Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation
Abstract
1. Introduction
2. Related Work
2.1. Image Reconstruction Approaches
2.2. Feature Embedding Approaches
3. Methods
3.1. Overall Framework
3.2. Graph Feature Comparison Module
3.3. Interlayer Feature Fusion Module
3.4. Channel Attention Fusion Module
3.5. Diffusion Distillation
3.6. Defect Detection
4. Experimentation and Analysis
4.1. Datasets
4.2. Experimental Platform and Parameter Setting
4.3. Evaluation Metrics
4.4. Comparison Experiment
4.4.1. Comparison Experiment on Wins Dataset
4.4.2. Comparison Experiment on CID Dataset
4.4.3. Comprehensive Performance Comparison Analysis
4.5. Ablation Experiment
4.5.1. Comparative Validity Analysis of Graph Features
4.5.2. Comparison of Teachers’ Network Backbones
4.5.3. Modular Ablation Experiments
4.6. Generalization Experiment
5. Discussion
5.1. Research Limitations
5.2. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Method | Average | Bottle | Cable | Capsule | Hazel Nut | Metal Nut | Pill | Screw | Tooth Brush | Transis Tor | Zipper |
---|---|---|---|---|---|---|---|---|---|---|---|
MKD | 85.3 | 99.4 | 89.2 | 80.5 | 73.6 | 73.6 | 82.7 | 83.3 | 92.2 | 85.6 | 93.2 |
ET-STPM | 91.7 | 98.9 | 93.2 | 91.2 | 90.3 | 92.6 | 89.9 | 84.7 | 93.1 | 92.4 | 91.5 |
Padim | 93.7 | 99.9 | 92.7 | 91.3 | 92.0 | 98.7 | 93.3 | 85.8 | 96.1 | 97.4 | 90.3 |
UniAD | 95.3 | 100 | 97.6 | 85.3 | 99.9 | 99.0 | 88.3 | 91.9 | 95.0 | 100 | 96.7 |
PFM | 96.5 | 100 | 98.8 | 94.5 | 100 | 100 | 96.5 | 91.8 | 88.6 | 97.8 | 97.4 |
Ours | 97.5 | 99.7 | 99.2 | 95.2 | 99.9 | 100 | 98.9 | 92.3 | 94.5 | 99.9 | 95.9 |
Method | Average | Bottle | Cable | Capsule | Hazel Nut | Metal Nut | Pill | Screw | Tooth Brush | Transis Tor | Zipper |
---|---|---|---|---|---|---|---|---|---|---|---|
MKD | 90.7 | 96.3 | 82.4 | 95.9 | 94.6 | 86.4 | 89.6 | 96.0 | 96.1 | 76.5 | 93.9 |
ET-STPM | 97.5 | 98.1 | 94.9 | 98.9 | 99.0 | 98.5 | 98.0 | 98.5 | 98.0 | 86.9 | 99.7 |
Padim | 97.7 | 98.3 | 96.7 | 98.5 | 98.2 | 97.2 | 95.7 | 98.5 | 98.8 | 97.5 | 98.5 |
UniAD | 97.1 | 98.1 | 96.8 | 97.9 | 98.8 | 95.7 | 95.1 | 97.4 | 97.8 | 98.7 | 96.0 |
PFM | 96.9 | 98.4 | 96.7 | 98.3 | 99.1 | 97.2 | 97.2 | 98.7 | 98.6 | 87.8 | 98.2 |
Ours | 98.2 | 98.6 | 95.7 | 98.5 | 99.1 | 97.1 | 97.9 | 99.0 | 98.7 | 98.5 | 99.0 |
References
- Liu, J.; Hu, M.M.; Dong, J.Y.; Lu, X. Summary of insulator defect detection based on deep learning. Electr. Power Syst. Res. 2023, 224, 109688. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Y.; Zhou, C. Research on multi-type defect detection of transmission line insulators based on GE-YOLO algorithm. High Volt. Electr. Appar. 2025, 1–12. [Google Scholar]
- Li, Y.; Zhang, K.; Li, H.; Zhu, W.; Jin, J.; Zhang, C.; Wang, B.; Oppong, F. Insulator defect detection based on improved YOLOv5s network. J. Zhejiang Univ. Eng. Ed. 2024, 58, 2469–2478+2499. [Google Scholar]
- Lan, G.; Ren, X.; Xu, Z.; Guo, D.; Zhong, Z. Lightweight insulator multi-defect detection model based on YOLOv8s. Mod. Electron. Technol. 2024, 47, 72–80. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Gasz, R.; Osuchowski, J.; Zator, S.; Kasana, S.S.; Singh, S. TCIP: Transformed Colour Intensity Profiles analysis for fault detection in power line insulators. Multimed. Tools Appl. 2025, 84, 4503–4534. [Google Scholar] [CrossRef]
