Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures
Abstract
:1. Introduction
2. Damage Types in Structural Health Monitoring
3. Image-Acquiring Method for SHM
3.1. Drone Equipped with Camera
3.2. Thermography
3.3. Light Detection and Ranging (LiDAR) Technology
3.4. Ultrasonic Imaging
3.5. Ground-Penetrating Radar
3.6. Satellite Technology
4. Image-Processing Techniques for SHM
4.1. Edge Detection
4.2. Texture Analysis
4.3. Image Registration
4.4. Segmentation
5. Artificial Intelligence for the Post-Processing of Image Data
5.1. Machine Learning
5.2. Pattern Recognition
6. Current Limitations and Challenges in Image-Based SHM
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Domaneschi, M.; Martinelli, L.; Cucuzza, R.; Noori, M.; Marano, G.C. Structural Control and Health Monitoring Contributions to Service-life Extension of Bridges. ce/papers 2023, 6, 741–745. [Google Scholar] [CrossRef]
- Pham, G.N.; Nguyen, P.H. Drone Detection Experiment Based on Image Processing and Machine Learning. Int. J. Sci. Res. 2020, 9, 2965–2971. [Google Scholar]
- Chrysafi, A.P.; Athanasopoulos, N.; Siakavellas, N.J. Damage detection on composite materials with active thermography and digital image processing. Int. J. Therm. Sci. 2017, 116, 242–253. [Google Scholar] [CrossRef]
- Ciampa, F.; Pickering, S.G.; Scarselli, G.; Meo, M. Nonlinear imaging of damage in composite structures using sparse ultrasonic sensor arrays. Struct. Control Health Monit. 2017, 24, e1911. [Google Scholar] [CrossRef]
- Shrivakshan, G.T.; Chandrasekar, C. A comparison of various edge detection techniques used in image processing. Int. J. Comput. Sci. Issues 2012, 9, 269. [Google Scholar]
- Öztürk, Ş.; Akdemir, B. Comparison of edge detection algorithms for texture analysis on glass production. Procedia Soc. Behav. Sci. 2015, 195, 2675–2682. [Google Scholar] [CrossRef]
- Kong, X.; Li, J. Image registration-based bolt loosening detection of steel joints. Sensors 2018, 18, 1000. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-based automated crack detection for bridge inspection. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Moradian, Z.; Einstein, H.H.; Ballivy, G. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals. Rock Mech. Rock Eng. 2015, 49, 785–800. [Google Scholar] [CrossRef]
- Yang, H.; Yang, L.; Yang, Z.; Shan, Y.; Gu, H.; Ma, J.; Wu, Z.; Tian, T.; Ma, S.; Wu, Z. Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review. Compos. Struct. 2023, 324, 117554. [Google Scholar] [CrossRef]
- Laflamme, S.; Cao, L.; Chatzi, E.; Ubertini, F. Damage detection and localization from dense network of strain sensors. Shock. Vib. 2016, 2016, 2562949. [Google Scholar] [CrossRef]
- Yan, Y.; Hao, H.; Yam, L. Vibration-based construction and extraction of structural damage feature index. Int. J. Solids Struct. 2004, 41, 6661–6676. [Google Scholar] [CrossRef]
- Benedetti, M.; Fontanari, V.; Zonta, D. Structural health monitoring of wind towers: Remote damage detection using strain sensors. Smart Mater. Struct. 2011, 20, 55009. [Google Scholar] [CrossRef]
- Kwon, Y.; Park, C.; Kim, J.; Kim, H.; Park, C.; Lee, B.; Jeong, Y.; Cho, S.J. Effects of bending strain and crack direction on crack-based strain sensors. Smart Mater. Struct. 2020, 29, 115007. [Google Scholar] [CrossRef]
- Wang, P.F.; Toshiyuki, T.; Takanori, T.; Hiroyuki, M. Early fatigue damage detecting sensors—A review and prospects. Sens. Actuators A 2013, 198, 46–60. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, X.Q.; Yan, Y.H.; Xiao, F.; Khan, M.T.; Zhang, S. Noncontact group-delay-based sensor for metal deformation and crack detection. IEEE Trans. Ind. Electron. 2020, 68, 7613–7619. [Google Scholar] [CrossRef]
- Figueira, R. Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef]
- Parthiban, T.; Ravi, R.; Parthiban, G.T. Potential monitoring system for corrosion of steel in concrete. Adv. Eng. Softw. 2006, 37, 375–381. [Google Scholar] [CrossRef]
- Stewart, M.G. Reliability safety assessment of corroding reinforced concrete structures based on visual inspection information. ACI Struct. J. 2010, 107, 671–679. [Google Scholar]
