Transforming Industrial Waste into Low-Carbon Cement: A Multi-Criteria Assessment of Supplementary Cementitious Materials for Sustainable Concrete Design
Abstract
1. Introduction
2. Methods and Data Sources
2.1. Mapping Industrial Waste and Its Characteristics
2.2. Two-Stage Screening and Classification of SCMs from the Industrial Waste Pool
2.2.1. Initial Screening and Eligibility Assessment
| S/N | Material | SCM Classification | Global Availability & Key Regions | Primary Sources | Current Disposal Issues | Material Origin | References |
|---|---|---|---|---|---|---|---|
| 1 | Fly Ash (FA) | Established | ~750 million tonnes annually; major producers: China, India, USA | Coal-fired power plants | Landfill disposal; heavy metal contamination | Industrial by-product | [42] |
| 2 | Ground Granulated Blast Furnace Slag (GGBFS) | Established | ~300–360 million tonnes annually; major producers: China, India, USA | Steel and iron industries | Underutilized; landfill accumulation | Industrial by-product | [42] |
| 3 | Silica Fume (SF) | Established | ~1.5 million tonnes annually; produced in silicon-producing countries | Silicon and Ferrosilicon industries | Inhalation risk; ultrafine particle disposal | Industrial by-product | [42] |
| 4 | Red Mud (Bauxite Residue) | Promising | ~170 million tonnes annually; major producers: Australia, China, Brazil | Alumina production | Highly alkaline; pond storage risks | Industrial by-product | [43] |
| 5 | Rice Husk Ash (RHA) | Established | ~70 million tonnes annually; producers: China, India, SE Asia | Rice milling | Open burning; air pollution | Industrial by-product | [44] |
| 6 | Palm Oil Fuel Ash (POFA) | Established | ~7 million tonnes annually; major producers: Malaysia, 7Indonesia, T8hailand | Palm oil mills | Groundwater contamination; poor awareness of reuse potential | Industrial by-product | [42] |
| 7 | Bottom Ash (BA) | Promising | ~1934 million tonnes annually; major producers: USA, EU | Coal-fired power plants | Groundwater leaching; low reuse rates | Industrial by-product | [42] |
| 8 | Waste Glass Powder (WGP) | Promising | ~11.5 million tonnes in USA; higher globally | Post-consumer glass | Alkali-silica reaction; landfill dumping | Industrial by-product | [45] |
| 9 | Marble Dust Waste (MDW) | Exploratory | Significant in India, Italy, Turkey | Marble cutting and polishing | Dust pollution; underutilized | Industrial by-product | [46] |
| 10 | Flue Gas Desulfurization Gypsum (FGDG) | Exploratory | ~30 million tonnes annually in the USA | Coal power with desulfurization units | Leaching risks; storage problems | Industrial by-product | [46] |
| 11 | Ceramic Dust Waste (CDW) | Promising | High in China, India, Spain | Ceramic tile manufacturing | Landfill disposal; reuse unexplored | Industrial by-product | [46] |
| 12 | Napier Grass Ash (NGA) | Exploratory | Biomass-producing countries | Biomass combustion | Underutilization; disposal in landfills | Agricultural residue | [47] |
| 13 | Biomass Ash | Promising | Regions using biomass energy (e.g., Brazil, India) | Biomass combustion | Heavy metal leaching; landfill disposal | Agricultural residue | [48] |
| 14 | Calcined Clay | Established | Abundant in India, Brazil, Africa | Calcined kaolinitic clay | Mining and energy-intensive processing | Engineered pozzolan | [49] |
| 15 | Aspiration Dust | Exploratory | Found in industrial processing zones | Dust from industrial collectors | Inhalation hazard; fine particle management | Industrial by-product | [50] |
| 16 | Bagasse Ash | Promising | Common in Brazil, India, Thailand | Sugarcane processing | Groundwater pollution risk; landfill accumulation | Agricultural residue | [51] |
| 17 | Boiler Slag | Promising | Found in thermal power regions (e.g., China, USA) | Coal-fired boilers | It contains heavy metals; poor reuse | Industrial by-product | [52] |
