Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used in Construction
2.2. Instruments and Software
2.3. Methods
2.3.1. Thermic Simulation
- A compatible file extension of the desired structure was imported to the software, or a direct drawing of the structure was simulated.
- The specific conditions of the structure and type of material were specified in the walls, windows, doors, ceiling and foundation.
- The border and the initial conditions were established for the entire structure, sectioning the parts of the house, if necessary, to set different circumstances.
- The simulated system was solved.
2.3.2. Measurement of Internal and External Parameters
3. Results and Discussion
3.1. Assessment of the Degree of Sustainability
3.1.1. FIRST STAGE. Construction Stage
3.1.2. SECOND STAGE. Performance of the Inhabited House
3.2. Sustainability Indicators
3.3. Building the Prototype with PET Bottles
3.4. Simulation
3.5. External Measurement of the Prototype
3.6. Internal Monitoring of the Prototype
3.7. The Degree of Sustainability of the Built Prototype
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hadfield, P. Gimme shelter. New Sci. 2000, 2228, 4. [Google Scholar]
- Mun, K.; Choi, N. Properties of poly methyl methacrylate mortars with unsaturated polyester resin as a crosslinking agent. Constr. Build. Mater. 2008, 22, 2147–2152. [Google Scholar] [CrossRef]
- Bribián, I.Z.; Capilla, A.V.; Usón, A.A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibers: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Hosseinijou, S.A.; Mansour, S.; Shirazi, M.A. Social life cycle assessment for material selection: A case study of building materials. Int. J. Life Cycle Assess. 2014, 19, 620–645. [Google Scholar] [CrossRef]
- Sari, A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers. Manag. 2016, 117, 132–141. [Google Scholar] [CrossRef]
- Silvestre, J.; De Brito, J.; Pinheiro, M.D. Environmental impacts and benefits of the end-of-life of building materials—Calculation rules, results and contribution to a “cradle to cradle” life cycle. J. Clean. Prod. 2014, 66, 37–45. [Google Scholar] [CrossRef]
- Javadian, A.; Smith, I.F.C.; Saeidi, N.; Hebel, D.E. Mechanical Properties of Bamboo Through Measurement of Culm Physical Properties for Composite Fabrication of Structural Concrete Reinforcement. Front. Mater. 2019, 6, 15. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, X.; Duan, M.; Li, G. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer. Constr. Build. Mater. 2017, 142, 66–82. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Wu, Z.; Bao, Y.; Xiao, R.; Yu, H.; Chen, Y. Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane. Ceram. Int. 2016, 42, 9621–9629. [Google Scholar] [CrossRef]
- Barreca, F.; Tirella, V. A self-built shelter in wood and agglomerated cork panels for temporary use in Mediterranean climate areas. Energy Build. 2017, 142, 1–7. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Wall panels of Arundo donax L. for environmentally sustainable agriculture buildings: Thermal performance evaluation. J. Food Agric. Environ. 2013, 11, 1353–1357. [Google Scholar]
- Ouedraogo, M.; Dao, K.; Millogo, Y.; Aubert, J.-E.; Messan, A.; Seynou, M.; Zerbo, L.; Gomina, M. Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J. Build. Eng. 2019, 23, 250–258. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Experimental analysis of the thermohygrometric effects on the dynamic behavior of adobe systems. Constr. Build. Mater. 2019, 208, 158–174. [Google Scholar] [CrossRef]
- Lovón, R.; Lovón, E. The Impact of Humidity on the Resistance of Historic Adobe Monuments. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; RILEM Bookseries; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; Volume 18, pp. 1959–1967. [Google Scholar]
- Poon, C.; Yu, A.T.; Ng, L. On-site sorting of construction and demolition waste in Hong Kong. Resour. Conserv. Recycl. 2001, 32, 157–172. [Google Scholar] [CrossRef]