- Liu, W.; Hunsperger, R.G.; Chajes, M.J.; Folliard, K.J.; Kunz, E. Corrosion Detection of Steel Cables using Time Domain Reflectometry. J. Mater. Civ. Eng. 2002, 14, 217–223. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mukherjee, A. Ultrasonic guided waves for monitoring corrosion in submerged plates. Struct. Control Health Monit. 2015, 22, 19–35. [Google Scholar] [CrossRef]
- Yadav, I.N.; Thapa, K.B. Fatigue damage model of concrete materials. Theor. Appl. Fract. Mech. 2020, 108, 102578. [Google Scholar] [CrossRef]
- Lü, P.; Li, Q.; Song, Y. Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces. Int. J. Solids Struct. 2004, 41, 3151–3166. [Google Scholar] [CrossRef]
- Yao, Y.; Glisic, B. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors 2015, 15, 8088–8108. [Google Scholar] [CrossRef]
- Yaich, A.; El Hami, A. Multiaxial fatigue damage estimation of structures under random vibrations using Matsubara’s criterion. Int. J. Fatigue 2019, 124, 253–264. [Google Scholar] [CrossRef]
- Blunt, D.M.; Keller, J.A. Detection of a fatigue crack in a UH-60A planet gear carrier using analysis. Mech. Syst. Signal Process. 2006, 20, 2095–2111. [Google Scholar] [CrossRef]
- Gao, J.X.; Heng, F.; Yuan, Y.P.; Liu, Y.Y. Fatigue reliability analysis of composite material considering the growth of effective stress and critical stiffness. Aerospace 2023, 10, 785. [Google Scholar] [CrossRef]
- Cheng, H.C.; Hwu, F.S. Fatigue reliability analysis of composites based on residual strength. Adv. Compos. Mater. 2008, 15, 385–402. [Google Scholar] [CrossRef]
- Noorsuhada, M. An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique. Constr. Build. Mater. 2016, 112, 424–439. [Google Scholar] [CrossRef]
- Aymerich, F.; Staszewski, W.J. Impact damage detection in composite laminates using nonlinear acoustics. Compos. A Appl. Sci. Manuf. 2010, 41, 1084–1092. [Google Scholar] [CrossRef]
- Saeedifar, M.; Mansvelder, J.; Mohammadi, R.; Zarouchas, D. Using Passive and Active Acoustic Methods for Impact Damage Assessment of Composite Structures. Compos. Struct. 2019, 226, 111252. [Google Scholar] [CrossRef]
- Xia, Q.; Li, H.; Lu, A.; Tian, Q.; Liu, J. Damage analysis of concrete members containing expansive agent by mechanical and acoustic methods. Eng. Fail. Anal. 2017, 74, 95–106. [Google Scholar] [CrossRef]
- Papa, I.; Lopresto, V.; Langella, A. Ultrasonic inspection of composites materials: Application to detect impact damage. Int. J. Lightweight Mater. Manuf. 2021, 4, 37–42. [Google Scholar] [CrossRef]
- Mac, V.H.; Huh, J.; Doan, N.S.; Shin, G.; Lee, B.Y. Thermography-Based Deterioration Detection in Concrete Bridge Girders Strengthened with Carbon Fiber-Reinforced Polymer. Sensors 2020, 20, 3263. [Google Scholar] [CrossRef]
- Chen, G.; Mu, H.; Pommerenke, D.; Drewniak, J.L. Damage detection of reinforced concrete beams with novel distributed crack/strain sensors. Struct. Health Monit. 2004, 3, 225–243. [Google Scholar] [CrossRef]
- Li, J.; Hao, H.; Fan, K.; Brownjohn, J. Development and application of a relative displacement sensor for structural health monitoring of composite bridges. Struct. Control Health Monit. 2015, 22, 726–742. [Google Scholar] [CrossRef]
- Chu, X.; Zhou, Z.; Deng, G.; Duan, X.; Jiang, X. An Overall Deformation Monitoring Method of Structure Based on Tracking Deformation Contour. Appl. Sci. 2019, 9, 4532. [Google Scholar] [CrossRef]
- D’Orazio, T.; Leo, M.; Distante, A.; Guaragnella, C.; Pianese, V.; Cavaccini, G. Automatic ultrasonic inspection for internal defect detection in composite materials. NDT E Int. 2008, 41, 145–154. [Google Scholar] [CrossRef]
- Ma, F. Recent Advances in the GPR Detection of Grouting Defects behind Shield Tunnel Segments. Remote Sens. 2021, 13, 4596. [Google Scholar] [CrossRef]
- Lei, W.; Hou, F.; Xi, J.; Tan, Q.; Xu, M.; Jiang, X.; Liu, Q.; Gu, Q. Automatic hyperbola detection and fitting in GPR B-scan image. Autom. Constr. 2019, 106, 102839. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Zhou, G. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 616–634. [Google Scholar] [CrossRef]
- Simoncelli, M.; Aloisio, A.; Zucca, M.; Venturi, G.; Alaggio, R. Intensity and location of corrosion on the reliability of a steel bridge. J. Constr. Steel Res. 2023, 206, 107937. [Google Scholar] [CrossRef]
- Wan, H.; Gao, L.; Yuan, Z.; Qu, H.; Sun, Q.; Cheng, H.; Wang, R. A novel transformer model for surface damage detection and cognition of concrete bridges. Expert Syst. Appl. 2023, 213, 119019. [Google Scholar] [CrossRef]