| 18 | Egg Shells | Promising | Global; large poultry-producing nations | Poultry processing | Odor; organic contamination risk | Agricultural residue | [53] |
| 19 | Metakaolin (MK) | Established | Global (especially where kaolin clay is found) | Calcined kaolinite clay | Calcination emissions | Engineered pozzolan | [54] |
| 20 | Copper Slags | Exploratory | Common in Chile, India, China | Copper smelting | Heavy metal leaching | Industrial by-product | [55] |
| 21 | Other Non-Ferrous Slags | Exploratory | Countries with base metal smelting (e.g., Canada, China) | Zinc, lead, aluminum, nickel smelting | Toxic metal leaching; landfill accumulation | Industrial by-product | [56] |
| 22 | Lead/Zinc Slags | Exploratory | Common in China, Australia, USA | Lead and zinc smelters | Toxicity; environmental contamination risks | Industrial by-product | [57] |
| 23 | Blast Furnace Dust | Promising | Major steel-producing nations (e.g., China, India, Germany) | Steel production | Airborne hazard; landfill accumulation | Industrial by-product | [58] |
| 24 | Steel Slag | Promising | ~200 million tonnes annually; found globally | Steel plants | Heavy metal leaching; landfill dumping | Industrial by-product | [59] |
| 25 | Geopolymer Binders | Established | Dependent on industrial waste supply (FA, GGBFS, MK) | Fly ash, slag, metakaolin | Early-stage adoption; production variability | Engineered binder (composite of by-products) | [60] |
| 26 | Oil-Based Mud | Exploratory | Oil-producing regions (e.g., Middle East, USA, Russia) | Drilling waste from oil rigs | Hydrocarbon contamination; classified hazardous waste | Industrial by-product | [61] |
| 27 | Kaolinitic Waste | Promising | Found in mining countries like Brazil, USA, UK | Kaolin mining | Dust pollution; poor valorization | Industrial by-product | [62] |
2.2.2. Detailed Classification and Selection of SCMs
- Pozzolanic or Latent Hydraulic Activity
- Oxide Composition (SiO2, Al2O3, CaO)
- Fineness (Particle Size Distribution and Surface Area)
- Compatibility with Cement Chemistry
- Availability and consistency
- Environmental and economic benefits
- Regulatory and standards compliance
2.3. MCDM Frameworks (EDAS)
3. Results and Discussion
3.1. Screening Outcomes and Hierarchy of SCMs
- Top Performers (Scores ≥ 60)
- Fly Ash (64) and Metakaolin (64) rank highest due to their high pozzolanic reactivity, fine particle size, and extensive field performance. They both meet ASTM C618 standards and substantially reduce CO2 emissions [66,77,78]. Metakaolin is gotten from calcined kaolinite clay; it enhances early strength, durability, and chloride resistance [79,80].
- Calcined Clay (60) and Silica Fume (60) are high-reactivity SCMs. Calcined clay, especially kaolinitic varieties, provides exceptional pozzolanic activity and is promising for low-carbon cements [83]. Silica fume, though less available, offers high strength and low permeability in small dosages [64].
- High Suitability (Scores 50–59)
- Geopolymer Binders (58) and Rice Husk Ash (57) are innovative and emerging SCMs. Geopolymers are synthesized from aluminosilicate-rich wastes under alkaline activation. Its present full cement replacement prospective and outstanding mechanical properties [84,85]. Rice husk ash, when properly calcined, contains amorphous silica and exhibits strong pozzolanic activity [86].
- Kaolinitic Waste (54) perform well due to favorable mineralogy [87].
- Moderate Suitability (Scores 40–49)
- Bagasse Ash (49) and Waste Glass Powder (45) contain amorphous silica but are susceptible to alkali-silica reaction unless finely ground. When processed correctly, they can improve durability and reduce permeability [90]. Bagasse ash is a sugar industry byproduct that requires fine grinding but enhances strength and durability.
- Low Suitability (Scores < 40)
- Eggshells (25) are composed mainly of calcium carbonate and lack pozzolanic phases, making them more appropriate as fillers than active SCMs [53].
