A Bibliometric Research on Next-Generation Vehicles Using CiteSpace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Data Selection Standard
2.2. Analysis Tool, Settings, and Research Flow
3. Results
3.1. Quantitative Analysis on Research Related to NGVs
3.1.1. The Early 1990s to the Mid-1990s
3.1.2. Late 1990s to 2009
3.1.3. 2009 to Present
3.2. Country Distribution of Research on NGVs
3.3. Category Distribution of the Research on NGVs
3.4. Knowledge Base of Study on NGVs
3.5. Popular Topics of Research on NGVs
3.6. Burst Keywords Analyzation
4. The Issue of Current NGV Research
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNECE Climate Change and Sustainable Transport. Available online: http://www.unece.org/?id=9890 (accessed on 4 October 2019).
- NIKKEI. The Consumption of Gasoline Will Keep Raising Even if EV Gets Popular (In Japanese). 2018. Available online: https://www.nikkei.com/article/DGXMZO37681060T11C18A1MM0000/ (accessed on 19 June 2019).
- Next Generation Vehicle Promotion Center Story of Next-Generation Vehicle (Japanese). Available online: http://www.cev-pc.or.jp/kiso/history.html (accessed on 6 June 2020).
- NIKKEI. Daihatsu, the Pioneer of Environmental Awareness (In Japanese). 2020. Available online: https://www.nikkei.com/article/DGXMZO59824040R00C20A6AA1P00/ (accessed on 9 July 2020).
- Yu, J.; Wang, S.; Toshiki, K.; Serrona, K.R.B.; Fan, G.; Erdenedalai, B. Latest Trends and New Challenges in End-of-life Vehicle Recycling. In Issues in Environmental Science and Technology: Environmental Impacts of Road Vehicles; The Royal Society of Chemistry: London, UK, 2017; pp. 174–213. [Google Scholar] [CrossRef]
- Next Generation Vehicle Promotion Center Next Generation Vehicle Stock Number (In Japanese). Available online: http://www.cev-pc.or.jp/tokei/hanbai.html (accessed on 6 June 2020).
- Pritchard, A. Statistical Bibliography or Bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Web of Science. Available online: https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=C1HEElWKrcKLeP8pvgC&preferencesSaved= (accessed on 20 May 2020).
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, S.; Xin, O. Analysis on the Evolution Path and Hotspot of Knowledge Innovation Study Based on Knowledge Map. Sustainability 2019, 11, 5528. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liang, G.; Alex, J.; Zhang, T.; Ma, C. Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace. Sustainability 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, J.; Zhang, J.; Xiang, H.; Wei, H. A Bibliometric Analysis of Research on Acid Rain. Sustainability 2019, 11, 3077. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Wei, L.; Li, X. Visualizing sustainability research in business and management (1990–2019) and emerging topics: A large-scale bibliometric analysis. Sustainability 2019, 11, 5596. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, C. CiteSpace: Text Mining and Visualization in Scientific Literature (Chinese), 1st ed.; Xue, X., Ed.; Capital University of Economics and Business Press: Beijing, China, 2016; ISBN 978-7-5638-2464-9. [Google Scholar]
- Hyogo Mitsubishi Motor Sales Group. What is ZEV Regulation? The Day That Gasoline Vehicle Disappears (In Japanese). 2018. Available online: https://www.hyogo-mitsubishi.com/news/car20170728080000.html (accessed on 19 June 2019).
- Globalnote Vehicle Import Value (Japanese). Available online: https://www.globalnote.jp/p-data-g/?dno=2330&post_no=3307 (accessed on 5 October 2020).
- Gazoo Birth of Hybrid Vehicle (Japanese). Available online: https://gazoo.com/article/car_history/150116_1.html (accessed on 3 June 2019).
- The International Council on Clean Transportation Overview of Global Zero-Emission Vehicle Mandate Programs. Available online: https://theicct.org/sites/default/files/publications/ZeroEmissionVehicleMandateBriefingv2.pdf (accessed on 3 June 2020).
