Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil Yield
2.2. Physicochemical Parameters of Neem Oil
2.3. Characterization of the Fatty Acid
2.4. Germination and Seedling Development Bioassays
3. Materials and Methods
3.1. Solvent and Reagents
3.2. Experiment Location
3.3. Experimental Design
3.4. Collection and Processing of Organic Waste
3.4.1. Neem oil Source
3.4.2. Seed Treatment
3.5. Neem Oil Extraction
3.6. Physicochemical Characterization
3.6.1. Density
3.6.2. Acid Value (Av)
3.6.3. Iodine Value by the Wijs (II) Method
3.6.4. Saponification Value (Is)
3.6.5. Free Fatty Acids (%FFA)
3.6.6. Ester Value (Ev)
3.6.7. Molecular Weight (MW)
3.7. Characterization of Fatty Acids
3.8. Germination Bioassay and Seedling Development
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Ferreira, S.F.; Buller, L.S.; Maciel-Silva, F.W.; Sganzerla, W.G.; Berni, M.D.; Forster-Carneiro, T. Waste management and bioenergy recovery from açaí processing in the Brazilian Amazonian region: A perspective for a circular economy. Biofuels Bioprod. Biorefin. 2021, 15, 37–46. [Google Scholar] [CrossRef]
- De Mendonça Costa, L.A.; de Mendonça Costa, M.S.S.; Damaceno, F.M.; Chiarelotto, M.; Bofinger, J.; Gazzola, W. Bioaugmentation as a strategy to improve the compost quality in the composting process of agro-industrial wastes. Environ. Technol. Innov. 2021, 22, 101478. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Jorge, N. Bioactive compounds of the lipid fractions of agro-industrial waste. Food Res. Int. 2014, 66, 493–500. [Google Scholar] [CrossRef]
- Singh, D. Advances in Plant Biopesticides; XV; Singh, D., Ed.; Springer: New Delhi, India, 2014; ISBN 9788132220060. [Google Scholar]
- Abubakar, Y.; Tijjani, H.; Egbuna, C.; Adetunji, C.O.; Kala, S.; Kryeziu, T.L.; Patrick-Iwuanyanwu, K.C. Pesticides, history, and classification. In Natural Remedies for Pest, Disease and Weed Control; Academic Press: Cambridge, MA, USA, 2020; pp. 29–42. [Google Scholar] [CrossRef]
- Batlang, U.; Shushu, D.D. Allelopathic activity of sunflower (Helianthus annuus L.) on growth and nodulation of bambara groundnut (Vigna subterranea (L.) Verdc.). J. Agron. 2007, 6, 541–547. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Pedrol, N.; González, L. Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Nuria Pedrol, L.G., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume XIV, ISBN 9781402042805. [Google Scholar]
- Lopes, R.W.N.; Marques Morais, E.; de Jesus Lacerda, J.J.; da Silva Araújo, F.D. Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L. Sci. Rep. 2022, 12, 13476. [Google Scholar] [CrossRef]
- Baby, A.R.; Freire, T.B.; de Argollo Marques, G.; Rijo, P.; Lima, F.V.; de Carvalho, J.C.M.; Rojas, J.; Magalhães, W.V.; Velasco, M.V.R.; Morocho-Jácome, A.L. Azadirachta indica (Neem) as a Potential Natural Active for Dermocosmetic and Topical Products: A Narrative Review. Cosmetics 2022, 9, 58. [Google Scholar] [CrossRef]
- Kumar, J.; Parmar, B.S. Physicochemical and Chemical Variation in Neem Oils and Some Bioactivity Leads against Spodoptera litura F. J. Agric. Food Chem. 1996, 44, 2137–2143. [Google Scholar] [CrossRef]
- Prithviraj Bhandare, D.R.; Bhandare, P.; Naik, G.R. Physico-Chemical Properties of Biodiesel Produced from Neem oil. Int. Lett. Chem. 2015, 8, 40–48. [Google Scholar] [CrossRef]