3.2. Performance Analysis of Top-Ranked SCMs
3.3. Multi-Criteria Selection of SCMs for Sustainable Concrete Applications
3.4. Performance Potential of Under-Explored SCMs
- Technical Barriers
- Recent Advances Mitigating Barriers
- Regional Relevance and Substitution Potential
- Implications for the EDAS Framework
3.5. Regional Supply Dynamics, Risks, and Policy Pathways for SCM Adoption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Morrow, W.; Masanet, E.; Sathaye, J.; Xu, T. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy 2013, 57, 287–297. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195. [Google Scholar] [CrossRef]
- Gursel, A.P. Life-Cycle Assessment of Concrete: Decision-Support Tool and Case Study Application. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2014. [Google Scholar]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Juenger, M.C.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P. Concrete: Microstructure, Properties, and Materials; McGraw Hill: Columbus, OH, USA, 2006. [Google Scholar]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Z.; Guo, Q. Comprehensive utilisation of blast furnace slag. Can. Metall. Q. 2024, 63, 927–934. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S. Alkali Activated Materials, 1st ed.; State-of-the-Art Report, RILEM TC 224-AAM; Springer: London, UK, 2014; Volume 13, p. XIV, 388. [Google Scholar]
- Siddique, R. Utilization of industrial by-products in concrete. Procedia Eng. 2014, 95, 335–347. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Chertow, M.R. “Uncovering” industrial symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Bijen, J. Benefits of slag and fly ash. Constr. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Katman, H.Y.B.; Humada, A.M.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Effect of silica fume on the properties of sustainable cement concrete. J. Mater. Res. Technol. 2023, 24, 8887–8908. [Google Scholar] [CrossRef]
- Kumar, R.; Pamucar, D. A comprehensive and systematic review of multi-criteria decision-making (MCDM) methods to solve decision-making problems: Two decades from 2004 to 2024. Spectr. Decis. Mak. Appl. 2025, 2, 178–197. [Google Scholar] [CrossRef]
- Yap, J.Y.L.; Ho, C.C.; Ting, C.-Y. A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built Environ. Proj. Asset Manag. 2019, 9, 548–563. [Google Scholar] [CrossRef]
- Balasbaneh, A.T.; Aldrovandi, S.; Sher, W. A Systematic Review of Implementing Multi-Criteria Decision-Making (MCDM) Approaches for the Circular Economy and Cost Assessment. Sustainability 2025, 17, 5007. [Google Scholar] [CrossRef]
- Lottermoser, B.; Lottermoser, B.G. Sulfidic mine wastes. In Mine Wastes: Characterization, Treatment and Environmental Impacts; Springer: Berlin/Heidelberg, Germany, 2010; pp. 43–117. [Google Scholar]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Slack, R.; Gronow, J.; Voulvoulis, N. Hazardous components of household waste. Crit. Rev. Environ. Sci. Technol. 2004, 34, 419–445. [Google Scholar] [CrossRef]
- Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 2009, 408, 183–191. [Google Scholar] [CrossRef]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2011, 4, 22–26. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 2004, 333, 37–58. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Vandenbosch, R.; Vandenbosch, S.E. Nuclear Waste Stalemate: Political and Scientific Controversies; University of Utah Press: Salt Lake City, UT, USA, 2007. [Google Scholar]
- Chartier, Y. Safe Management of Wastes from Health-Care Activities; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Tam, V.W.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Pratap, V.; Kumar, S.; Yadav, B.R. Sewage sludge management and enhanced energy recovery using anaerobic digestion: An insight. Water Sci. Technol. 2024, 90, 696–720. [Google Scholar] [CrossRef]
- Durczak, K.; Pyzalski, M.; Brylewski, T.; Juszczyk, M.; Leśniak, A.; Libura, M.; Ustinovičius, L.; Vaišnoras, M. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798. [Google Scholar] [CrossRef]
- Rahman, T.; Alam, M.Z.; Moniruzzaman, M.; Miah, M.S.; Horaira, M.A.; Kamal, R. Navigating the contemporary landscape of food waste management in developing countries: A comprehensive overview and prospective analysis. Heliyon 2024, 10, e33218. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, L.P.d.S.; Junior, N.L.; Valladares-Diestra, K.K.; Bittencourt, G.A.; Murawski de Mello, A.F.; Karp, S.G.; Junior Letti, L.A.; Soccol, C.R. Chapter 3—Nonwaste technology in the bioethanol and biodiesel industries. In Biofuels and Bioenergy; Gurunathan, B., Sahadevan, R., Zakaria, Z.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 41–60. [Google Scholar]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Siddique, R. Waste Materials and by-Products in Concrete; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–413. [Google Scholar]
