Andrei Karpenko, and Rustam Mullyadzhanov. 2025. "The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach" Journal of Imaging 11, no. 7: 209. https://doi.org/10.3390/jimaging11070209
APA StyleEpifanov, R., Fedotova, Y., Dyachuk, S., Gostev, A., Karpenko, A., & Mullyadzhanov, R. (2025). The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach. Journal of Imaging, 11(7), 209. https://doi.org/10.3390/jimaging11070209