- Cardoso, C.A. Avaliação de Danos Induzidos em Ratos Wistar (Rattus norvergicus) Expostos ao Extrato Aquoso de neem (Azadirachta indica) em Mesmas Concentrações Utilizadas na Lavoura de milho (Zea mays) para o Controle da Lagarta do Cartucho (Spodoptera frugiperda); Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo: Pirassununga, Brazil, 2019. [Google Scholar]
- Faye, M. Nouveau Procédé de Fractionnement de la Graine de Neem (Azadirachta indica A. Jussi) sénégalais: Production d’un Bio-Pesticide d’huile et de Tourteau; Université de Toulouse: Toulouse, France, 2010. [Google Scholar]
- Salam, M.A.; Kato-Noguchi, H. Evaluation of Allelopathic Potential of Neem (Azadirachta indica. A. Juss) Against Seed Germination and Seedling Growth of Different Test Plant Species. Int. J. Sustain. Agric. 2010, 2, 20–25. [Google Scholar]
- Da Silva Souza Filho, A.P.; Cunha, R.L.; de Vasconcelos, M.A.M. Efeito inibitório do óleo de Azadirachta indica A. Juss. sobre plantas daninhas. Rev. Ciências Agrárias Amaz. J. Agric. Environ. Sci. 2009, 52, 79–86. [Google Scholar]
- Tesfaye, B.; Tefera, T. Extraction of Essential Oil from Neem Seed by Using Soxhlet Extraction Methods. Int. J. Adv. Eng. Manag. Sci. 2017, 3, 646–650. [Google Scholar] [CrossRef]
- Romero, C.; Vargas, M. Extracción del aceite de la semilla de neem (Azadirachta Indica). Ciencia 2005, 13, 464–474. [Google Scholar]
- Brum, A.A.S.; De Arruda, L.F.; Regitano-d’Arce, M.A.B. Métodos de extração e qualidade da fração lipídica de matérias-primas de origem vegetal e animal. Quim. Nova 2009, 32, 849–854. [Google Scholar] [CrossRef]
- Awolu, O.O.; Obafaye, R.O.; Ayodele, B.S. Optimization of Solvent Extraction of Oil from Neem (Azadirachta indica) and Its Characterizations. J. Sci. Res. Rep. 2013, 2, 304–314. [Google Scholar] [CrossRef]
- Paes, J.B.; de Souza, A.D.; de Lima, C.R.; Santana, G.M. Rendimento e Características Físicas dos Óleos de Nim (Azadirachta indica) e Mamona (Ricinus communis). Floresta e Ambient. 2015, 22, 134–139. [Google Scholar] [CrossRef]
- Perez, E.E.; Carelli, A.A.; Crapiste, G.H. Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. J. Food Eng. 2011, 105, 180–185. [Google Scholar] [CrossRef]
- Iha, O.K.; Martins, G.B.C.; Ehlert, E.; Montenegro, M.A.; Sucupira, R.R.; Suarez, P.A.Z. Extraction and Characterization of Passion Fruit and Guava Oils from Industrial Residual Seeds and Their Application as Biofuels. Artic. J. Braz. Chem. Soc 2002, 29, 2089–2095. [Google Scholar] [CrossRef]
- Da Silva Bonfim, R.; da Silva, A.; Nascimento, L.A.; Alves da costa, D.M. Análise de rendimento e características do óleo do nim (Azadiractha indica A. Juss) extraído a partir de diferentes solventes. In Conapesc; Anais III CONAPESC, Ed.; Conapesc: Campina Grande, Brazil, 2018; Volume 1, p. 3222. [Google Scholar]
- Ayoola, A.; Efeovbokhan, V.; Bafuwa, O.T.; David, O. A Search for Alternative Solvent To Hexane During Neem Oil Extraction. Int. J. Sci. Technol. 2014, 4, 66–70. [Google Scholar]
- Ramakrishnan, M.; Rathinam, T.M.; Viswanathan, K. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater. Environ. Sci. Pollut. Res. 2018, 25, 4621–4631. [Google Scholar] [CrossRef]
- Santoro Chavasco, R.; Camillo, V.C. Estudo da síntese do poliglicerol: Uma alternativa para a utilização do glicerol oriundo da produção de biodiesel. In Proceedings of the 8° Simpósio Nacional de Biocombustíveis, Cuiabá, Brazil, 15–17 April 2015; pp. 1–3. [Google Scholar]