- Zhang, C.; Chang, C.C.; Jamshidi, M. Concrete bridge surface damage detection using a single-stage detector. Comput. Aided Civ. Infrastruct. Eng. 2019, 35, 389–409. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; Li, J.; Ma, C. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction. Autom. Constr. 2021, 130, 103832. [Google Scholar] [CrossRef]
- Reagan, D.; Sabato, A.; Niezrecki, C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 2018, 17, 1056–1072. [Google Scholar] [CrossRef]
- Ding, W.; Yang, H.; Yu, K.; Shu, J. Crack detection and quantification for concrete structures using UAV and transformer. Autom. Constr. 2023, 152, 104929. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; Li, J. Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction. Autom. Constr. 2022, 143, 104555. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, H. Automatic damage detection and diagnosis for hydraulic structures using drones and artificial intelligence techniques. Remote Sens. 2023, 15, 615. [Google Scholar] [CrossRef]
- Silva, L.A.; Leithardt, V.R.Q.; Batista, V.F.L.; González, G.V.; Santana, J.F.D.P. Automated Road Damage Detection using UAV Images and Deep Learning Techniques. IEEE Access 2023, 11, 62918–62931. [Google Scholar] [CrossRef]
- Kim, H.; Narazaki, Y.; Spencer, B.F., Jr. Automated bridge component recognition using close-range images from unmanned aerial vehicles. Eng. Struct. 2023, 274, 115184. [Google Scholar] [CrossRef]
- Amieghemen, G.E.; Sherif, M.M. Deep convolutional neural network ensemble for pavement crack detection using high elevation UAV images. Struct. Infrastruct. Eng. 2023, 1–16. [Google Scholar] [CrossRef]
- Ali, R.; Kang, D.; Suh, G.; Cha, Y.J. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures. Autom. Constr. 2021, 130, 103831. [Google Scholar] [CrossRef]
- Hellstein, P.; Szwedo, M. 3D thermography in non-destructive testing of composite structures. Meas. Sci. Technol. 2016, 27, 124006. [Google Scholar] [CrossRef]
- Zhang, R.; Li, H.; Duan, K.; You, S.; Liu, K.; Wang, F.; Hu, Y. Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote Sens. 2020, 12, 2621. [Google Scholar] [CrossRef]
- Omar, T.; Nehdi, M.L. Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom. Constr. 2017, 83, 360–371. [Google Scholar] [CrossRef]
- Žnidarič, A.; Kreslin, M.; Anžlin, A.; Krivic, A. Detection of Delaminated and Cracked Concrete with Unmanned Aerial Vehicles. Routes/Roads 2020, 386, 29–32. [Google Scholar]
- Deane, S.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Williamson, A.A.; Withers, S.; Zolotas, A.; Maldague, X.P.V.; Ahmadi, M.; Pant, S.; Genest, M.; et al. Development of a thermal excitation source used in an active thermographic UAV platform. Quant. Infrared Thermogr. J. 2023, 20, 198–229. [Google Scholar] [CrossRef]
- Aldave, I.J.; Bosom, P.V.; González, L.V.; De Santiago, I.L.; Vollheim, B.; Krausz, L.; Georges, M. Review of thermal imaging systems in composite defect detection. Infrared Phys. Technol. 2013, 61, 167–175. [Google Scholar] [CrossRef]
- Alexander, Q.G.; Hoskere, V.; Narazaki, Y.; Maxwell, A.; Spencer, B.F., Jr. Fusion of thermal and RGB images for automated deep learning based crack detection in civil infrastructure. AI Civ. Eng. 2022, 1, 3. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Z.; Wu, J.; Padir, T.; Hajjar, J.F. Towards automated detection and quantification of concrete cracks using integrated images and lidar data from unmanned aerial vehicles. Struct. Contr. Health Monit. 2021, 28, e2757. [Google Scholar] [CrossRef]
- Erkal, B.G.; Hajjar, J.F. Laser-based surface damage detection and quantification using predicted surface properties. Autom. Constr. 2017, 83, 285–302. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.M.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: Terrestrial laser scanning. Comput.-Aided Civ. Inf. 2007, 22, 19–30. [Google Scholar] [CrossRef]
- Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Autom. Constr. 2020, 117, 103250. [Google Scholar] [CrossRef]
- Chen, S.E.; Liu, W.; Bian, H.; Smith, B. 3D LiDAR scans for bridge damage evaluations. In Forensic Engineering 2012: Gateway to a Safer Tomorrow; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 487–495. [Google Scholar]
