Dual-Stream Contrastive Latent Learning Generative Adversarial Network for Brain Image Synthesis and Tumor Classification
Abstract
:1. Introduction
- The proposed dual-stream augmentation framework utilizes a single generator with dual perturbations to enhance realism and diversity by effectively capturing both local and global variations in medical images.
- A rigorous mathematical formulation is developed, incorporating a CLP module to preserve semantic integrity and enhance model generalization in image augmentation tasks.
- A three-discriminator architecture is introduced, operating in parallel to assess image quality, diversity, and frequency consistency. Additionally, D1 performs classification, eliminating the need for a separate brain tumor (BT) classifier network.
2. Materials and Methods
2.1. Dual-Stream Generator of Our Proposed Model (DSCLPGAN)
2.2. Complete Architecture of Our Proposed Model (DSCLPGAN)
2.3. Mathematical Formulation
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaifi, R. A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification. Diagnostics 2023, 13, 3007. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, X.; Gao, C.; Jiang, S.; Wu, H.; Liu, Z.; Dou, T. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch. Public Health 2022, 80, 209. [Google Scholar]
- Arnaout, M.M.; Hoz, S.; Lee, A.; Taha, M. Management of patients with multiple brain metastases. Egypt. J. Neurosurg. 2024, 39, 64. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [PubMed]
- Celik, F.; Celik, K.; Celik, A. Enhancing brain tumor classification through ensemble attention mechanism. Sci. Rep. 2024, 14, 22260. [Google Scholar]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar]
- Delgado-López, P.D.; Corrales-García, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. 2016, 18, 1062–1071. [Google Scholar]
- Abdusalomov, A.B.; Mukhiddinov, M.; Whangbo, T.K. Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging. Cancers 2023, 15, 4172. [Google Scholar] [CrossRef]
- Lazli, L.; Boukadoum, M.; Mohamed, O.A. A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of the Multimodal Fusion. Appl. Sci. 2020, 10, 1894. [Google Scholar] [CrossRef]
- Virupakshappa; Amarapur, B. Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier. Multimed. Tools Appl. 2020, 79, 3571–3599. [Google Scholar]
- Das, S.; Goswami, R.S. Advancements in brain tumor analysis: A comprehensive review of machine learning, hybrid deep learning, and transfer learning approaches for MRI-based classification and segmentation. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Islam, M.N.; Azam, M.S.; Islam, M.S.; Kanchan, M.H.; Parvez, A.S.; Islam, M.M. An improved deep learning-based hybrid model with ensemble techniques for brain tumor detection from MRI image. Inform. Med. 2024, 47, 101483. [Google Scholar] [CrossRef]
- Amran, G.A.; Alsharam, M.S.; Blajam, A.O.A.; Hasan, A.A.; Alfaifi, M.Y.; Amran, M.H.; Gumaei, A.; Eldin, S.M. Brain Tumor Classification and Detection Using Hybrid Deep Tumor Network. Electronics 2022, 11, 3457. [Google Scholar] [CrossRef]
- SKarim, S.; Tong, G.; Yu, Y.; Laghari, A.A.; Khan, A.A.; Ibrar, M.; Mehmood, F. Developments in Brain Tumor Segmentation Using MRI: Deep Learning Insights and Future Perspectives. IEEE Access 2024, 12, 26875–26896. [Google Scholar]
- Sajjanar, R.; Dixit, U.D.; Vagga, V.K. Advancements in hybrid approaches for brain tumor segmentation in MRI: A comprehensive review of machine learning and deep learning techniques. Multimed. Tools Appl. 2024, 83, 30505–30539. [Google Scholar]
- Prakash, R.M.; Kumari, R.S.S.; Valarmathi, K.; Ramalakshmi, K. Classification of brain tumours from MR images with an enhanced deep learning approach using densely connected convolutional network. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 11, 266–277. [Google Scholar]
- Khan, S.U.R.; Zhao, M.; Asif, S.; Chen, X. Hybrid-NET: A fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. Int. J. Imaging Syst. Technol. 2023, 34, e22975. [Google Scholar] [CrossRef]
- Mathivanan, S.K.; Sonaimuthu, S.; Murugesan, S.; Rajadurai, H.; Shivahare, B.D.; Shah, M.A. Employing deep learning and transfer learning for accurate brain tumor detection. Sci. Rep. 2024, 14, 7232. [Google Scholar]