- SathyaSelvabala, V.; Varathachary, T.K.; Selvaraj, D.K.; Ponnusamy, V.; Subramanian, S. Removal of free fatty acid in Azadirachta indica (Neem) seed oil using phosphoric acid modified mordenite for biodiesel production. Bioresour. Technol. 2010, 101, 5897–5902. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.J.D.; Seshadri, T.R. Fatty acids of Neem oil. Proc. Indian Acad. Sci. Sect. A 1942, 15, 161–167. [Google Scholar] [CrossRef]
- Salomé Kpoviessi, D.S.; Accrombessi, G.C.; Kossouoh, C.; Soumanou, M.M.; Moudachirou, M. Propriétés physico-chimiques et composition de l’huile non conventionnelle de pourghère (Jatropha curcas) de différentes régions du Bénin. Comptes Rendus Chim. 2004, 7, 1007–1012. [Google Scholar] [CrossRef]
- Dzunuzovic, E.; Tasic, S.; Bozic, B.; Babic, D.; Dunjic, B. UV-curable hyperbranched urethane acrylate oligomers containing soybean fatty acids. Prog. Org. Coat. 2005, 52, 136–143. [Google Scholar] [CrossRef]
- Hamadou, B.; Djomdi; Falama, R.Z.; Cedric, D.; Guillaume, P.; Pascal, D.; Philippe, M. Influence of Physicochemical Characteristics of Neem Seeds (Azadirachta indica A. Juss) on Biodiesel Production. Biomolecules 2020, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- De Aquino, C.M.; Moreira, L.F.; de Lima Mendes, A.H.; dos Santos, N.L.; de Souza, P.A. Physical-chemical characterization of fruits of the green and mature Neem (Azadirachta indica A. Juss). Res. Soc. Dev. 2020, 9, e274973946. [Google Scholar] [CrossRef]
- Fernandes De Vasconcelos, A.F.; Espirito, O.; Godinho, S. Uso de métodos analíticos convencionados no estudo da autenticidade do óleo de copaíba. Quim. Nova 2002, 25, 1057–1060. [Google Scholar] [CrossRef]
- Pinto, J.S.D.S.; Lanças, F.M. Hidrólise do óleo de Azadirachta indica em água subcrítica e determinação da composição dos triacilglicerídeos e ácidos graxos por cromatografia gasosa de alta resolução a alta temperatura e cromatografia gasosa de alta resolução acoplada à espectrometria de massas. Quim. Nova 2010, 33, 394–397. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2010; ISBN 9783527324736. [Google Scholar]
- Assanvo, E.F.; Gogoi, P.; Dolui, S.K.; Baruah, S.D. Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Ind. Crop. Prod. 2015, 65, 293–302. [Google Scholar] [CrossRef]
- Krumsri, R.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Assessment of Allelopathic Potential of Senna garrettiana Leaves and Identification of Potent Phytotoxic Substances. Agronomy 2022, 12, 139. [Google Scholar] [CrossRef]
- Shruthi, H.R.; Hemanth Kumar, N.K.; Jagannath, S. Publication History Allelopathic Potentialities of Azadirachta indica A. Juss. Aqueous leaf Extract on Early Seed Growth and Biochemical Parameters of Vigna radiata (L.) Wilczek. Int. J. Latest Res. Sci. Technol. 2014, 3, 109–115. [Google Scholar]
- Lawan, S.; Suleiman, M.; Yahaya, S. Inhibition of Germination and Growth Behavior of Some Cowpea Varieties Using Neem (Azadiracta indica) Leaf Water Extracts. Bayero J. Pure Appl. Sci. 2012, 4, 169–172. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Rietjens, I.M.; Alink, G.M. Nutrition and health: Toxic substances in food. Ned. Tijdschr. Geneeskd. 2003, 147, 2365–2370. [Google Scholar]
- Ogunyemi, S.; Odewole, A.F. Effect of Neem (Azadiratha indica A. (Juss.) on seed germination of Senna sophera L. Roxb. and Crotalaria onchroleuca G. Don. African J. Plant Sci. Biotechnol. 2011, 5, 63–65. [Google Scholar]
- Abd El–Hamid, H.A.; Ibrahim, L.M.N.; Ammar, M.Y.; Helmy, M.A. Allelopathic effect of neem (Azadirachta indica A. Juss) aqueous leaf extract on the germination and growth of some selected crops and weeds. Biolife 2017, 5, 428–436. [Google Scholar]