- Liu, J.; Tang, R.; Wang, P.; Sun, Y.; Zhang, G.; Luo, W.; Mei, K.; Zhao, Y. IDD-YOLOv7: A lightweight and efficient feature extraction method for insulator defect detection. Energy Rep. 2025, 13, 1467–1487. [Google Scholar]
- Xu, Z.Y.; Tang, X. Transmission line insulator defect detection algorithm based on MAP-YOLOv8. Sci. Rep. 2025, 15, 10288. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, B.; Yang, Q.; Wang, H. Deep learning based insulator fault detection algorithm for power transmission lines. J. Real-Time Image Process. 2024, 21, 16. [Google Scholar]
- Han, Z.; Liu, W.; Liu, Z.; Wang, H. An Automated Defect Detection Approach for Catenary Rod-Insulator Textured Surfaces Using Unsupervised Learning. IEEE Trans. Instrum. Meas. 2020, 69, 8411–8423. [Google Scholar]
- Wang, D.; Sun, J.; Zhang, T.; Li, M.; Zhu, R. Self-explosion defect detection method for glass insulators based on improved generative adversarial network. High Volt. Technol. 2022, 48, 1096–1103. [Google Scholar]
- Tao, X.; Hou, W.; Xu, D. A review of surface defect detection methods based on deep learning. J. Autom. 2021, 47, 1017–1034. [Google Scholar]
- Cohen, N.; Hoshen, Y. Sub-image anomaly detection with deep pyramid correspondences. arXiv 2020, arXiv:2005.02357. [Google Scholar]
- Roth, K.; Pemula, L.; Zepeda, J.; Schölkopf, B.; Brox, T.; Gehler, P. Towards total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 14318–14328. [Google Scholar]
- Li, Q.; Song, Y.; Tong, G. Two-stage reverse knowledge distillation incorporated and Self-Supervised Masking strategy for industrial anomaly detection. Knowl.-Based Syst. 2023, 273, 110611. [Google Scholar] [CrossRef]
- Tien, T.D.; Nguyen, A.T.; Tran, N.H.; Huy, T.D.; Duong, S.T.M.; Nguyen, C.D.T.; Truong, S.Q.H. Revisiting reverse distillation for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; IEEE: Washington, DC, USA, 2023. [Google Scholar]
- Bergmann, P.; Löwe, S.; Fauser, M.; Sattlegger, D.; Steger, C. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv 2018, arXiv:1807.02011. [Google Scholar]
- Tang, T.W.; Kuo, W.H.; Lan, J.H.; Ding, C.F.; Hsu, H.; Young, H.T. Anomaly detection neural network with dual auto-encoders GAN and its industrial inspection applications. Sensors 2020, 20, 3336. [Google Scholar] [CrossRef]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, San Carlos de Bariloche, Argentina, 12–16 June 2023; Springer International Publishing: Cham, Switzerland, 2017; pp. 146–157. [Google Scholar]
- Murase, H.; Fukumizu, K. Algan: Anomaly detection by generating pseudo anomalous data via latent variables. IEEE Access 2022, 10, 44259–44270. [Google Scholar] [CrossRef]
- Lee, Y.; Kang, P. AnoViT: Unsupervised anomaly detection and localization with vision transformer-based encoder-decoder. IEEE Access 2022, 10, 46717–46724. [Google Scholar] [CrossRef]
- De Nardin, A.; Mishra, P.; Foresti, G.L.; Piciarelli, C. Masked transformer for image anomaly localization. Int. J. Neural Syst. 2022, 32, 2250030. [Google Scholar] [CrossRef]
- You, Z.; Cui, L.; Shen, Y.; Yang, K.; Lu, X.; Zheng, Y.; Le, X. A unified model for multi-class anomaly detection. Adv. Neural Inf. Process. Syst. 2022, 35, 4571–4584. [Google Scholar]