- Sakir, S.; Raman, S.N.; Safiuddin, M.; Kaish, A.A.; Mutalib, A.A. Utilization of by-products and wastes as supplementary cementitious materials in structural mortar for sustainable construction. Sustainability 2020, 12, 3888. [Google Scholar] [CrossRef]
- Svobodova-Sedlackova, A.; Calderón, A.; Fernandez, A.I.; Chimenos, J.M.; Berlanga, C.; Yücel, O.; Barreneche, C.; Rodriguez, R. Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon 2024, 10, e24943. [Google Scholar] [CrossRef]
- Blesson, S.; Rao, A. Agro-industrial-based wastes as supplementary cementitious or alkali-activated binder material: A comprehensive review. Innov. Infrastruct. Solut. 2023, 8, 125. [Google Scholar] [CrossRef]
- Hamada, H.; Alattar, A.; Tayeh, B.; Yahaya, F.; Thomas, B. Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Stud. Constr. Mater. 2022, 17, e01149. [Google Scholar] [CrossRef]
- Julphunthong, P.; Joyklad, P. Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials 2019, 12, 3319. [Google Scholar] [CrossRef]
- Olatoyan, O.J.; Kareem, M.A.; Adebanjo, A.U.; Olawale, S.; Alao, K.T. Potential use of biomass ash as a sustainable alternative for fly ash in concrete production: A review. Hybrid Adv. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Pels, J.; Sarabèr, A. Utilization of biomass ashes. In Solid Biofuels for Energy: A Lower Greenhouse Gas Alternative; Springer: Berlin/Heidelberg, Germany, 2011; pp. 219–235. [Google Scholar]
- Scrivener, K.; Favier, A. Calcined Clays for Sustainable Concrete; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Adaska, W.S.; Taubert, D.H. Beneficial uses of cement kiln dust. In Proceedings of the 2008 IEEE Cement Industry Technical Conference Record, Miami, FL, USA, 18–22 May 2008; pp. 210–228. [Google Scholar]
- Mangi, S.A.; Jamaluddin, N.; Ibrahim, M.W.; Awal, A.A.; Sohu, S.; Ali, N. Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Busan, Republic of Korea, 25–27 August 2017; IOP Publishing Ltd.: Bristol, UK, 2017; Volume 271, p. 012001. [Google Scholar]
- Saikia, N.; Cornelis, G.; Mertens, G.; Elsen, J.; Van Balen, K.; Van Gerven, T.; Vandecasteele, C. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar. J. Hazard. Mater. 2008, 154, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.M.; Tayeh, B.A.; Al-Attar, A.; Yahaya, F.M.; Muthusamy, K.; Humada, A.M. The present state of the use of eggshell powder in concrete: A review. J. Build. Eng. 2020, 32, 101583. [Google Scholar] [CrossRef]
- Badogiannis, E.; Kakali, G.; Tsivilis, S. Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. J. Therm. Anal. Calor. 2005, 81, 457–462. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Ban, J.; Sun, K.; Yao, J.; Sunahara, G.; Hudson-Edwards, K.; Jordan, G.; Alakangas, L.; Ni, W.; Poon, C.-S. Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation. Environ. Res. 2022, 213, 113533. [Google Scholar] [CrossRef] [PubMed]
- Kanneboina, Y.Y.; Kabeer, K.S.A.; Bisht, K. Valorization of lead and zinc slags for the production of construction materials-A review for future research direction. Constr. Build. Mater. 2023, 367, 130314. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, S.; Sher, F.; Chen, J.; Xin, Y.; You, Z.; Wen, L.; Hu, M.; Qiu, G. A review on recycling and reutilization of blast furnace dust as a secondary resource. J. Sustain. Metall. 2021, 7, 340–357. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Yu, F.; Du, T. A review of the application of steel slag in concrete. Structures 2024, 63, 106352. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Agwu, O.E.; Akpabio, J.U.; Ekpenyong, M.E.; Inyang, U.G.; Asuquo, D.E.; Eyoh, I.J.; Adeoye, O.S. A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. J. Nat. Gas. Sci. Eng. 2021, 94, 104046. (In English) [Google Scholar] [CrossRef]
- García Giménez, R.; Vigil de la Villa Mencía, R.; Frías, M.; Martínez Ramírez, S.; Vegas Ramiro, I.; Fernández Carrasco, L. Cements based on kaolinite waste. Adv. Geosci. 2018, 45, 133–138. [Google Scholar] [CrossRef]
- Suraneni, P.; Burris, L.; Shearer, C.R.; Hooton, R.D. ASTM C618 fly ash specification: Comparison with other specifications, shortcomings, and solutions. ACI Mater. J. 2021, 118, 157–167. [Google Scholar] [CrossRef]
- Siddique, R.; Khan, M.I. Supplementary Cementing Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P.; Lee, S.C. Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 2016, 117, 122–138. [Google Scholar] [CrossRef]
- Silva, L.H.P.; Nehring, V.; de Paiva, F.F.G.; Tamashiro, J.R.; Galvín, A.P.; López-Uceda, A.; Kinoshita, A. Use of blast furnace slag in cementitious materials for pavements-Systematic literature review and eco-efficiency. Sustain. Chem. Pharm. 2023, 33, 101030. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011. Available online: https://standards.cen.eu (accessed on 18 August 2025).
