A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption Performance
2.1.1. Initial PCDD/Fs
2.1.2. PCDD/Fs Concentration
2.1.3. PCDD/Fs Distribution
2.2. Correlation
2.2.1. Adsorption Temperature
2.2.2. AC Dosage
2.3. Mechanism of the Temperature Influence
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.3. Sampling and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Xiao, H.; Wang, W.; Zhang, Y.; Jiang, X. Formation and Emission Control of PCDD/Fs from Typical Fluidized Bed MSW Incinerators. J. Power Eng. 2012, 32, 654–660. [Google Scholar]
- China, N.B.O.S. China Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- European, C.; Joint, R.C.; Cusano, G.; Roudier, S.; Neuwahl, F.; Holbrook, S.; Gómez Benavides, J. Best Available Techniques (BAT) Reference Document for Waste Incineration: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office: Luxembourg, 2020. [Google Scholar]
- Gu, K. Application of activated carbon (1). Commun. For. Prod. Chem. Ind. 1999, 37–40. [Google Scholar]
- Nagano, H.; Tamon, T.; Adzumi, K.; Nakagawa, T. Suzuki. Act. Carbon Munic. Waste 2000, 38, 915–920. [Google Scholar]
- Zhou, X.J.; Buekens, A.; Li, X.D.; Ni, M.J.; Cen, K.F. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane. Chemosphere 2016, 144, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Everaert, K.; Baeyens, J.; Degrève, J. Entrained-Phase Adsorption of PCDD/F from Incinerator Flue Gases. Environ. Sci. Technol. 2003, 37, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ji, Y.; Buekens, A.; Ma, Z.; Jin, Y.; Li, X.; Yan, J. Activated carbon treatment of municipal solid waste incineration flue gas. Waste Manag. Research. 2012, 31, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Kawamoto, K. Fundamental Adsorption Characteristics of Carbonaceous Adsorbents for 1,2,3,4-Tetrachlorobenzene in a Model Gas of an Incineration Plant. Environ. Sci. Technol. 2005, 39, 5844–5850. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, G.; Xiao, G.; Zhou, J.; Ding, G.; Pan, X. Adsorption of Dioxin by Bag Filter + Powdered Activated Carbon. Water Air Soil Pollut. 2017, 228, 160. [Google Scholar] [CrossRef]
- Xiong, S.; Yaqi, P.; Shengyong, L.; Chen, K.; Li, X.; Kefa, C. PCDD/Fs from a large-scale municipal solid waste incinerator under transient operations: Insight formation pathways and optimal reduction strategies. J. Environ. Manag. 2022, 314, 114878. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.; Maken, S.; Song, H.; Park, J.; Min, B. Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) system. Fuel 2007, 86, 813–819. [Google Scholar] [CrossRef]
- Gunes, G.; Saral, A.; Saral, A.; Yıldız; Kuzu, S.L. Determination of optimum dose of adsorbent for PCDD/F removal in the flue gas of a medical waste incineration plant. Chem. Eng. Res. Des. 2015, 104, 695–702. [Google Scholar] [CrossRef]
- Li, C.Q.; Liu, G.R.; Qin, S.; Zhu, T.Y.; Song, J.F.; Xu, W.Q. Emission reduction of PCDD/Fs by flue gas recirculation and activated carbon in the iron ore sintering. Environ. Pollut. 2023, 327, 121520. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.X.; Jiao, W.H.; Yang, Y.T.; Zeng, Z.Q.; Huang, Z.G. Effects of oxygenated groups on the adsorption removal of dibenzofuran by activated coke: Experimental and DFT studies. J. Environ. Chem. Eng. 2021, 9, 106775. [Google Scholar] [CrossRef]
- Hideki, T.; Ikuo, A. Application Technology of Activated Carbon—Maintenance and Problems; Tech System Co., Ltd.: Tokyo, Japan, 2000. (In Japanese) [Google Scholar]