- Naik, T.; Singh, S.; Huber, C.; Brodersen, B. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 1996, 26, 1489–1492. [Google Scholar] [CrossRef]
- Silva, D.; Betioli, A.; Gleize, P.; Roman, H.; Gomez, L.; Ribeiro, J.; Ribeiro, J.L. Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 2005, 35, 1741–1746. [Google Scholar] [CrossRef]
- Tawfik, M.E.; Eskander, S.B. Polymer Concrete from Marble Wastes and Recycled Poly(ethylene terephthalate). J. Elastomers Plast. 2006, 38, 65–79. [Google Scholar] [CrossRef]
- Siddique, R.; Khatib, J.; Kaur, I. Use of recycled plastic in concrete: A review. Waste Manag. 2008, 28, 1835–1852. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, O.Y.; Dheilly, R.-M.; Quéneudéc, M. Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 2007, 27, 310–318. [Google Scholar] [CrossRef]
- Ochi, T.; Okubo, S.; Fukui, K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 2007, 29, 448–455. [Google Scholar] [CrossRef]
- Soto Ramírez, G.V. Desarrollo de Tabique de Concreto Ligero con Residuos de PET. Master’s Thesis, Autonomous University of Queretaro, Querétaro, México, 2011. [Google Scholar]
- Castañeda, L.E.G. La Tierra: Un Recurso Para Investigar, Sensibilizar, Transferir y Actuar; CONAVI: Mexico city, Mexico, 2008. [Google Scholar]
- Hischier, R.; Weidema, B.; Althaus, H.J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods; Ecoinvent Report No. 3; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2010. [Google Scholar]
- Schiavoni, S.; Sambuco, S.; Rotili, A.; D’Alessandro, F.; Fantauzzi, F. A nZEB housing structure derived from end of life containers: Energy, lighting and life cycle assessment. Build. Simul. 2017, 10, 165–181. [Google Scholar] [CrossRef]
- Oyarzo, J.; Peuportier, B. Life cycle assessment model applied to housing in Chile. J. Clean. Prod. 2014, 69, 109–116. [Google Scholar] [CrossRef]
- Evangelista, P.P.; Kiperstok, A.; Torres, E.A.; Gonçalves, J.P. Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Constr. Build. Mater. 2018, 169, 748–761. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Zhang, L. Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong. Renew. Sustain. Energy Rev. 2013, 17, 160–169. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilarino, V.; Perez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Simplification in life cycle assessment of single-family houses: A review of recent developments. Build. Environ. 2016, 103, 215–227. [Google Scholar] [CrossRef] [Green Version]
- BuHamdan, S.; Alwisy, A.; Barkokebas, B.; Bouferguene, A.; Al-Hussein, M. A multi-criteria lifecycle assessment framework for evaluating building systems design. J. Build. Eng. 2019, 23, 388–402. [Google Scholar] [CrossRef]
- LEED®. LEED v4 for Building Design and Construction. 2018. Available online: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version (accessed on 11 January 2019).
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Awadh, O. Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. J. Build. Eng. 2017, 11, 25–29. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.-Y.; Sutrisna, M. A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings. Renew. Sustain. Energy Rev. 2017, 68, 370–379. [Google Scholar] [CrossRef]
- Suzer, O. Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria-based comparative analysis and evaluating dual-certified projects. Build. Environ. 2019, 147, 158–170. [Google Scholar] [CrossRef]
- Maslesa, E.; Jensen, P.A.; Birkved, M. Indicators for quantifying environmental building performance: A systematic literature review. J. Build. Eng. 2018, 19, 552–560. [Google Scholar] [CrossRef]
- CONAVI. Criterios e Indicadores Para los Desarrollos Habitacionales Sustentables en México. 2006. Available online: http://www.conavi.gob.mx/publicaciones (accessed on 21 March 2019).
