Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Materials
2.2. Preparation of Geopolymer Samples
2.3. Analytical Methods
3. Results and Discussions
3.1. Characterization of Raw Materials
3.2. The Effect of Adding VA in Workability and Consistency of the Paste
3.3. Characterization of Geopolymer Samples
3.3.1. XRD Analysis
3.3.2. FTIR Analysis
3.3.3. FEG-SEM/EDS Analysis
3.3.4. Leaching Result
3.3.5. Compressive Strength
4. Conclusions
- The incorporation of VA reduces the Liquid/Solid (L/S) ratio required to obtain a good workability of cement paste from 0.75 for MSWI-FA system to 0.5 for the MSWI-FA-50%VA system. It also enhances the coexistence of the Geopolymer gel and the C-S-H gel in the matrix, thus improving the mechanical properties and encapsulation efficiency of the heavy metals present in MSWI-FA.
- A high alkalinity of the activating solution (10 M, Ms = 0.36) reduces the mechanical properties of the cement obtained and the low alkalinity (6 M, Ms = 0.66) led to the best mechanical property (10.5 MPa for the 50% MSWI-FA-50%VA system).
- Due to the moderated mechanical properties of the products obtained, this Geopolymer cement based on the MSWI-FA-VA system can be used in the manufacturing of non-structural materials such as bricks and paving stones, which are subject to further tests such as the durability of cement.
- This work, thus, shows the possibility of using VA as an adjuvant to MSWI-FA based Geopolymer cement in the same way as calcined clays, fly ash, slag, red mud etc.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Innocent, N.M.; Dieudonné, B.; Jose, S.N. Modeling the Temporal Variations of Municipal Solid Waste Generation for Future Projection in the Douala Municipality, Cameroon. J. Multidiscip. Eng. Sci. Technol. 2016, 3, 5288–5295. [Google Scholar]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of incineration MSW ash: A review. Sustainability. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- Ferone, C.; Colangelo, F.; Messina, F.; Santoro, L.; Cioffi, R. Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials. Materials 2013, 6, 3420–3437. [Google Scholar] [CrossRef] [PubMed]
- Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; et al. Management of municipal solid waste incineration residues. Waste Manag. 2003, 23, 61–88. [Google Scholar] [CrossRef]
- Galan, I.; Glasser, F.P. Chloride in cement. Adv. Cem. Res. 2014, 27, 1–35. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, C.; Wang, W.; Shi, Y.; Gao, X. Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Manag. 2011, 31, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, A.; Wang, X.; Zhang, L. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Manag. 2016, 56, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, C.; Bhuiyan, S.; Law, D.; Setunge, S.; Ward, L. Corrosion Resistance in Different Fly Ash Based Geopolymer Concretes. In Proceedings of the 11th High Performance Concrete (HPC) and the 2nd Concrete Innovation Conference (CIC), Tromsø, Norway, 6–8 March 2017. [Google Scholar]
- Kupwade-Patil, K.; Allouche, E.N. Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes. J. Mater. Civ. Eng. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Tennakoon, C.; Shayan, A.; Sanjayan, J.G.; Xu, A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017, 116, 287–299. [Google Scholar] [CrossRef]
- Davidovits, P.J. Heavy metals waste encapsulation. In Environmentally Driven Geopolymer Cement Applications. Proceedings of the Geopolymer 2002 Conference, Melbourne, Australia, 28–29 October 2002; Geopolymer Institute: Saint-Quentin, France; pp. 1–9.
