Melt Conditioned Direct Chill (MC-DC) Casting of AA-6111 Aluminium Alloy Formulated from Incinerator Bottom Ash (IBA)
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Direct Chill Casting
2.2. Characterisation
3. Results and Discussion
3.1. Aluminium Recovery
3.2. Direct Chill casting
3.3. Extrusion Planks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kahle, K.; Bettina, K.; Jens, K.; Edmund, F.; Frans, L.; Lars, J.; Jakob, S. Bottom Ash from WtE Plants-Metal Recovery and Utilization; IWS: London, UK, 2015. [Google Scholar]
- Hu, Y.; Bakker, M.C.M.; de Heij, P.G. Recovery and distribution of incinerated aluminum packaging waste. Waste Manag. 2011, 31, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Šyc, M.; Krausová, A.; Kameníková, P.; Šomplák, R.; Pavlas, M.; Zach, B.; Pohořelý, M.; Svoboda, K.; Punčochář, M. Material analysis of Bottom ash from waste-to-energy plants. Waste Manag. 2018, 73, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Lamers, F. Tratment of bottom ashes of waste to energy installations: State of the art. In Waste management: Wasteto-energy; TK Verlag Karl Thomé-Kozmiensky: Dorfstraße, Germany, 2014; pp. 271–290. [Google Scholar]
- Biganzoli, L.; Gorla, L.; Nessi, S.; Grosso, M. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces. Waste Manag. 2012, 32, 2266–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biganzoli, L.; Grosso, M. Aluminium recovery from waste incineration bottom ash, andits oxidation level. Waste Manag. Res. 2013, 31, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K. Designing Aluminium alloys for a recycling friendly world. Mater. Sci. Forum 2006, 519, 1239–1244. [Google Scholar] [CrossRef]
- Capuzzi, S.; Timelli, G. Preparation and melting of scrap in Aluminum recycling: A Review. Metals 2018, 8, 249. [Google Scholar] [CrossRef]
- Eskin, D.G. Physical Metallurgy of Direct Casting of Aluminium Alloys; CRC Press: Thunder Bay, Canada; Taylor and Francis Group: Abingdon, UK, 2008. [Google Scholar]
- McCartney, D.G. Grain refining of aluminium and its alloys using inoculants. AU Int. Mater. Rev. 1989, 34, 247–260. [Google Scholar] [CrossRef]
- Li, H.-T.; Zhao, P.; Yang, R.; Patel, J.B.; Chen, X.; Fan, Z. Grain refinement and improvement of solidification defects in direct-chill cast billets of A4032 alloy by melt conditioning. Metall. Mater. Trans. B 2017, 48, 2481–2492. [Google Scholar] [CrossRef]
- Al-Helal, K.; Chang, I.; Patel, J.B.; Fan, Z. Thermomechanical treatment of high-shear melt-conditioned twin-roll cast strip of recycled AA5754 alloy. JOM 2019, 71, 2018–2024. [Google Scholar] [CrossRef]
- Patel, J.B.; Yang, X.; Mendis, C.L.; Fan, Z. Melt conditioning of light metals by application of high shear for improved microstructure and defect control. JOM 2017, 69, 1071–1076. [Google Scholar] [CrossRef]
- Patel, J.B.; Li, H.T.; Xia, M.X.; Jones, S.; Kumar, S.; O’Reilly, K.; Fan, Z. Melt conditioned direct chill casting (MC-DC) process for production of high quality Aluminium alloy billets. Mater. Sci. Forum 2014, 794, 149–154. [Google Scholar] [CrossRef]
- Tsakiridis, P.E. Aluminium salt slag characterization and utilization–A review. J. Hazard. Mater. 2012, 217, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Huang, X.; Xu, Z. Recovery of metals from Aluminum dross and saltcake. J. Min. Mater. Charact. Eng. 2006, 5, 47–62. [Google Scholar] [CrossRef]
- Nadella, R.; Eskin, D.G.; Du, Q.; Katgerman, L. Macrosegregation in direct-chill casting of aluminium alloys. Prog. Mater. Sci. 2008, 53, 421–480. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Li, Q.; Jolly, M.R. Prediction of extruded microstructures using experimental and numerical modelling techniques. In Proceedings of the Aluminium Two Thousand, 5th World Congress, Rome, Italy, 18–22 March 2003; pp. 18–22. [Google Scholar]
- Sheppard, P.T. Extrusion of Aluminium Alloys; Springer-Science and Business Media, B.V.: Berlin, Germany, 1999. [Google Scholar]
Wt % | Lion Grade IBA | Bottom Ash Ingot | Standard AA-6111 | Formulated BA-6111 |
---|---|---|---|---|
Si | 1.5–2.5 | 1.65 | 0.63 | 1.17 |
Fe | ~0.5 | 0.48 | 0.25 | 0.36 |
Cu | 0.7 | 0.41 | 0.75 | 0.76 |
Mn | 0.3 | 0.31 | 0.20 | 0.39 |
Mg | 0.03 | 0.07 | 0.75 | 0.75 |
Cr | - | 0.03 | ˂0.08 | 0.05 |
Ni | - | 0.02 | - | 0.02 |
Zn | 0.6 | 0.41 | ˂0.05 | 0.26 |
Ti | - | 0.02 | ˂0.08 | 0.03 |
Pb | - | 0.03 | - | 0.01 |
Sn | - | 0.01 | - | 0.01 |
Al | Bal. | Bal. | Bal. | Bal. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Helal, K.W.; Lazaro-Nebreda, J.; Patel, J.B.; Scamans, G.M.; Fan, Z. Melt Conditioned Direct Chill (MC-DC) Casting of AA-6111 Aluminium Alloy Formulated from Incinerator Bottom Ash (IBA). Recycling 2019, 4, 37. https://doi.org/10.3390/recycling4030037
Al-Helal KW, Lazaro-Nebreda J, Patel JB, Scamans GM, Fan Z. Melt Conditioned Direct Chill (MC-DC) Casting of AA-6111 Aluminium Alloy Formulated from Incinerator Bottom Ash (IBA). Recycling. 2019; 4(3):37. https://doi.org/10.3390/recycling4030037
Chicago/Turabian StyleAl-Helal, Kawther W, Jaime Lazaro-Nebreda, Jayesh B Patel, Geoff M Scamans, and Zhongyun Fan. 2019. "Melt Conditioned Direct Chill (MC-DC) Casting of AA-6111 Aluminium Alloy Formulated from Incinerator Bottom Ash (IBA)" Recycling 4, no. 3: 37. https://doi.org/10.3390/recycling4030037
APA StyleAl-Helal, K. W., Lazaro-Nebreda, J., Patel, J. B., Scamans, G. M., & Fan, Z. (2019). Melt Conditioned Direct Chill (MC-DC) Casting of AA-6111 Aluminium Alloy Formulated from Incinerator Bottom Ash (IBA). Recycling, 4(3), 37. https://doi.org/10.3390/recycling4030037