- Scrivener, K.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Hanpongpun, W.; Favier, A. Impacting factors and properties of limestone calcined clay cements (LC3). Green Mater. 2018, 7, 3–14. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Shafiq, N. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. Int. J. Miner. Metall. Mater. 2013, 20, 205–213. [Google Scholar] [CrossRef]
- Nayak, D.K.; Abhilash, P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Nicula, L.M.; Manea, D.L.; Simedru, D.; Cadar, O.; Dragomir, M.L.; Ardelean, I.; Corbu, O. Potential role of GGBS and ACBFS blast furnace slag at 90 days for application in rigid concrete pavements. Materials 2023, 16, 5902. [Google Scholar] [CrossRef] [PubMed]
- Wolska-Kotańska, C. Additions for concrete according to European standard EN-206. In Proceedings of the 7th international Conference of Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 16–18 May 2001; Available online: https://bibliotekanauki.pl/articles/182869.pdf (accessed on 18 August 2025).
- Rutkowska, G.; Żółtowski, M.; Rusakov, K.; Pawluk, K.; Andrzejak, J.; Żółtowski, B. The influence of fly ash from sewage sludge on the concrete carbonation course. Buildings 2023, 13, 1838. [Google Scholar] [CrossRef]
- BS 8615-1:2019; Specification for Pozzolanic Materials for Use with Portland Cement. British Standards Institution: London, UK, 2019.
- Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Mohammadhosseini, H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. J. King Saud. Univ. Eng. Sci. 2021, 33, 294–307. [Google Scholar] [CrossRef]
- Babatunde, O.; Denwigwe, I.; Oyebode, O.; Ighravwe, D.; Ohiaeri, A.; Babatunde, D. Assessing the use of hybrid renewable energy system with battery storage for power generation in a University in Nigeria. Environ. Sci. Pollut. Res. 2022, 29, 4291–4310. [Google Scholar] [CrossRef]
- Atiş, C.D. Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cem. Concr. Res. 2005, 35, 1112–1121. [Google Scholar] [CrossRef]
- Gunaseelan, A.; Ramalingam, K. Experimental study on performance of high volume fly ash concrete. Int. J. Innov. Res. Sci. Technol. 2016, 2, 187–195. [Google Scholar]
- Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. Metakaolin. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 493–511. [Google Scholar]
- Khatib, J.M.; Clay, R.M. Absorption characteristics of metakaolin concrete. Cem. Concr. Res. 2004, 34, 19–29. [Google Scholar] [CrossRef]
- Cheng, A.; Huang, R.; Wu, J.-K.; Chen, C.-H. Influence of GGBS on durability and corrosion behavior of reinforced concrete. Mater. Chem. Phys. 2005, 93, 404–411. [Google Scholar] [CrossRef]
- Patil, S.; Karikatti, V.; Chitawadagi, M. Granulated Blast-Furnace Slag (GGBS) based Geopolymer Concrete—Review. Int. J. Adv. Sci. Eng. 2018, 5, 879–885. [Google Scholar] [CrossRef]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef]
- Sakulich, A.R. Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 2011, 1, 195–210. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 2008, 22, 1601–1606. [Google Scholar] [CrossRef]
- Shafigh, P.; Mahmud, H.B.; Jumaat, M.Z.; Zargar, M. Agricultural wastes as aggregate in concrete mixtures—A review. Constr. Build. Mater. 2014, 53, 110–117. [Google Scholar] [CrossRef]
- Gencel, O.; Karadag, O.; Oren, O.H.; Bilir, T. Steel slag and its applications in cement and concrete technology: A review. Constr. Build. Mater. 2021, 283, 122783. [Google Scholar] [CrossRef]
- Altwair, N.M.; Johari, M.A.M.; Hashim, S.F.S. Strength activity index and microstructural characteristics of treated palm oil fuel ash. Structure 2011, 5, 6. [Google Scholar]
- Sathiparan, N.; Subramaniam, D.N. Potential use of crushed waste glass and glass powder in sustainable pervious concrete: A review. Clean. Waste Syst. 2024, 9, 100191. [Google Scholar] [CrossRef]
- Pontikes, Y.; Angelopoulos, G.N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resour. Conserv. Recycl. 2013, 73, 53–63. [Google Scholar] [CrossRef]