- Djobo, J.N.Y.; Tchadjié, L.N.; Tchakoute, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2014, 2, 387–398. [Google Scholar] [CrossRef]
- Puertas, F.; Torres-Carrasco, M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 2014, 57, 95–104. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 2013, 38, 865–871. [Google Scholar] [CrossRef]
- Lancellotti, I.; Kamseu, E.; Michelazzi, M.; Barbieri, L.; Corradi, A.; Leonelli, C. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag. 2010, 30, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Zhu, Y.; Reid, A.; Provis, J.L.; Bullen, F. Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 2014, 88–89, 194–201. [Google Scholar] [CrossRef]
- Ye, N.; Chen, Y.; Yang, J.; Liang, S.; Hu, Y.; Xiao, B.; Huang, Q.; Shi, Y.; Hu, J.; Wu, X. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J. Hazard. Mater. 2016, 318, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Noël, J.; Djobo, Y.; Elimbi, A.; Tchakouté, H.K. Volcanic ash-based geopolymer cements/concretes: The current state of the art and perspectives. Environ. Sci. Pollut. Res. 2017, 24, 4433–4446. [Google Scholar] [CrossRef]
- Tchakoute Kouamo, H.; Elimbi, A.; Mbey, J.A.; Ngally Sabouang, C.J.; Njopwouo, D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012, 35, 960–969. [Google Scholar] [CrossRef]
- Yankwa Djobo, J.N.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. Mechanical activation of volcanic ash for geopolymer synthesis: Effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 2016, 6, 39106–39117. [Google Scholar] [CrossRef]
- Kamseu, E.; Leonelli, C.; Perera, D.S.; Melo, U.C.; Lemougna, P.N. Investigation of volcanic ash based geopolymers as potential building materials. InterCeram Int. Ceram. Rev. 2009, 58, 136–140. [Google Scholar]
- Jin, M.; Zheng, Z.; Sun, Y.; Chen, L.; Jin, Z. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J. Non. Cryst. Solids 2016, 450, 116–122. [Google Scholar] [CrossRef]
- Donnelly, J.R. Metals Emissions Control Technologies for Waste Incineration. Davy Environ. 1991, 1723–1730. [Google Scholar]
- Vanesa, G.; Taboada, C.; Ferna, A. Recycling Industrial By-Products in Hybrid Cements: Mechanical and Microstructure Characterization. Waste Biomass Valorization 2017, 8, 1433–1440. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II:29Si MAS-NMR Survey. Microporous Mesoporous Mater. 2008, 109, 525–534. [Google Scholar] [CrossRef]
- Kriskova, L.; Machiels, L.; Pontikes, Y. Inorganic Polymers from a Plasma Convertor Slag: Effect of Activating Solution on Microstructure and Properties. J. Sustain. Metall. 2015, 1, 240–251. [Google Scholar] [CrossRef]
- Saikia, B.J.; Parthasarathy, G.; Sarmah, N.C. Fourier transform infrared spectroscopic estimation of crystallinity in sio2 based rocks. Bull. Mater. Sci. 2008, 31, 775–779. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Kong, S.; Djobo, J.N.Y.; Tchadjié, L.N.; Njopwouo, D. A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceram. Int. 2015, 41, 12568–12577. [Google Scholar] [CrossRef]
- Yahya, Z.; Abdullah, M.; Hussin, K.; Ismail, K.; Razak, R.; Sandu, A. Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System. Materials 2015, 8, 2227–2242. [Google Scholar] [CrossRef]
- Kumar, S.; Mucsi, G.; Kristály, F.; Pekker, P. Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Adv. Powder Technol. 2017, 28, 805–813. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tchakouté, H.K.; Ranjbar, N.; Elimbi, A.; Tchadjié, L.N.; Njopwouo, D. Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: Effect of synthesis conditions. J. Am. Ceram. Soc. 2016, 99, 3159–3166. [Google Scholar] [CrossRef]
- Rees, C.A. Mechanisms and Kinetics of Gel Formation in Geopolymers. Ph.D. Thesis, The University of Melbourne, Parkville, VIC, Australia.
- Yip, C.K.; van Deventer, J.S.J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 2003, 38, 3851–3860. [Google Scholar] [CrossRef]
- Walkley, B.; Nicolas, R.S.; Sani, M.A.; Rees, G.J.; John, V.; van Deventer, J.S.J.; Provis, J.L. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 2016, 89, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Application of Ca-based geopolymer with blast furnace slag, a review. In Proceedings of the 2nd International Slag Valorisation Symposium, Leuven, Belgium, 18–20 April 2011; pp. 33–49. [Google Scholar]
- Puligilla, S.; Mondal, P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cem. Concr. Res. 2015, 70, 39–49. [Google Scholar] [CrossRef]