- Valença, J.; Puente, I.; Júlio, E.N.B.S.; González-Jorge, H.; Arias-Sánchez, P. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Constr. Build. Mater. 2017, 146, 668–678. [Google Scholar] [CrossRef]
- Bolourian, N.; Soltani, M.M.; Albahria, A.H.; Hammad, A. High level framework for bridge inspection using LiDAR-equipped UAV. In Proceedings of the ISARC—International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; p. 34. [Google Scholar]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. LiDAR-based structural health monitoring: Applications in civil infrastructure systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef]
- Farahani, B.V.; Barros, F.; Sousa, P.J.; Cacciari, P.P.; Tavares, P.J.; Futai, M.M.; Moreira, P. A coupled 3D laser scanning and digital image correlation system for geometry acquisition and deformation monitoring of a railway tunnel. Tunn. Undergr. Space 2019, 91, 102995. [Google Scholar] [CrossRef]
- Araújo, G.R.M.B.D.; Corsi, A.C.; Macedo, E.S.D.; Futai, M.M. Application of digital technologies in landslide prediction, mapping, and monitoring. Soils Rocks 2023, 46, e2023005823. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, P.; Lv, Y.; Qin, L. Monitoring Corrosion of Steel Bar in Concrete Using Ultrasonic Wave. Int. J. Adv. Eng. Technol. 2023, 7, 164. [Google Scholar] [CrossRef]
- Shetty, S.; Banerjee, S.; Tallur, S.; Desai, Y.M. Real-time monitoring of residual strength in corroding steel reinforcement using ultrasonic-guided waves and multi-physics modelling. J. Adhes. Sci. Technol. 2023, 37, 2841–2860. [Google Scholar] [CrossRef]
- Rodriguez, S.; Gayoux, V.; Ducasse, E.; Castaings, M.; Patteeuw, N. Ultrasonic imaging of buried defects in rails. NDT E Int. 2023, 133, 102737. [Google Scholar] [CrossRef]
- Gharehdash, S.; Laleh, M.; Sainsbury, D.; Barzegar, M.; Sainsbury, B.A. Low-Frequency ultrasonic tomography of Corrosion-induced damage patterns on naturally corroded solid reinforcing bar rock bolts. Constr. Build. Mater. 2023, 392, 131694. [Google Scholar] [CrossRef]
- Khademi, P.; Mousavi, M.; Dackermann, U.; Gandomi, A.H. Time–frequency analysis of ultrasonic signals for quality assessment of bonded concrete. Constr. Build. Mater. 2023, 403, 133062. [Google Scholar] [CrossRef]
- Zhan, H.; Jiang, H.; Liang, Z.; Jiang, R. Nondestructive In Situ Imaging of Preexisting Cracks in a Concrete Bridge Using Ultrasonic Coda Wave. J. Struct. Eng. 2023, 149, 04022215. [Google Scholar] [CrossRef]
- Ge, L.; Li, Q.; Wang, Z.; Li, Q.; Lu, C.; Dong, D.; Wang, H. High-resolution ultrasonic imaging technology for the damage of concrete structures based on total focusing method. Comput. Electr. Eng. 2023, 105, 108526. [Google Scholar] [CrossRef]
- Bagheri, A.; Rizzo, P.; Li, K. Ultrasonic imaging algorithm for the health monitoring of pipes. J. Civ. Struct. Health Monit. 2017, 7, 99–121. [Google Scholar] [CrossRef]
- Xu, J.; Wei, H. Ultrasonic testing analysis of concrete structure based on S transform. Shock. Vib. 2019, 2019, 2693141. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Tran, K.; Novo, A.; Nguyen, T. Full-resolution 3D imaging for concrete structures with dual-polarization GPR. Autom. Constr. 2021, 125, 103652. [Google Scholar] [CrossRef]
- Bertolini, L.; D’Amico, F.; Napolitano, A.; Bianchini Ciampoli, L.; Gagliardi, V.; Romer Diezmos Manalo, J. A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs). Infrastructures 2023, 8, 81. [Google Scholar] [CrossRef]
- Salari, A.; Esposito, G.; Catapano, I.; Soldovieri, F.; Erricolo, D. A Compact and Light-Weight Ground Penetrating Radar System for Unmanned Aerial Vehicles. In Proceedings of the 2023 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 10–14 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 221–222. [Google Scholar]
- Morris, I.; Abdel-Jaber, H.; Glisic, B. Quantitative attribute analyses with ground penetrating radar for infrastructure assessments and structural health monitoring. Sensors 2019, 19, 1637. [Google Scholar] [CrossRef] [PubMed]
- Morris, I.M.; Kumar, V.; Glisic, B. Predicting material properties of concrete from ground-penetrating radar attributes. Struct. Health Monit. 2021, 20, 2791–2812. [Google Scholar] [CrossRef]