- De Lima, C.P.; Cunico, M.M.; Trevisan, R.R.; Philippsen, A.F.; Miguel, O.G.; Miguel, M.D. Efeito alelopático e toxicidade frente à Artemia salina Leach dos extatos do fruto de Euterpe edulis Martius. Acta Bot. Brasilica 2011, 25, 331–336. [Google Scholar] [CrossRef]
- Swapna, G.; Mamidala, E. In vitro antibacterial activity of physagulin isolated from physalis angulata fruits against pathogenic clinically important bacteria. Int. J. Curr. Res. 2017, 9, 55482–55486. [Google Scholar]
- Levizou, E.F.I.; Karageorgou, P.; Psaras, G.K.; Manetas, Y. Inhibitory effects of water soluble leaf leachates from Dittrichia viscosa on lettuce root growth, statocyte development and graviperception. Flora—Morphol. Distrib. Funct. Ecol. Plants 2002, 197, 152–157. [Google Scholar] [CrossRef]
- Nakai, S.; Zou, G.; Okuda, T.; Nishijima, W.; Hosomi, M.; Okada, M. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Sci. Technol. 2012, 66, 993–999. [Google Scholar] [CrossRef]
- Thomas, P.K.; Hietala, D.C.; Cardinale, B.J. Tolerance to allelopathic inhibition by free fatty acids in five biofuel candidate microalgae strains. Bioresour. Technol. Rep. 2023, 21, 101321. [Google Scholar] [CrossRef]
- Fahmy, G.M.; Al-Sawaf, N.A.; Turki, H.; Ali, H.I. Allelopathic potential of Pluchea dioscoridis (L.) DC. J. Appl. Sci. Res. 2012, 8, 3129–3142. [Google Scholar]
- Xu, Q.; Xie, H.; Xiao, H.; Wei, X. Phenolic constituents from the roots of Mikania micrantha and their allelopathic effects. J. Agric. Food Chem. 2013, 61, 7309–7314. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Shi, J.; Xue, S.; Kakuda, Y.; Wang, D.; Jiang, Y.; Ye, X.; Li, Y.; Subramanian, J. Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. LWT Food Sci. Technol. 2011, 44, 2032–2039. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk Density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 2015; Volume 1, pp. 374–390. [Google Scholar] [CrossRef]
- De Oliveira, C.V.K.; Santos, R.F.; Siqueira, J.A.C.; Bariccatti, R.A.; Lenz, N.B.G.; Cruz, G.S.; Tokura, L.K.; Klajn, F.F. Chemical characterization of oil and biodiesel from four safflower genotypes. Ind. Crop. Prod. 2018, 123, 192–196. [Google Scholar] [CrossRef]
- Rama Murthy, M.K.; Bhat, G.S. Iodine number determination of milk fat and vegetable fats by refractometry. J. Am. Oil Chem. Soc. 1976, 53, 577–580. [Google Scholar] [CrossRef]
- Barret, R. Importance and evaluation of lipophilicity. In Therapeutical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–78. ISBN 978-1-78548-288-5. [Google Scholar]
- Jorge, N.; Luzia, D.M.M. Caracterização do óleo das sementes de Pachira aquatica Aublet para aproveitamento alimentar. Acta Amaz. 2012, 42, 149–156. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- Di Rienzo, J.A. InfoStat Versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online: https://www.infostat.com.ar/ (accessed on 20 March 2023).
- Pellejero, G.; Miglierina, A.; Aschkar, G.; Jiménez-Ballesta, R.; Pellejero, G.; Miglierina, A.; Aschkar, G.; Jiménez-Ballesta, R. Composting Onion (Allium cepa) Wastes with Alfalfa (Medicago sativa L.) and Cattle Manure Assessment. Agric. Sci. 2015, 6, 445–455. [Google Scholar] [CrossRef]
Variable | t (h) | Solvent | |||
---|---|---|---|---|---|
H | HM | Et | HEt | ||
Yield (%) | 2 | 31.9 ± 1.1 Ba | 22.7 ± 1.1 Cb | 22.1 ± 0.3 BCb | 25.2 ± 1.6 Bb |
4 | 43.4 ± 2.6 Aa | 29.5B ± 0.1 Cb | 29.9 ± 2.5 Ab | 26.6 ± 1.1 ABb | |
6 | 39.0 ± 1.6 ABa | 33.0 ± 0.7 ABab | 22.5 ± 2.5 BCc | 26.6 ± 1.1 ABbc | |