- Yang, C.T.; Jiao, W.H.; Yang, Y.T.; Zeng, Z.Q.; Huang, Z.G. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Kawashima, A.; Katayama, M.; Matsumoto, N.; Honda, K. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption. Chemosphere 2011, 83, 823–830. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.; Chen, Z.; Chen, T.; Lin, X.; Ma, Y.; Zhang, M.; Li, X. Inhibition of polychlorinated dibenzo-p-dioxins and dibenzofurans by phosphorus-containing compounds in model fly ash. Chemosphere 2020, 257, 127168. [Google Scholar] [CrossRef]
- Guan, X.; Ghimire, A.; Potter, P.M.; Lomnicki, S.M. Role of Fe2O3 in fly ash surrogate on PCDD/Fs formation from 2-monochlorophenol. Chemosphere 2019, 226, 809–816. [Google Scholar] [CrossRef]
- Nganai, S.; Lomnicki, S. Surface catalysed PCDD/F formation from precursors—High PCDF yield does not indicate de novo mechanism! Int. J. Environ. Pollut. 2017, 61, 208–222. [Google Scholar] [CrossRef]
- Weber, R.; Sakurai, T.; Hagenmaier, H. Formation and destruction of PCDD/PCDF during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere 1999, 38, 2633–2642. [Google Scholar] [CrossRef]
- Chen, T.; Zhan, M.; Lin, X.; Fu, J.; Lu, S.; Li, X. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China. Environ. Sci. Pollut. Res. 2015, 22, 1207–1214. [Google Scholar] [CrossRef]
- Wang, L.; Lee, W.; Lee, W.; Chang-Chien, G.; Tsai, P. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci. Total Environ. 2003, 302, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ni, Y.; Zhang, H.; Zhao, L.; Zhang, N.; Zhang, X.; Zhang, Q.; Chen, J. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China. Chemosphere 2009, 77, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Guo, L.; Ke, Z.; Zhang, P.; Chen, J. PCDD/Fs Emission Characteristics of Medical Waste Incineration in Flue Gas. Environ. Sci. Technol. 2017, 40, 153–158. [Google Scholar]
- Li, J.; Lv, Z.; Du, L.; Li, X.; Hu, X.; Wang, C.; Niu, Z.; Zhang, Y. Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs. Environ. Pollut. 2017, 221, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, L.; Wang, Y.; Li, H. Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. J. Hazard. Mater. 2008, 153, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Karademir, A.; Bakoglu, M.; Taspinar, F.; Ayberk, S. Removal of PCDD/Fs from Flue Gas by a Fixed-Bed Activated Carbon Filter in a Hazardous Waste Incinerator. Environ. Sci. Technol. 2004, 38, 1201–1207. [Google Scholar] [CrossRef]
- Smolka, A.; Schmidt, K. Gas/particle partitioning before and after flue gas purification by an activated-carbon-filter. Chemosphere 1997, 34, 1075–1082. [Google Scholar] [CrossRef]
- Hung, P.C.; Wei, C.L.; Kai, H.C.; Shu, H.C.; Chang, M.B. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant. Chemosphere 2010, 82, 72–77. [Google Scholar] [CrossRef]
- Lin, L.; Lee, W.; Li, H.; Wang, M.; Chang-Chien, G. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 2007, 68, 1642–1649. [Google Scholar] [CrossRef]
- Ji, S.; Ren, Y.; Buekens, A.; Chen, T.; Lu, S.; Cen, K.; Li, X. Treating PCDD/Fs by combined catalysis and activated carbon adsorption. Chemosphere 2014, 102, 31–36. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Yu, M.; Mubeen, I.; Buekens, A.; Li, X. Experimental Study on PCDD/Fs Adsorption onto Nano-Graphite. Aerosol Air Qual. Research. 2016, 16, 3281–3289. [Google Scholar] [CrossRef]
- Chang, Y.; Hung, C.; Chen, J.; Chang, C.; Chen, C. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. J. Hazard. Mater. 2009, 161, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Duca, G.; Ciobanu, M.; Lupascu, T.; Povar, I. Adsorption of Strontium Ions from Aqueous Solutions on Nut Shells Activated Carbons. Chem. J. Mold. 2018, 13, 69–73. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, D.G. Adsorption of pyridine on post-crosslinked fiber. J. Sci. Ind. Res. 2010, 69, 73–76. [Google Scholar]