- Mazda Charme of Diesel Engine (Japanese). Available online: https://www.mazda.com/ja/innovation/technology/skyactiv/skyactiv-d-merit/?_ga=2.37187680.1958033286.1591436000-727661802.1591436000 (accessed on 6 June 2020).
- NIKKEI. CDV Emission Cheating Scandal in Europe Is Continuing, the Netherlands Is Investigating FCA (Japanese). 2017. Available online: https://www.nikkei.com/article/DGXLASDZ11HQ9_R10C17A7TJ2000/ (accessed on 15 June 2019).
- Japan Automobile Manufacturers Association Tax Incentive on Environmental Friendly Vehicle (Japanese). Available online: http://www.jama.or.jp/tax/tax_green/index.html (accessed on 6 June 2020).
- CMC RESERCH. World Trends of ZEV and Supporting EV Battery Technology Part II 2018 (Japanese); CMC RESERCH LTD.: Tokyo, Japan, 2017; ISBN 978-4-904482-42-1. [Google Scholar]
- CNKI Patent from Each Country (Hybrid Vehicle). 30 March 2020. Available online: https://kns.cnki.net/kns/brief/result.aspx?dbprefix=SOPD (accessed on 30 March 2020).
- ACEA. Share of Diesel in New Passenger Cars. Available online: https://www.acea.be/statistics/article/Share-of-diesel-in-new-passenger-cars (accessed on 3 April 2020).
- TOYOTA CASE (Japanese). Available online: https://global.toyota/jp/mobility/case/ (accessed on 1 May 2020).
- Wang, C.S.; Covic, G.A.; Stielau, O.H. Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems. IEEE Trans. Ind. Electron. 2004, 51, 148–157. [Google Scholar] [CrossRef]
- Wang, C.-S.; Stielau, O.H.; Covic, G. Design Considerations for a Contactless Electric Vehicle Battery Charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Inductive power transfer. Proc. IEEE 2013, 101, 1276–1289. [Google Scholar] [CrossRef]
- Budhia, M.; Covic, G.A.; Boys, J.T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE 2011, 99, 168–183. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Zhou, C.; Allan, M.; Yuan, Y. Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans. Power Syst. 2011, 26, 802–810. [Google Scholar] [CrossRef]
- Gan, L.; Topcu, U.; Low, S.H. Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 2013, 28, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, P.F.; Johnson, B.K.; Crow, M.L.; Arsoy, A.; Liu, Y. Energy Storage systems for Advances Power Applications. Proc. IEEE 2001, 89, 1744–1756. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of Charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.; Krein, P.T. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems-An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Sortomme, E.; Hindi, M.M.; MacPherson, S.D.J.; Venkata, S.S. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid 2011, 2, 186–193. [Google Scholar] [CrossRef]
- Han, S.; Han, S.; Sezaki, K. Development of an optimal vehicle-to-grid aggregator for frequency regulation. IEEE Trans. Smart Grid 2010, 1, 65–72. [Google Scholar] [CrossRef]
- Tolbert, L.M.; Peng, F.Z.; Habetler, T.G. Multilevel converters for large electric drives. IEEE Trans. Ind. Appl. 1999, 35, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.T.; Chan, C.C.; Liu, C. Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2246–2257. [Google Scholar] [CrossRef] [Green Version]
- Emadi, A.; Lee, Y.J.; Rajashekara, K. Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2237–2245. [Google Scholar] [CrossRef]
- Lin, C.C.; Peng, H.; Grizzle, J.W.; Kang, J.M. Power management strategy for a parallel hybrid electric truck. IEEE Trans. Control. Syst. Technol. 2003, 11, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 704–718. [Google Scholar] [CrossRef]
- EVsmart Blog GM Predict the End of Hybrid Vehicle and Will Launch 20 EV Modules (Japanese). Available online: https://blog.evsmart.net/ev-news/gm-terminates-hybrid-cars/ (accessed on 3 June 2020).