- Xiang, Z.; Ou, G.; Rashidi, A. Integrated approach to simultaneously determine 3D location and size of rebar in GPR data. J. Perform. Constr. Facil. 2020, 34, 04020097. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Zayed, T.; Hosseini, M.R. Method for developing and updating deterioration models for concrete bridge decks using GPR data. Autom. Constr. 2018, 91, 133–141. [Google Scholar] [CrossRef]
- Kumar, V.; Morris, I.M.; Lopez, S.A.; Glisic, B. Identifying spatial and temporal variations in concrete bridges with ground penetrating radar attributes. Remote Sens. 2021, 13, 1846. [Google Scholar] [CrossRef]
- Gagliardi, V.; Tosti, F.; Bianchini Ciampoli, L.; Battagliere, M.L.; D’Amato, L.; Alani, A.M.; Benedetto, A. Satellite remote sensing and non-destructive testing methods for transport infrastructure monitoring: Advances, challenges and perspectives. Remote Sens. 2023, 15, 418. [Google Scholar] [CrossRef]
- Talledo, D.A.; Miano, A.; Bonano, M.; Di Carlo, F.; Lanari, R.; Manunta, M.; Meda, A.; Mele, A.; Prota, A.; Saetta, A.; et al. Satellite radar interferometry: Potential and limitations for structural assessment and monitoring. J. Build. Eng. 2022, 46, 103756. [Google Scholar] [CrossRef]
- Shen, N.; Chen, L.; Liu, J.; Wang, L.; Tao, T.; Wu, D.; Chen, R. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring. Remote Sens. 2019, 11, 1001. [Google Scholar] [CrossRef]
- Hoppe, E.J.; Novali, F.; Rucci, A.; Fumagalli, A.; Del Conte, S.; Falorni, G.; Toro, N. Deformation monitoring of posttensioned bridges using high-resolution satellite remote sensing. J. Bridge Eng. 2019, 24, 04019115. [Google Scholar] [CrossRef]
- Mazzanti, P.; Perissin, D.; Rocca, A. Structural health monitoring of dams by advanced satellite SAR interferometry: Investigation of past processes and future monitoring perspectives. In Proceedings of the 7th Internation Conference on Structural Health Monitoring of Intelligent Infrastructure, Torino, Italy, 1–3 July 2015. [Google Scholar]
- Bakon, M.; Perissin, D.; Lazecky, M.; Papco, J. Infrastructure non-linear deformation monitoring via satellite radar interferometry. Proc. Technol. 2014, 16, 294–300. [Google Scholar] [CrossRef]
- Entezami, A.; De Michele, C.; Arslan, A.N.; Behkamal, B. Detection of partially structural collapse using long-term small displacement data from satellite images. Sensors 2022, 22, 4964. [Google Scholar] [CrossRef]
- Wang, H.; Chang, L.; Markine, V. Structural health monitoring of railway transition zones using satellite radar data. Sensors 2018, 18, 413. [Google Scholar] [CrossRef]
- Tonelli, D.; Caspani, V.F.; Valentini, A.; Rocca, A.; Torboli, R.; Vitti, A.; Perissin, D.; Zonta, D. Interpretation of Bridge Health Monitoring Data from Satellite InSAR Technology. Remote Sens. 2023, 15, 5242. [Google Scholar] [CrossRef]
- Caprino, A.; Puliero, S.; Lorenzoni, F.; Floris, M.; da Porto, F. Satellite SAR Interferometry and On-Site Traditional SHM to Monitor the Post-Earthquake Behavior of the Civic Tower in L’Aquila (Abruzzo Region, Italy). Remote Sens. 2023, 15, 1587. [Google Scholar] [CrossRef]
- Ziou, D.; Tabbone, S. Edge detection techniques-an overview. Pattern Recognit. Image Anal. 1998, 8, 537–559. [Google Scholar]
- Dharampal, V.M. Methods of image edge detection: A review. J. Electr. Electron. Syst. 2015, 4, 5. [Google Scholar]
- Maini, R.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. IJIP 2009, 3, 1–11. [Google Scholar]
- Hoang, N.D.; Nguyen, Q.L. Metaheuristic optimized edge detection for recognition of concrete wall cracks: A comparative study on the performances of roberts, prewitt, canny, and sobel algorithms. Adv. Civ. Eng. 2018, 2018, 7163580. [Google Scholar] [CrossRef]
- Prasetyo, A.; Yuniarto, E.M.; Suprobo, P.; Tambusay, A. Application of Edge Detection Technique for Concrete Surface Crack Detection. In Proceedings of the 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), Virtual, 20–21 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 209–213. [Google Scholar]
- Han, H.; Deng, H.; Dong, Q.; Gu, X.; Zhang, T.; Wang, Y. An advanced Otsu method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure. Adv. Mater. Sci. 2021, 2021, 9205509. [Google Scholar] [CrossRef]
- Jena, K.K.; Mishra, S.; Mishra, S.; Bhoi, S.K. Unmanned aerial vehicle assisted bridge crack severity inspection using edge detection methods. In Proceedings of the 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 12–14, December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 284–289. [Google Scholar]