- Chang, M.B.; Chi, K.H.; Chang-Chien, G.P. Evaluation of PCDD/F congener distributions in MWI flue gas treated with SCR catalysts. Chemosphere 2004, 55, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Maetzing, H.; Baumann, W.; Becker, B.; Jay, K.; Paur, H.; Seifert, H. Adsorption of PCDD/F on MWI fly ash. Chemosphere 2001, 42, 803–809. [Google Scholar] [CrossRef]
- Brender, P.; Gadiou, R.; Rietsch, J.; Fioux, P.; Dentzer, J.; Ponche, A.; Vix-Guterl, C. Characterization of Carbon Surface Chemistry by Combined Temperature Programmed Desorption with in Situ X-ray Photoelectron Spectrometry and Temperature Programmed Desorption with Mass Spectrometry Analysis. Anal. Chem. 2012, 84, 2147–2153. [Google Scholar] [CrossRef]
- Zielke, U.; Hüttinger, K.J.; Hoffman, W.P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 1996, 34, 983–998. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J.; King, R.C. Handbook of x-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Chem. Phys. Lett. 1992, 220, 7–10. [Google Scholar]
- Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Zhou, J.H.; Sui, Z.J.; Zhu, J.; Li, P.; De, C.; Dai, Y.C.; Yuan, W.K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45, 785–796. [Google Scholar] [CrossRef]
- Ma, X.W.; Lv, H.; Yang, L.J.; Zhang, Z.; Sun, Z.K.; Wu, H. Removal characteristics of organic pollutants by the adsorbent injection coupled with bag filtering system. J. Hazard. Mater. 2021, 405, 124193. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Jing, W.; Hou, Y.Q.; Huang, Z.G.; Ma, G.Q.; Han, X.J.; Sun, D.K. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures. Chem. Eng. J. 2015, 270, 41–49. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
Survey-wt% | O 1 s/C 1 s | C 1 s-wt% | O 1 s-wt% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C 1 s | O 1 s | Peak 1 | Peak 2 | Peak 3 | Peak 4 | Peak 5 | Peak I | Peak II | Peak III | Peak IV | Peak V | ||
Before | 91.81 | 8.19 | 0.0892 | 68.63 | 13.20 | 6.72 | 2.26 | 8.70 | 23.97 | 46.50 | 19.06 | 7.39 | 3.08 |
150 °C | 91.66 | 8.34 | 0.0910 | 67.43 | 14.93 | 6.35 | 2.72 | 8.57 | 22.51 | 43.00 | 23.07 | 8.91 | 2.50 |
165 °C | 91.79 | 8.21 | 0.0894 | 66.58 | 16.88 | 5.90 | 2.82 | 7.82 | 20.70 | 39.81 | 26.99 | 10.82 | 1.67 |
180 °C | 91.57 | 8.43 | 0.0921 | 65.56 | 18.24 | 5.69 | 2.99 | 7.50 | 17.84 | 31.32 | 31.19 | 13.40 | 6.25 |
Item | BET Surface Area | Micropore Surface Area | Mesopore Surface Area | Total Pore Volume | Micropore Volume | Mesopore Volume | Average Pore Diameter |
---|---|---|---|---|---|---|---|
Unit | m2/g | m2/g | m2/g | cm3/g | cm3/g | cm3/g | nm |
Quantity | 638 | 389 | 256 | 0.65 | 0.16 | 0.50 | 4.05 |
No. | Adsorption Temperature | Dosage of Activated Carbon | Carrier Gas Flow Rate | Carrier Gas (Volume Ratio) | Adsorption Time |
---|---|---|---|---|---|
a0 | 150 °C | / | 500 mL/min | N2:O2 = 9:1 | 1 h |
a1 | 0.10 g | ||||
a2 | 0.15 g | ||||
a3 | 0.20 g | ||||
b0 | 165 °C | / | |||
b1 | 0.10 g | ||||
b2 | 0.15 g | ||||
b3 | 0.20 g | ||||
c0 | 180 °C | / | |||
c1 | 0.10 g | ||||
c2 | 0.15 g | ||||
c3 | 0.20 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Lai, J.; Lin, X.; Li, X.; Xu, S. A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon. Recycling 2023, 8, 98. https://doi.org/10.3390/recycling8060098
Wang P, Lai J, Lin X, Li X, Xu S. A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon. Recycling. 2023; 8(6):98. https://doi.org/10.3390/recycling8060098
Chicago/Turabian StyleWang, Peiyue, Jianwen Lai, Xiaoqing Lin, Xiaodong Li, and Shuaixi Xu. 2023. "A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon" Recycling 8, no. 6: 98. https://doi.org/10.3390/recycling8060098
APA StyleWang, P., Lai, J., Lin, X., Li, X., & Xu, S. (2023). A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon. Recycling, 8(6), 98. https://doi.org/10.3390/recycling8060098