- Lv, Y.; Ye, G.; De Schutter, G. Characterization of cogeneration generated Napier grass ash and its potential use as SCMs. Mater. Struct. 2019, 52, 87. [Google Scholar] [CrossRef]
- Singh, N.; Bhardwaj, A. Reviewing the role of coal bottom ash as an alternative of cement. Constr. Build. Mater. 2020, 233, 117276. [Google Scholar] [CrossRef]
- El-Dieb, A.S.; Kanaan, D.M. Ceramic waste powder an alternative cement replacement–Characterization and evaluation. Sustain. Mater. Technol. 2018, 17, e00063. [Google Scholar] [CrossRef]
- Elbaz, A.; Aboulfotoh, A.; Dohdoh, A.; Wahba, A. Review of beneficial uses of cement kiln dust (CKD), fly ash (FA) and their mixture. J. Mater. Environ. Sci. 2019, 10, 1062–1073. [Google Scholar]
- Pan, D.a.; Li, L.; Tian, X.; Wu, Y.; Cheng, N.; Yu, H. A review on lead slag generation, characteristics, and utilization. Resour. Conserv. Recycl. 2019, 146, 140–155. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Dhamri, H.; Ram, G.; Black, L. The use of oil-based mud cuttings as an alternative raw material to produce high sulfate-resistant oil well cement. J. Clean. Prod. 2020, 269, 122207. [Google Scholar] [CrossRef]
- Sas, W.; Dzięcioł, J.; Radzevičius, A.; Radziemska, M.; Dapkienė, M.; Šadzevičius, R.; Skominas, R.; Głuchowski, A. Geotechnical and environmental assessment of blast furnace slag for engineering applications. Materials 2021, 14, 6029. [Google Scholar] [CrossRef] [PubMed]
- Juenger, M.; Winnefeld, F.; Provis, J.L.; Ideker, J. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Thomas, M. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007. [Google Scholar]
- Toutanji, H.A.; El-Korchi, T. The influence of silica fume on the compressive strength of cement paste and mortar. Cem. Concr. Res. 1995, 25, 1591–1602. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Malhotra, V.M. High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater. J. 1996, 93, 629–636. [Google Scholar] [CrossRef]
- Tangchirapat, W.; Jaturapitakkul, C. Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash. Cem. Concr. Compos. 2010, 32, 767–774. [Google Scholar] [CrossRef]
- Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Heidrich, C.; Feuerborn, H.-J.; Weir, A. Coal combustion products: A global perspective. In Proceedings of the World of Coal Ash Conference, Lexington, KY, USA, 22–25 April 2013; Volume 22, p. 25. [Google Scholar]
- Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234–247. [Google Scholar] [CrossRef]
- Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N. Supplementary cementitious materials origin from agricultural wastes—A review. Constr. Build. Mater. 2015, 74, 176–187. [Google Scholar] [CrossRef]
- Gupta, S.; Chaudhary, S. State of the art review on supplementary cementitious materials in India—II: Characteristics of SCMs, effect on concrete and environmental impact. J. Clean. Prod. 2022, 357, 131945. [Google Scholar] [CrossRef]
- Hanein, T.; Thienel, K.-C.; Zunino, F.; Marsh, A.T.; Maier, M.; Wang, B.; Canut, M.; Juenger, M.C.; Ben Haha, M.; Avet, F. Clay calcination technology: State-of-the-art review by the RILEM TC 282-CCL. Mater. Struct. 2022, 55, 3. [Google Scholar] [CrossRef]
- Paramguru, R.; Rath, P.; Misra, V. Trends in red mud utilization—A review. Miner. Process. Extr. Metall. Rev. 2004, 26, 1–29. [Google Scholar] [CrossRef]
- Gray, D.L. Decrease in fly ash spurring innovation within construction materials industry. Nat. Gas. Electr. 2019, 35, 23–29. [Google Scholar] [CrossRef]
- Harris, D. Ash as an internationally traded commodity. In Coal Combustion Products (CCP’s); Elsevier: Amsterdam, The Netherlands, 2017; pp. 509–529. [Google Scholar]
- Naskar, J.; Sharma, A.K. Resource and recycling: A comprehensive review of India’s coal landscape, characterization, and the current to future potential of fly ash from thermal power plants. Int. J. Coal Prep. Util. 2024, 1–51. [Google Scholar] [CrossRef]