- Nguyen, H.N.; Kam, T.Y.; Cheng, P.Y. An automatic approach for accurate edge detection of concrete crack utilizing 2D geometric features of crack. J. Signal Process. Syst. 2014, 77, 221–240. [Google Scholar] [CrossRef]
- Abid Hasan, S.M.; Ko, K. Depth edge detection by image-based smoothing and morphological operations. J. Comput. Des. Eng. 2016, 3, 191–197. [Google Scholar] [CrossRef]
- Nguyen, A.; Gharehbaghi, V.; Le, N.T.; Sterling, L.; Chaudhry, U.I.; Crawford, S. ASR crack identification in bridges using deep learning and texture analysis. Structures 2023, 50, 494–507. [Google Scholar] [CrossRef]
- Hoang, N.D.; Huynh, T.C.; Tran, V.D. Concrete spalling severity classification using image texture analysis and a novel jellyfish search optimized machine learning approach. Adv. Civ. Eng. 2021, 2021, 5551555. [Google Scholar] [CrossRef]
- O’Byrne, M.; Schoefs, F.; Ghosh, B.; Pakrashi, V. Texture analysis based damage detection of ageing infrastructural elements. Comput.-Aided Civ. Inf. 2013, 28, 162–177. [Google Scholar] [CrossRef]
- O’Byrne, M.; Ghosh, B.; Pakrashi, V.; Schoefs, F. Texture analysis based detection and classification of surface features on ageing infrastructure elements. In Proceedings of the Bridge and Concrete Research in Ireland Conference (BCRI 2012), Dublin, Ireland, 6–7 September 2012. [Google Scholar]
- Bu, G.P.; Chanda, S.; Guan, H.; Jo, J.; Blumenstein, M.; Loo, Y.C. Crack detection using a texture analysis-based technique for visual bridge inspection. Electron. J. Struct. Eng. 2015, 14, 41–48. [Google Scholar]
- Hoang, N.D.; Nguyen, Q.L. A novel approach for automatic detection of concrete surface voids using image texture analysis and history-based adaptive differential evolution optimized support vector machine. Adv. Civ. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Nooralishahi, P.; Ramos, G.; Pozzer, S.; Ibarra-Castanedo, C.; Lopez, F.; Maldague, X.P. Texture analysis to enhance drone-based multi-modal inspection of structures. Drones 2022, 6, 407. [Google Scholar] [CrossRef]
- Zhu, L.; Dang, F.; Xue, Y.; Ding, W.; Zhang, L. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Constr. Build. Mater. 2019, 224, 534–550. [Google Scholar] [CrossRef]
- He, J.; Shao, L.; Li, Y.; Wang, K.; Liu, W. Pavement damage identification and evaluation in UAV-captured images using gray level co-occurrence matrix and cloud model. J. King Saud. Univ. Comput. Inf. 2023, 35, 101762. [Google Scholar] [CrossRef]
- Brown, L.G. A survey of image registration techniques. CM Comput. Surv. 1992, 24, 325–376. [Google Scholar] [CrossRef]
- Hsu, W.Y. A novel image registration algorithm for indoor and built environment applications. Comput.-Aided Civ. Inf. 2015, 30, 802–814. [Google Scholar] [CrossRef]
- Park, J.; Cai, H.; Perissin, D. Bringing information to the field: Automated photo registration and 4D BIM. J. Comput. Civ. Eng. 2018, 32, 04017084. [Google Scholar] [CrossRef]
- Li, H.; Ding, W.; Cao, X.; Liu, C. Image registration and fusion of visible and infrared integrated camera for medium-altitude unmanned aerial vehicle remote sensing. Remote Sens. 2017, 9, 441. [Google Scholar] [CrossRef]
- Quan, D.; Wang, S.; Gu, Y.; Lei, R.; Yang, B.; Wei, S.; Hou, B.; Jiao, L. Deep feature correlation learning for multi-modal remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Vishwakarma, H.; Katiyar, S.K. Accuracy assessment of projective transformation based hybrid approach for automatic satellite image registration. Int. J. Civ. Eng. Technol. 2018, 9, 1514–1523. [Google Scholar]
- Jianchao, Y.; Chern, C.T.; Hwang, Y.C.; Adrian, Y.C. Automatic satellite image registration based on intensity matching. In Proceedings of the IGARSS 2001, Scanning the Present and Resolving the Future, International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 7, pp. 3297–3299. [Google Scholar]
- Shang, Z.; Shen, Z. Multi-point vibration measurement and mode magnification of civil structures using video-based motion processing. Autom. Constr. 2018, 93, 231–240. [Google Scholar] [CrossRef]
- Li, H.Y.; Huang, C.Y.; Wang, C.Y. Measurement of Cracks in Concrete Bridges by Using Unmanned Aerial Vehicles and Image Registration. Drones 2023, 7, 342. [Google Scholar] [CrossRef]