- Zheng, Y.; Wang, X.; Deng, R.; Bao, T.; Zhao, R.; Wu, L. Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. Padim: A patch distribution modeling framework for anomaly detection and localization. In Proceedings of the International Conference on Pattern Recognition, Virtual Event, 10–15 January 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 475–489. [Google Scholar]
- Wen, L.; Li, X.; Gao, L.; Wan, Q. Unsupervised Image Anomaly Detection and Segmentation Based on Pretrained Feature Mapping. IEEE Trans. Ind. Inform. 2023, 19, 2330–2339. [Google Scholar] [CrossRef]
- Liu, T. Research on Online Inspection Technology of Magnetic Tile Based on Deep Learning. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Wang, G.D.; Han, S.M.; Ding, E.R.; Huang, D. Student teacher feature pyramid matching for anomaly detection. In Proceedings of the British Machine Vision Conference, Online, 22–25 November 2021. [Google Scholar]
- Salehi, M.; Sadjadi, N.; Baselizadeh, S.; Rohban, M.H.; Rabiee, H.R. Multiresolution Knowledge Distillation for Anomaly Detection. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Nashville, TN, USA, 2021; pp. 14897–14907. [Google Scholar]
- Zolfaghari, M.; Sajedi, H. Unsupervised Anomaly Detection with an Enhanced Teacher for Student-Teacher Feature Pyramid Matching. In Proceedings of the 2022 27th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran, 23–24 February 2022; IEEE: New York, NY, USA, 2022; pp. 1–4. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Yuan, X.; Li, Y.; Zang, G.; Song, C. A Universal Adaptive Algorithm for Graph Anomaly Detection. Inf. Process. Manag. 2025, 62, 20. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G.; Albanie, S.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2011–2023. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Xia, P.; Zhang, L.; Li, F. Learning similarity with cosine similarity ensemble. Inf. Sci. 2015, 307, 39–52. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Q.; Wang, S.; Zhang, X. Semi-supervised single image dehazing based on dual-teacher-student network with knowledge transfer. Signal Image Video Process. 2024, 18, 5073–5087. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017. [Google Scholar] [CrossRef]
- Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Long Beach, CA, USA, 2020. [Google Scholar] [CrossRef]
- Zhang, T.; Zhong, S.; Xu, W.; Yan, L.; Zou, X. Catenary Insulator Defect Detection: A Dataset and an Unsupervised Baseline. IEEE Trans. Instrum. Meas. 2024, 73, 6006015. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Defect Type | Training Set | Test Set (Normal) | Test Set (Abnormal) |
---|---|---|---|
breakage | 389 | 38 | 59 |
self-explosion | 345 | 32 | 50 |
flash | 368 | 37 | 54 |
Method | Average | Breakage | Self-Explosion | Flash |
---|---|---|---|---|
MKD | 91.0 | 89.1 | 91.3 | 92.6 |
ET-STPM | 92.9 | 90.6 | 93.8 | 94.4 |
Padim | 93.1 | 93.9 | 94.9 | 90.5 |
UniAD | 92.5 | 95.7 | 90.6 | 91.3 |
PFM | 93.6 | 92.9 | 86.6 | 95.4 |
GFDD | 97.7 | 98.2 | 96.4 | 98.5 |
Method | Average | Breakage | Self-Explosion | Flash |
---|---|---|---|---|
MKD | 90.7 | 92.6 | 85.6 | 94.0 |
ET-STPM | 91.8 | 91.3 | 93.8 | 90.4 |
Padim | 92.3 | 95.7 | 92.2 | 88.9 |
UniAD | 91.3 | 92.8 | 90.7 | 90.3 |