- Martija Martínez, M. Un Modelo Conceptual y Método de Medición de la Sustentabilidad; Simposio Internacional, Ciudad y Sostenibilidad; Universidad Nacional Andrés Bello: Santiago de Chile, Chile, 2009. [Google Scholar]
- De Buen Rodríguez, O. Evaluación de la Sustentabilidad Ambiental en la Construcción y Administración de Edificios en México; Gobierno de Miéxico: Mexico City, Mexico, 2010. [Google Scholar]
- Masera, O.; Astier, M.; López Ridaura, S. Sustentabilidad y Manejo de Recursos Naturales; Mundi-Prensa: Mexico City, México, 1999. [Google Scholar]
- Speelman, E.N.; López-Ridaura, S.; Colomer, N.A.; Astier, M.; Masera, O.R. Ten years of sustainability evaluation using the MESMIS framework: Lessons learned from its application in 28 Latin American case studies. Int. J. Sustain. Dev. World Ecol. 2007, 14, 345–361. [Google Scholar] [CrossRef]
- López-Ridaura, S. Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework. Ecol. Indic. 2002, 2, 135–148. [Google Scholar] [CrossRef]
- Roboredo, D.; Bergamasco, S.M.P.P.; Ara, A.; Gervázio, W.; Domingues, T.R. Managements systems clustering and sustainability indicators of construction using the methodology mesmis the territory Amazon portal. Reaga Espac. Geogr. Anal. 2018, 43, 23–42. [Google Scholar]
A) Site Selection and Ecological Impact | B) Building Materials | C) Construction Design and Bioclimatic | D) Backyard and Green Areas | E) Generation of Waste | |||||
---|---|---|---|---|---|---|---|---|---|
Respect the surrounding flora and fauna | 10 | Materials adjacent to the site | 10 | Ceiling height | 5 | Vegetation around the house | 5 | Minimize the amount of waste | 25 |
The ground meets the construction characteristics | 5 | Recycling materials | 15 | Roof tilt | 5 | Consumable vegetables using composting | 15 | ||
There is permission for the use of land for housing construction | 5 | Rapidly renewable materials | 15 | Orientation of housing | 10 | ||||
Vernacular materials | 10 | Ventilation | 10 | ||||||
Natural lighting | 10 | ||||||||
Total | 20 | 50 | 40 | 20 | 25 |
(A) Energy Efficiency | (B) Care of the Water Resource | (C) Separation, Disposal, and Exploitation of Waste | (D) Internal Comfort | (E) Fuel Used and Emissions Generated | |||||
---|---|---|---|---|---|---|---|---|---|
Use of solar or other renewable energy | 35 | Rainwater harvesting and reuse | 15 | Composting | 5 | Acoustics | 10 | Natural Gas or LP Gas | 10 |
Separation of gray water and sewage | 15 | Separation of PET, glass, paperboard, paper, aluminum | 15 | Temperature | 10 | Biogas | 15 | ||
Water-saving devices | 15 | Humidity | 10 | ||||||
Air quality | 10 | ||||||||
Total: | 35 | 45 | 20 | 40 | 25 |
FACTORS | Prototype | Ideal |
---|---|---|
Respect the surrounding flora and fauna | 10 | 10 |
The ground meets the construction characteristics | 5 | 5 |
There is permission for the use of land for housing construction | 5 | 5 |
Materials adjacent to the site | 10 | 10 |
Recycling materials | 15 | 15 |
Rapidly renewable materials | 0 | 15 |
Vernacular materials | 5 | 10 |
Ceiling height | 0 | 5 |
Roof tilt | 0 | 5 |
Orientation of housing | 5 | 10 |
Ventilation | 10 | 10 |
Natural lighting | 10 | 10 |
Vegetation around the house | 5 | 5 |
Consumable vegetables using composting | 0 | 15 |
Minimize the amount of waste | 25 | 25 |
Total | 105 | 155 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceja Soto, F.R.; Pérez Bueno, J.d.J.; Mendoza López, M.L.; Pérez Ramos, M.E.; Reyes Araiza, J.L.; Ramírez Jiménez, R.; Manzano-Ramírez, A. Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles. Recycling 2019, 4, 30. https://doi.org/10.3390/recycling4030030
Ceja Soto FR, Pérez Bueno JdJ, Mendoza López ML, Pérez Ramos ME, Reyes Araiza JL, Ramírez Jiménez R, Manzano-Ramírez A. Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles. Recycling. 2019; 4(3):30. https://doi.org/10.3390/recycling4030030
Chicago/Turabian StyleCeja Soto, Flavio Roberto, José de Jesús Pérez Bueno, Maria Luisa Mendoza López, Martha Elva Pérez Ramos, José Luis Reyes Araiza, Rubén Ramírez Jiménez, and Alejandro Manzano-Ramírez. 2019. "Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles" Recycling 4, no. 3: 30. https://doi.org/10.3390/recycling4030030
APA StyleCeja Soto, F. R., Pérez Bueno, J. d. J., Mendoza López, M. L., Pérez Ramos, M. E., Reyes Araiza, J. L., Ramírez Jiménez, R., & Manzano-Ramírez, A. (2019). Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles. Recycling, 4(3), 30. https://doi.org/10.3390/recycling4030030