- Ortego, J.D.; Barroeta, Y.; Cartledge, F.K.; Akhter, H. Leaching Effects on Silicate Polymerization–an Ftir and Si-29 Nmr-Study of Lead and Zinc in Portland-Cement. Environ. Sci. Technol. 1991, 25, 1171–1174. [Google Scholar] [CrossRef]
- Mozgawa, W.; Król, M.; Barczyk, K. FT-IR studies of zeolites from different structural groups. Chemik 2011, 65, 671–674. [Google Scholar]
- Povnnennykh, A.S. The use of infrared spectra for the determination of minerals. Am. Mineral. 1978, 63, 956–959. [Google Scholar]
- Rosas-Casarez, C.A.; Arredondo-Rea, S.P.; Gómez-Soberón, J.M.; Alamaral-Sánchez, J.L.; Corral-Higuera, R.; Chinchillas-Chinchillas, M.J.; Acuña-Agüero, O.H. Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. Int. J. Adv. Comput. Sci. Appl. 2014, 4, 25–30. [Google Scholar]
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 2007, 23, 9076–9082. [Google Scholar] [CrossRef] [PubMed]
- García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- Wongsa, A.; Boonserm, K.; Waisurasingha, C.; Sata, V.; Chindaprasirt, P. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J. Clean. Prod. 2017, 148, 49–59. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 2017, 164, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Jha, B.; Singh, D.N. A Review on Synthesis, Characterization and Industrial Applications of Flyash Zeolites. J. Mater. Educ. 2011, 33, 65–132. [Google Scholar] [CrossRef]
- Luna Galiano, Y.; Fernández Pereira, C.; Vale, J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 2011, 185, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Bernal, S.A.; Provis, J.L.; Rose, V.; Mejía De Gutierrez, R. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Leonelli, C.; Kamseu, E.; Lancellotti, I.; Barbieri, L. Geopolymerization as Cold-Consolidation Techniques for Hazardous and Non-Hazardous Wastes. Key Eng. Mater. 2017, 751, 527–531. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; Macphee, D.E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 2010, 40, 27–32. [Google Scholar] [CrossRef]
Mix Designation | SiO2/Al2O3 | CaO/SiO2 | CaO/Al2O3 | NaOH (M) | Na2SiO3/NaOH | L/S |
---|---|---|---|---|---|---|
GP0(X) | 3.12 | 2.48 | 7.76 | 6, 8, 10 | 1.0 | 0.75 |
GP30(X) | 2.81 | 1.05 | 2.94 | 6, 8, 10 | 1.0 | 0.60 |
GP50(X) | 2.74 | 0.66 | 1.80 | 6, 8, 10 | 1.0 | 0.50 |
Oxides | SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | K2O | MgO | Cl | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
MSWI-FA (%) | 10.46 | 3.35 | 26.00 | 1.72 | 2.46 | 3.32 | 2.65 | 11.84 | 8.10 | 28.3 |
VA (%) | 47.74 | 15.36 | 8.25 | 12.88 | 3.62 | 1.11 | 6.45 | - | - | 0.66 |
Bonds | υSi-O-T (cm−1) | δSi-O-T (cm−1) | υT-O(TO4) (cm−1) | υC-O (cm−1) | υ(O-H; H-O-H) (cm−1) |
---|---|---|---|---|---|
MSWI-FA | 876 | 567 | 1164 | 1639 | 1462; (3753-2946) |
VA | 1026 | 568 | - | 1643 | 1481; (3691-3051) |
GP0(6) | 970 | 463 | 1118 | 1646 | 1444; (3682-3278) |
GP0(8) | 968 | 474 | 1128 | 1656 | 1452; (3662-3294) |
GP0(10) | 960 | 472 | 1130 | 1656 | 1444; (3699-3232) |
GP30(6) | 978 | 484 | 1146 | 1641 | 1473; (3662-3290) |
GP30(10) | 970 | 451 | 1142 | 1640 | 1440; (3695-3147) |
GP50(6) | 1003 | 465 | 1149 | 1648 | 1467; (3696-3201) |
GP50(10) | 978 | 457 | 1151 | 1658 | 1458; (3672-3277) |
Heavy Metals | Pb | Cr | Hg | Zn | Ba | Se | Ag | Cd |
---|---|---|---|---|---|---|---|---|
MSWI-FA | 23.84 | 12.50 | 18.50 | 12.07 | 9.22 | 6.18 | 6.00 | 15.00 |
GP0(6) | 7.5072 | 4.3701 | 6.521 | 7.0852 | 3.0814 | 2.1453 | 1.3 | 3.200 |
GP30(6) | 0.0074 | 0.0651 | 0.00218 | 0.0962 | 0.042 | 0.197 | ND | ND |
GP50(6) | 0.00133 | 0.0146 | ND | 0.0602 | 0.0334 | 0.1471 | ND | ND |
GP0(10) | 9.530 | 6.2268 | 7.320 | 7.478 | 4.616 | 3.2449 | 1.990 | 4.023 |
GP30(10) | 0.124 | 0.2268 | ND | 0.1458 | 0.0353 | 0.2427 | ND | ND |
GP50(10) | 0.113 | 0.2045 | ND | 0.1105 | 0.0281 | 0.2121 | ND | ND |
USEPA limit | 5.0 | 5.0 | 5.0 | 100.00 | 100 | 1.0 | 5.0 | 1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tome, S.; Etoh, M.-A.; Etame, J.; Sanjay, K. Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends. Recycling 2018, 3, 50. https://doi.org/10.3390/recycling3040050
Tome S, Etoh M-A, Etame J, Sanjay K. Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends. Recycling. 2018; 3(4):50. https://doi.org/10.3390/recycling3040050
Chicago/Turabian StyleTome, Sylvain, Marie-Annie Etoh, Jacques Etame, and Kumar Sanjay. 2018. "Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends" Recycling 3, no. 4: 50. https://doi.org/10.3390/recycling3040050
APA StyleTome, S., Etoh, M. -A., Etame, J., & Sanjay, K. (2018). Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends. Recycling, 3(4), 50. https://doi.org/10.3390/recycling3040050