PFM | 93.4 | 96.5 | 91.2 | 92.4 |
GFDD | 96.6 | 98.8 | 95.2 | 95.8 |
Method | Average | Breakage | Self-Explosion | Flash |
---|---|---|---|---|
MKD | 90.9 | 93.2 | 89.9 | 89.5 |
ET-STPM | 92.4 | 94.7 | 90.1 | 92.5 |
Padim | 91.0 | 93.8 | 91.2 | 87.9 |
UniAD | 92.7 | 94.5 | 91.4 | 92.1 |
PFM | 90.8 | 91.4 | 88.3 | 92.6 |
GFDD | 95.1 | 97.2 | 93.4 | 94.6 |
Method | Average | Breakage | Contamination | Crack | Dirt | Missing | Shelter |
---|---|---|---|---|---|---|---|
MKD | 92.7 | 93.3 | 92.4 | 94.1 | 94.6 | 92.4 | 89.6 |
ET-STPM | 92.9 | 92.1 | 94.3 | 92.9 | 93.7 | 93.5 | 91.0 |
Padim | 93.2 | 94.3 | 93.9 | 93.5 | 95.2 | 91.2 | 91.3 |
UniAD | 93.9 | 94.7 | 93.2 | 95.9 | 94.8 | 94.7 | 89.9 |
PFM | 94.0 | 95.4 | 95.7 | 94.3 | 94.1 | 93.2 | 91.2 |
GFDD | 95.2 | 96.6 | 95.7 | 96.2 | 95.1 | 94.9 | 92.6 |
Method | Average | Breakage | Contamination | Crack | Dirt | Missing | Shelter |
---|---|---|---|---|---|---|---|
MKD | 93.1 | 93.4 | 93.6 | 93.2 | 92.4 | 92.1 | 93.9 |
ET-STPM | 92.6 | 92.5 | 91.7 | 92.7 | 92.7 | 92.1 | 93.7 |
Padim | 93.1 | 94.2 | 92.9 | 93.1 | 93.2 | 92.7 | 93.5 |
UniAD | 93.4 | 93.9 | 93.9 | 93.5 | 92.9 | 91.9 | 94.0 |
PFM | 93.6 | 95.4 | 94.1 | 92.4 | 93.6 | 92.7 | 93.2 |
GFDD | 94.5 | 96.7 | 95.4 | 93.8 | 93.7 | 93.1 | 94.2 |
Method | Average | Breakage | Contamination | Crack | Dirt | Missing | Shelter |
---|---|---|---|---|---|---|---|
MKD | 89.5 | 89.2 | 89.5 | 91.6 | 91.4 | 91.7 | 83.3 |
ET-STPM | 89.6 | 90.1 | 90.2 | 90.3 | 92.6 | 89.9 | 84.7 |
Padim | 90.3 | 90.7 | 91.3 | 92.0 | 91.7 | 90.3 | 85.8 |
UniAD | 91.8 | 91.6 | 91.1 | 92.9 | 92.0 | 91.1 | 91.9 |
PFM | 92.0 | 90.9 | 92.5 | 93.1 | 92.1 | 91.5 | 91.8 |
GFDD | 93.7 | 92.2 | 93.1 | 93.1 | 92.4 | 98.9 | 92.3 |
Method | Param(M) | Flops(G) | FPS |
---|---|---|---|
MKD | 34.7 | 40.6 | 11.5 |
ET-STPM | 32.8 | 37.2 | 15.3 |
Padim | 11.7 | 45.6 | 5.1 |
UniAD | 48.4 | 50.7 | 10.9 |
PFM | 26.8 | 31.2 | 25.6 |
GFDD | 35.5 | 32.6 | 24.2 |
Model ID | Im.AUROC | Pi.AUROC | F1 |
---|---|---|---|
I | 91.1 | 91.3 | 91.0 |
II | 93.7 | 94.2 | 92.7 |
Model ID | Im.AUROC | Pi.AUROC | F1 |
---|---|---|---|
ResNet18 | 91.4 | 91.7 | 88.6 |
ResNet34 | 93.7 | 92.1 | 91.0 |
ResNet50 | 95.2 | 94.8 | 92.7 |
WideResNet50 | 97.7 | 96.6 | 95.1 |
Base | GFCM | IFFM | CAFM | Im.AUROC | Pi.AUROC | F1 |
---|---|---|---|---|---|---|
√ | 88.6 | 89.9 | 87.7 | |||
√ | √ | 93.7 | 94.2 | 92.7 | ||
√ | √ | √ | 95.2 | 94.9 | 94.3 | |
√ | √ | √ | √ | 97.7 | 96.6 | 95.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, N.; Yang, G.; Hou, Y.; Zhang, X. Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation. J. Imaging 2025, 11, 190. https://doi.org/10.3390/jimaging11060190
Li S, Zhang N, Yang G, Hou Y, Zhang X. Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation. Journal of Imaging. 2025; 11(6):190. https://doi.org/10.3390/jimaging11060190
Chicago/Turabian StyleLi, Shucai, Na Zhang, Gang Yang, Yannong Hou, and Xingzhong Zhang. 2025. "Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation" Journal of Imaging 11, no. 6: 190. https://doi.org/10.3390/jimaging11060190
APA StyleLi, S., Zhang, N., Yang, G., Hou, Y., & Zhang, X. (2025). Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation. Journal of Imaging, 11(6), 190. https://doi.org/10.3390/jimaging11060190