- Foryś, P.; Sitnik, R.; Markiewicz, J.; Bunsch, E. Fast adaptive multimodal feature registration (FAMFR): An effective high-resolution point clouds registration workflow for cultural heritage interiors. Herit. Sci. 2023, 11, 190. [Google Scholar] [CrossRef]
- Kong, X.; Li, J. Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing. Autom. Constr. 2019, 99, 125–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Wang, G. Vision-based measurement for the transverse-longitudinal-rotational displacement of hoisting rope by modified Lucas-Kanade algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.B. Real time measurement of the dynamic displacement field of a large-scale arch-truss bridge by remote sensing technology. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar]
- Guo, J. Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mech. Syst. Signal Process. 2016, 66, 425–436. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Lei, M.; Liu, L.; Shi, C.; Tan, Y.; Lin, Y.; Wang, W. A novel tunnel-lining crack recognition system based on digital image technology. Tunn. Undergr. Space Technol. 2021, 108, 103724. [Google Scholar] [CrossRef]
- Akagic, A.; Buza, E.; Omanovic, S.; Karabegovic, A. Pavement crack detection using Otsu thresholding for image segmentation. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1092–1097. [Google Scholar]
- Singh, P.; Shree, R. A new homomorphic and method noise thresholding based despeckling of SAR image using anisotropic diffusion. J. King Saud. Univ. Comput. Inf. 2020, 32, 137–148. [Google Scholar] [CrossRef]
- Bao, P.; Zhang, L.; Wu, X. Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Nnolim, U.A. Automated crack segmentation via saturation channel thresholding, area classification and fusion of modified level set segmentation with Canny edge detection. Heliyon 2020, 6, e05748. [Google Scholar] [CrossRef]
- Nhat-Duc, H.; Nguyen, Q.L.; Tran, V.D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213. [Google Scholar] [CrossRef]
- Wang, G.; Peter, W.T.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector. Meas. Sci. Technol. 2018, 29, 25403. [Google Scholar] [CrossRef]
- Yeom, J.; Jung, M.; Kim, Y. Detecting damaged building parts in earthquake-damaged areas using differential seeded region growing. Int. J. Remote Sens. 2017, 38, 985–1005. [Google Scholar] [CrossRef]
- Asmussen, P.; Conrad, O.; Günther, A.; Kirsch, M.; Riller, U. Semi-automatic segmentation of petrographic thin section images using a “seeded-region growing algorithm” with an application to characterize wheathered subarkose sandstone. Comput. Geosci. 2015, 83, 89–99. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Yang, S.; Xiang, Z. A method of blasted rock image segmentation based on improved watershed algorithm. Sci. Rep. 2022, 12, 7143. [Google Scholar] [CrossRef]
- Jagadeesh, A.; Ong, G.P.; Su, Y.M. Evaluation of pervious concrete pore network properties using watershed segmentation approach. In Proceedings of the International Airfield and Highway Pavements Conference 2019, Chicago, IL, UAS, 21–24 July 2019; pp. 437–446. [Google Scholar]
- Sahari Moghaddam, A.; Rezazadeh Azar, E.; Mejias, Y.; Bell, H. Estimating stripping of asphalt coating using k-means clustering and machine learning–based classification. J. Comput. Civ. Eng. 2020, 34, 04019044. [Google Scholar] [CrossRef]
- Brilakis, I.K.; Soibelman, L.; Shinagawa, Y. Construction site image retrieval based on material cluster recognition. Adv. Eng. Inform. 2006, 20, 443–452. [Google Scholar] [CrossRef]
- Alamdari, M.M.; Rakotoarivelo, T.; Khoa, N.L.D. A spectral-based clustering for structural health monitoring of the Sydney Harbour Bridge. Mech. Syst. Signal Process. 2017, 87, 384–400. [Google Scholar] [CrossRef]
- Ye, X.W.; Jin, T.; Yun, C.B. A review on deep learning-based structural health monitoring of civil infrastructures. Smart Struct. Syst. 2019, 24, 567–585. [Google Scholar]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2021, 226, 111347. [Google Scholar] [CrossRef]
- Resende, L.; Finotti, R.; Barbosa, F.; Garrido, H.; Cury, A.; Domizio, M. Damage identification using convolutional neural networks from instantaneous displacement measurements via image processing. Struct. Health Monit. 2023. [Google Scholar] [CrossRef]