- Next Generation Vehicle Promotion Center Investigation on the Recycling of Lithium-ion Battery in 2011 (Japanese). Available online: http://www.cev-pc.or.jp/chosa/pdf/2011_3_honpen.pdf (accessed on 7 June 2020).
- International Energy Agency (IEA). Global EV Outlook 2019: Scaling-up the Transition to Electric Mobility. Available online: https://www.oecd.org/fr/publications/global-ev-outlook-2019-35fb60bd-en.htm (accessed on 6 September 2019).
- Yano, J.; Muroi, T.; Sakai, S. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010–2030. J. Mater. Cycles Waste Manag. 2016, 18, 655–664. [Google Scholar] [CrossRef]
- Abe, A. Review of Statistics Related to End-of-Life Vehicles in Japan (Japanese); Bulletin Number: AN00243983; Bulletin of the Faculty of Education Yamaguchi University: Yamaguchi, Japan, 2014; Volume 63, pp. 1–9. [Google Scholar]
- Wang, S.; Okubo, K.; Yu, J.; Jin, H. Estimation Model of End-of-Life Next-Generation Vehicle: Focusing on Hybrid Vehicle in Japan. In Proceedings of the 30th Annual Conference of Japan Society of Material Cycles and Waste Management, Sendai, Japan, 19–21 September 2019; pp. 543–544. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Okubo, K. Scenario Analysis on the Generation of End-of-Life Hybrid Vehicle in Developing Countries—Focusing on the Exported Secondhand Hybrid Vehicle from Japan to Mongolia. Recycling 2019, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, S.; Serrona, K.R.B. Comparative Analysis of ELV Recycling Policies in the European Union, Japan and China. Investig. Linguist. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yu, J. Life-Cycle Assessment on Nickel-Metal Hydride Battery in Hybrid Vehicles: Comparison between Regenerated and New Battery. Investig. Linguist. 2019. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Zhang, W.; Chen, Y.; Wang, C. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J. Clean. Prod. 2018, 204, 437–446. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Chen, Y. Method to Recycle Cobalt from Waste LiB (In Chinese). Available online: https://patentimages.storage.googleapis.com/9d/f1/91/c9303ca2a6855e/CN101318712A.pdf (accessed on 5 March 2020).
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Sato, F.E.K.; Nakata, T. Recoverability analysis of critical materials from electric vehicle lithium-ion batteries through a dynamic fleet-based approach for Japan. Sustainability 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Fuse, M.; Kashima, S. Estimation of Export Volume for End-of-Life Vehicles from Japan (In Japanese). J. Jpn. Soc. Waste Manag. Expert. 2007, 18, 305–313. [Google Scholar] [CrossRef]
Ranking | Number of Citations | Year of Publication | Reference Number |
---|---|---|---|
1 | 818 | 2005 | [28] |
2 | 639 | 2011 | [33] |
3 | 588 | 2004 | [27] |
4 | 587 | 2015 | [29] |
5 | 516 | 2011 | [34] |
6 | 512 | 2001 | [36] |
7 | 493 | 2013 | [30] |
8 | 457 | 2011 | [32] |
9 | 453 | 2013 | [31] |
10 | 429 | 2013 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yu, J. A Bibliometric Research on Next-Generation Vehicles Using CiteSpace. Recycling 2021, 6, 14. https://doi.org/10.3390/recycling6010014
Wang S, Yu J. A Bibliometric Research on Next-Generation Vehicles Using CiteSpace. Recycling. 2021; 6(1):14. https://doi.org/10.3390/recycling6010014
Chicago/Turabian StyleWang, Shuoyao, and Jeongsoo Yu. 2021. "A Bibliometric Research on Next-Generation Vehicles Using CiteSpace" Recycling 6, no. 1: 14. https://doi.org/10.3390/recycling6010014
APA StyleWang, S., & Yu, J. (2021). A Bibliometric Research on Next-Generation Vehicles Using CiteSpace. Recycling, 6(1), 14. https://doi.org/10.3390/recycling6010014