8 | 39.8 ± 2.0 ABa | 35.9 ± 0.7 Aa | 19.9 ± 0.8 Cc | 25.5 ± 2.4 ABb | |
10 | 43.7 ± 2.6 Aa | 39.0 ± 1.2 Aa | 24.7 ± 2.8 ABCc | 31.0 ± 1.1 Ab | |
12 | 44.4 ± 1.9 Aa | 39.6 ± 1.1 Aa | 27.6 ± 1.5 ABb | 26.5 ± 2.0 Abb |
Properties | H | HM | Et | HEt |
---|---|---|---|---|
Density (g/cm3) | 0.87 ± 0.02 | 0.80 ± 0.01 | 0.92 ± 0.02 | 0.83 ± 0.02 |
Acid value (mg KOH/g) | 6.73 ± 0.61 * | 7.93 ± 0.42 | 6.24 ± 0.32 | 8.48 ± 0.51 * |
Iodine value (g I2/100g) | 74.9 ± 0.55 * | 131.92 ± 0.70 | 75.00 ± 0.26 * | 150.00 ± 0.18 |
Saponification value (g KOH/100 g) | 159.68 ± 1.33 * | 194.60 ± 1.10 | 184.78 ± 1.44 | 186.35 ± 1.30 |
Ester value | 152.95 ± 1.80 * | 186.67 ± 1.42 | 178.54 ± 1.20 | 177.87 ± 1.54 |
Molecular weight (g/mol) | 1052.10 ± 1.40 | 863.30 ± 1.62 * | 909.18 ± 1.48 | 901.52 ± 1.27 |
Free fatty acids (% w/w) | 3.38 ± 0.20 | 3.98 ± 0.32 | 3.13 ± 0.30 | 4.26 ± 0.26 * |
Fatty Acid | Area (%) | |||
---|---|---|---|---|
Saturated | H | HM | Et | HEt |
Palmitic acid (C16:0) | 18.10 | 13.55 | 18.85 | 15.12 |
Behenic acid (C22:0) | 0.14 | 5.42 | 0.21 | – |
Stearic acid (C18:0) | 14.97 | 11.47 | 14.99 | 14.88 |
Arachidic acid (C20:0) | 0.78 | 1.87 | – | 1.03 |
Lignoceric acid (C24:0) | – | 4.74 | – | – |
1,1,2,2-tetramethylcyclopropane | – | 13.74 | 0.72 | 3.74 |
Unsaturated | ||||
Oleic acid (C18:1) | 41.33 | 16.86 | 41.08 | 39.48 |
Linoleic acid (C18:2) | 18.60 | 5.04 | 20.22 | 12.41 |
Total area (%) | 93.92 | 72.69 | 96.07 | 86.66 |
Others | 6.08 | 27.31 | 3.93 | 13.34 |
Hexane | |||
---|---|---|---|
Factor 1 | Factor 2 | Factor 2 | |
Variance (%) | 53.54 | 23.70 | 16.89 |
% G | 0.84 | −0.43 | |
Gs | 0.75 | 0.62 | |
R | 0.81 | −0.52 | |
H | 0.48 | 0.86 | |
Hexane/Methanol | |||
Factor 1 | Factor 2 | Factor 3 | |
Variance (%) | 51.70 | 28.04 | 13.80 |
% G | 0.68 | ||
Gs | 0.67 | 0.34 | |
R | 0.66 | 0.51 | −0.53 |
H | 0.91 | 0.36 | |
Ethanol | |||
Factor 1 | Factor 2 | Factor 3 | |
Variance (%) | 47.50 | 30.34 | 18.00 |
% G | 0.64 | 0.45 | 0.62 |
Gs | 0.56 | 0.72 | |
R | 0.70 | −0.64 | −0.34 |
H | 0.83 | −0.34 | |
Hexane/Ethanol | |||
Factor 1 | Factor 2 | Factor 3 | |
Variance (%) | 42.73 | 27.38 | 21.99 |
% G | 0.91 | ||
Gs | 0.59 | −0.31 | 0.72 |
R | 0.73 | 0.48 | −0.38 |
H | 0.88 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Paulo Barbosa, L.M.; Oliveira Santos, J.; Mouzinho de Sousa, R.C.; Barros Furtado, J.L.; Vidinha, P.; Suller Garcia, M.A.; Aguilar Vitorino, H.; Fossatti Dall’Oglio, D. Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis. Recycling 2023, 8, 50. https://doi.org/10.3390/recycling8030050
de Paulo Barbosa LM, Oliveira Santos J, Mouzinho de Sousa RC, Barros Furtado JL, Vidinha P, Suller Garcia MA, Aguilar Vitorino H, Fossatti Dall’Oglio D. Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis. Recycling. 2023; 8(3):50. https://doi.org/10.3390/recycling8030050
Chicago/Turabian Stylede Paulo Barbosa, Larissa Macelle, Jorge Oliveira Santos, Rayssa Carolinne Mouzinho de Sousa, Jomar Livramento Barros Furtado, Pedro Vidinha, Marco Aurelio Suller Garcia, Hector Aguilar Vitorino, and Daiane Fossatti Dall’Oglio. 2023. "Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis" Recycling 8, no. 3: 50. https://doi.org/10.3390/recycling8030050
APA Stylede Paulo Barbosa, L. M., Oliveira Santos, J., Mouzinho de Sousa, R. C., Barros Furtado, J. L., Vidinha, P., Suller Garcia, M. A., Aguilar Vitorino, H., & Fossatti Dall’Oglio, D. (2023). Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis. Recycling, 8(3), 50. https://doi.org/10.3390/recycling8030050