- Mantawy, I.M.; Mantawy, M.O. Convolutional neural network based structural health monitoring for rocking bridge system by encoding time-series into images. Struct. Control Health Monit. 2022, 29, e2897. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Wang, Z.; Cha, Y.J. Unsupervised machine and deep learning methods for structural damage detection: A comparative study. Eng. Rep. 2022, e12551. [Google Scholar] [CrossRef]
- Salunkhe, A.A.; Gobinath, R.; Vinay, S.; Joseph, L. Progress and trends in image processing applications in civil engineering: Opportunities and challenges. Adv. Civ. Eng. 2022. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 2028, 2621–2643. [Google Scholar] [CrossRef]
- Bao, Y.; Li, H. Machine learning paradigm for structural health monitoring. Struct. Health Monit. 2021, 20, 1353–1372. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.H. Crack and noncrack classification from concrete surface images using machine learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Valikhani, A.; Jaberi Jahromi, A.; Pouyanfar, S.; Mantawy, I.M.; Azizinamini, A. Machine learning and image processing approaches for estimating concrete surface roughness using basic cameras. Comput.-Aided Civ. Inf. 2021, 36, 213–226. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Adeli, H. A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Des. Tall Spec. Build. 2017, 26, e1400. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, L.; Zheng, T.; Li, Z.; Sun, R.; Huang, K. A combined machine learning and numerical approach for evaluating the uncertainty of 3D angle-interlock woven composites. Compos. Struct. 2022, 294, 115726. [Google Scholar] [CrossRef]
- Silva, M.; Santos, A.; Santos, R.; Figueiredo, E.; Sales, C.; Costa, J.C. Deep principal component analysis: An enhanced approach for structural damage identification. Struct. Health Monit. 2019, 18, 1444–1463. [Google Scholar] [CrossRef]
- Kaloni, S.; Singh, G.; Tiwari, P. Nonparametric damage detection and localization model of framed civil structure based on local gravitation clustering analysis. J. Build. Eng. 2021, 44, 103339. [Google Scholar] [CrossRef]
- Coraça, E.M.; Ferreira, J.V.; Nóbrega, E.G. An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models. Reliab. Eng. Syst. Saf. 2023, 231, 109025. [Google Scholar] [CrossRef]
- Eltouny, K.; Gomaa, M.; Liang, X. Unsupervised Learning Methods for Data-Driven Vibration-Based Structural Health Monitoring: A Review. Sensors 2023, 23, 3290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cha, Y.J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Struct. Health Monit. 2021, 20, 406–425. [Google Scholar] [CrossRef]
- Liu, J.; Li, K. Research on an Improved SOM Model for Damage Identification of Concrete Structures. Appl. Sci. 2022, 12, 4152. [Google Scholar] [CrossRef]
- Kohiyama, M.; Oka, K.; Yamashita, T. Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network. Struct. Control Health Monit. 2020, 27, e2552. [Google Scholar] [CrossRef]
- Chen, J.; Liu, D. Bottom-up image detection of water channel slope damages based on superpixel segmentation and support vector machine. Adv. Eng. Inform. 2021, 47, 101205. [Google Scholar] [CrossRef]
- Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. J. Struct. Eng. 2020, 146, 04020073. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Barkhordari, M.M.; Armaghani, D.J.; Rashid, A.S.A.; Ulrikh, D.V. Hybrid Wavelet Scattering Network-Based Model for Failure Identification of Reinforced Concrete Members. Sustainability 2022, 14, 12041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-W.; Choi, H.-W.; Kim, S.-K.; Na, W.S. Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures. J. Imaging 2024, 10, 93. https://doi.org/10.3390/jimaging10040093
Kim J-W, Choi H-W, Kim S-K, Na WS. Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures. Journal of Imaging. 2024; 10(4):93. https://doi.org/10.3390/jimaging10040093
Chicago/Turabian StyleKim, Ji-Woo, Hee-Wook Choi, Sung-Keun Kim, and Wongi S. Na. 2024. "Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures" Journal of Imaging 10, no. 4: 93. https://doi.org/10.3390/jimaging10040093
APA StyleKim, J. -W., Choi, H. -W., Kim, S. -K., & Na, W. S. (2024). Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures. Journal of Imaging, 10(4), 93. https://doi.org/10.3390/jimaging10040093