- Katkam, S.; Tulasi, V.P.; Dhanalaxmi, B.; Harikiran, J. Multi-Class Diagnosis of Neurodegenerative Diseases Using Effective Deep Learning Models With Modified DenseNet-169 and Enhanced DeepLabV 3+. IEEE Access 2025, 13, 29060–29080. [Google Scholar]
- Ahmad, S.; Choudhury, P.K. On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR Images. IEEE Access 2022, 10, 59099–59114. [Google Scholar]
- Mok, T.C.W.; Chung, A.C.S. Learning Data Augmentation for Brain Tumor Segmentation with Coarse-to-Fine Generative Adversarial Networks. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Proceedings of the 4th International Workshop, BrainLes 2018, Granada, Spain, 16 September 2018; Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11383. [Google Scholar]
- Shoaib, M.R.; Elshamy, M.R.; Taha, T.E.; El-Fishawy, A.S.; El-Samie, F.E.A. Efficient deep learning models for brain tumor detection with segmentation and data augmentation techniques. Concurr. Comput. Pr. Exp. 2022, 34, e7031. [Google Scholar] [CrossRef]
- Han, C.; Rundo, L.; Araki, R.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Infinite Brain MR Images: PGGAN-Based Data Augmentation for Tumor Detection. In Neural Approaches to Dynamics of Signal Exchanges; Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Volume 151. [Google Scholar]
- Goceri, E. Medical image data augmentation: Techniques, comparisons and interpretations. Artif. Intell. Rev. 2023, 56, 12561–12605. [Google Scholar] [CrossRef] [PubMed]
- Sanaat, A.; Shiri, I.; Ferdowsi, S.; Arabi, H.; Zaidi, H. Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness. J. Digit. Imaging 2022, 35, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Allah, A.M.G.; Sarhan, A.M.; Elshennawy, N.M. Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation. Diagnostics 2021, 11, 2343. [Google Scholar] [CrossRef]
- Mohammadi, M.; Jamshidi, S. Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches. arXiv 2024, arXiv:2411.00875. [Google Scholar]
- Asiri, A.A.; Shaf, A.; Ali, T.; Aamir, M.; Irfan, M.; Alqahtani, S.; Mehdar, K.M.; Halawani, H.T.; Alghamdi, A.H.; Alshamrani, A.F.A.; et al. Brain Tumor Detection and Classification Using Fine-Tuned CNN with ResNet50 and U-Net Model: A Study on TCGA-LGG and TCIA Dataset for MRI Applications. Life 2023, 13, 1449. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Isaza, A.; Mera-Jiménez, L.; Verdugo-Alejo, L.; Sarasti, L. Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network. Eur. J. Radiol. Open 2023, 10, 100484. [Google Scholar] [CrossRef]
- Kocharekar, A.M.; Datta, S.; Padmanaban; Rajakumar, R. Comparative Analysis of Vision Transformers and CNN-based Models for Enhanced Brain Tumor Diagnosis. In Proceedings of the 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 4–6 December 2024; pp. 1217–1223. [Google Scholar]
- Zakariah, M.; Al-Razgan, M.; Alfakih, T. Dual vision Transformer-DSUNET with feature fusion for brain tumor segmentation. Heliyon 2024, 10, e37804. [Google Scholar] [CrossRef]
- Li, Z.; Silamu, W.; Wang, Y.; Wei, Z. DenseTrans: Multimodal Brain Tumor Segmentation Using Swin Transformer. IEEE Access 2023, 11, 42895–42908. [Google Scholar] [CrossRef]
- Swetha, A.V.S.; Bala, M.; Sharma, K. A Linear Time Shrinking-SL(t)-ViT Approach for Brain Tumor Identification and Categorization. IETE J. Res. 2024, 70, 8300–8322. [Google Scholar] [CrossRef]
- Tabatabaei, S.; Rezaee, K.; Zhu, M. Attention transformer mechanism and fusion-based deep learning architecture for MRI brain tumor classification system. Biomed. Signal Process. Control. 2023, 86 Pt A, 105119. [Google Scholar]
- Pacal, I. A novel Swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in MRI images. Int. J. Mach. Learn. Cybern. 2024, 15, 3579–3597. [Google Scholar] [CrossRef]
- Tehsin, S.; Nasir, I.M.; Damaševičius, R. GATransformer: A Graph Attention Network-Based Transformer Model to Generate Explainable Attentions for Brain Tumor Detection. Algorithms 2025, 18, 89. [Google Scholar] [CrossRef]
- Akbar, M.U.; Larsson, M.; Blystad, I.; Eklund, A. Brain tumor segmentation using synthetic MR images—A comparison of GANs and diffusion models. Sci. Data 2024, 11, 259. [Google Scholar]
- Saeed, A.; Shehzad, K.; Bhatti, S.S.; Ahmed, S.; Azar, A.T. GGLA-NeXtE2NET: A Dual-Branch Ensemble Network With Gated Global-Local Attention for Enhanced Brain Tumor Recognition. IEEE Access 2025, 13, 7234–7257. [Google Scholar]
- Karpakam, S.; Kumareshan, N. Enhanced brain tumor detection and classification using a deep image recognition generative adversarial network (DIR-GAN): A comparative study on MRI, X-ray, and FigShare datasets. Neural Comput. Appl. 2025. [Google Scholar] [CrossRef]
- Desalegn, L.; Jifara, W. HARA-GAN: Hybrid Attention and Relative Average Discriminator Based Generative Adversarial Network for MR Image Reconstruction. IEEE Access 2024, 12, 23240–23251. [Google Scholar]
- Lyu, Y.; Tian, X. MWG-UNet++: Hybrid Transformer U-Net Model for Brain Tumor Segmentation in MRI Scans. Bioengineering 2025, 12, 140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, S.; Feng, J.; Ferzund, J.; Yaqub, M.; Ali, M.U.; Manan, M.A.; Raheem, A. FAME: A Federated Adversarial Learning Framework for Privacy-Preserving MRI Reconstruction. Appl. Magn. Reson. 2025. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, X.; Li, X.; Han, Y.; Yu, Z. CDSG-SAM: A cross-domain self-generating prompt few-shot brain tumor segmentation pipeline based on SAM. Biomed. Signal Process. Control. 2025, 100, 106936. [Google Scholar] [CrossRef]
- Donahue, J.; Simonyan, K. Large scale adversarial representation learning. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Li, T.; Chang, H.; Mishra, S.K.; Zhang, H.; Katabi, D.; Krishnan, D. Mage: Masked generative encoder to unify representation learning and image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Jiang, Y.; Chang, S.; Wang, Z. TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up. arXiv 2021, arXiv:2102.07074. [Google Scholar]
- Bhagel, N.; Dubey, S.M.; Singh, S.K. SRTransGAN: Image Super-Resolution using Transformer based Generative Adversarial Network. arXiv 2023, arXiv:2312.01999. [Google Scholar]
- Xu, M.; Cui, J.; Ma, X.; Zou, Z.; Xin, Z.; Bilal, M. Image enhancement with art design: A visual feature approach with a CNN-transformer fusion model. Peer J. Comput. Sci. 2024, 10, e2417. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, M.M.E.; Atay, Y.; Arslan, B.; Sagiroglu, S. Development of brain tumor radiogenomic classification using GAN-based augmentation of MRI slices in the newly released gazi brains dataset. BMC Med. Inform. Decis. Mak. 2024, 24, 285. [Google Scholar] [CrossRef]
- Tan, Y.F.; Liow, J.L.; Tan, P.S.; Noman, F.; Phan, R.C.W.; Ombao, H.; Ting, C.M. SFC-GAN: A Generative Adversarial Network for Brain Functional and Structural Connectome Translation. arXiv 2025, arXiv:2501.07055v1. [Google Scholar]
- Zhou, M.; Wagner, M.W.; Tabori, U.; Hawkins, C.; Ertl-Wagner, B.B.; Khalvati, F. Generating 3D brain tumor regions in MRI using vector-quantization Generative Adversarial Networks. Comput. Biol. Med. 2025, 185, 109502. [Google Scholar] [CrossRef]
- Zeineldin, R.A.; Mathis-Ullrich, F. Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI. arXiv 2023, arXiv:2412.11849. [Google Scholar]
Method | SSIM | FID | PSNR |
---|---|---|---|
BIGGAN [44] | 0.7314 | 47.63 | 25.89 |
MAGE [45] | 0.8220 | 45.62 | 27.28 |
TransGAN [46] | 0.8376 | 35.45 | 27.66 |
SR TransGAN [47] | 0.8504 | 31.29 | 30.28 |
CTGAN [48] | 0.8755 | 29.10 | 26.47 |
StyleGANv2 [49] | 0.8841 | 32.56 | 29.31 |
SFCGAN [50] | 0.9077 | 28.04 | 29.14 |
VQ-GAN [51] | 0.9166 | 26.55 | 31.04 |
3D Pix2Pix GAN [52] | 0.9210 | 27.87 | 30.19 |
Proposed DSCLPGAN | 0.9861 | 12 | 34.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, J.; Koc, V.; Zafar, H. Dual-Stream Contrastive Latent Learning Generative Adversarial Network for Brain Image Synthesis and Tumor Classification. J. Imaging 2025, 11, 101. https://doi.org/10.3390/jimaging11040101
Zafar J, Koc V, Zafar H. Dual-Stream Contrastive Latent Learning Generative Adversarial Network for Brain Image Synthesis and Tumor Classification. Journal of Imaging. 2025; 11(4):101. https://doi.org/10.3390/jimaging11040101
Chicago/Turabian StyleZafar, Junaid, Vincent Koc, and Haroon Zafar. 2025. "Dual-Stream Contrastive Latent Learning Generative Adversarial Network for Brain Image Synthesis and Tumor Classification" Journal of Imaging 11, no. 4: 101. https://doi.org/10.3390/jimaging11040101
APA StyleZafar, J., Koc, V., & Zafar, H. (2025). Dual-Stream Contrastive Latent Learning Generative Adversarial Network for Brain Image Synthesis and Tumor Classification. Journal of Imaging, 11(4), 101. https://doi.org/10.3390/jimaging11040101