- Akhmetzhanov, B.; Tazhibekova, K.; Shametova, A.; Urazbekov, A. Coal supply chain management and economic efficiency of using high-ash coking coal in ferroalloy manufacturing. Int. J. Supply Chain Manag. 2019, 8, 624–632. [Google Scholar]
- Thomas, M.D.; Bamforth, P.B. Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cem. Concr. Res. 1999, 29, 487–495. [Google Scholar] [CrossRef]
- Malhotra, V.M. High-performance high-volume fly ash concrete. Concr. Int. 2002, 24, 30–34. [Google Scholar]
- Flower, D.J.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Bilodeau, A.; Malhotra, V.M. High-volume fly ash system: Concrete solution for sustainable development. Mater. J. 2000, 97, 41–48. [Google Scholar]
- Jiang, L.; Malhotra, V. Reduction in water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cem. Concr. Res. 2000, 30, 1785–1789. [Google Scholar] [CrossRef]
- Naik, T.R.; Ramme, B.W. High early strength concrete containing large quantities of fly ash. ACI Mater. J. 1989, 86, 111–116. [Google Scholar]
- ASTM C618–19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; Van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ferraris, C.F. Rheology and setting of high volume fly ash mixtures. Cem. Concr. Compos. 2010, 32, 265–270. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.; Tang, J.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Van den Heede, P.; De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Bostanci, S.C.; Limbachiya, M.; Kew, H. Use of recycled aggregates for low carbon and cost effective concrete construction. J. Clean. Prod. 2018, 189, 176–196. [Google Scholar] [CrossRef]
- Afshinnia, K.; Rangaraju, P.R. Efficiency of ternary blends containing fine glass powder in mitigating alkali–silica reaction. Constr. Build. Mater. 2015, 100, 234–245. [Google Scholar] [CrossRef]
- Tang, K.; Millard, S.; Beattie, G. Technical and economical feasibility of using GGBS in long-span concrete structures. Adv. Concr. Constr. 2015, 3, 1–14. [Google Scholar] [CrossRef]
- Crossin, E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodriguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Khan, M.I.; Siddique, R. Utilization of silica fume in concrete: Review of durability properties. Resour. Conserv. Recycl. 2011, 57, 30–35. [Google Scholar] [CrossRef]
- ASTM C1240-05; Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International: West Conshohocken, PA, USA, 2005.
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Suhendro, B. Toward green concrete for better sustainable environment. Procedia Eng. 2014, 95, 305–320. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Bishnoi, S.; Maity, S.; Mallik, A.; Joseph, S.; Krishnan, S. Pilot scale manufacture of limestone calcined clay cement: The Indian experience. Indian. Concr. J. 2014, 88, 22–28. [Google Scholar]
- Snellings, R. Assessing, understanding and unlocking supplementary cementitious materials. RILEM Tech. Lett. 2016, 1, 50–55. [Google Scholar] [CrossRef]
- Habert, G.; Choupay, N.; Montel, J.-M.; Guillaume, D.; Escadeillas, G. Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cem. Concr. Res. 2008, 38, 963–975. [Google Scholar] [CrossRef]
- Gruber, K.; Ramlochan, T.; Boddy, A.; Hooton, R.; Thomas, M. Increasing concrete durability with high-reactivity metakaolin. Cem. Concr. Compos. 2001, 23, 479–484. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Asbridge, A.; Chadbourn, G.; Page, C. Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars. Cem. Concr. Res. 2001, 31, 1567–1572. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive overview. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Ramlochan, T.; Thomas, M.; Gruber, K.A. The effect of metakaolin on alkali–silica reaction in concrete. Cem. Concr. Res. 2000, 30, 339–344. [Google Scholar] [CrossRef]
- Badogiannis, E.; Tsivilis, S. Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cem. Concr. Compos. 2009, 31, 128–133. [Google Scholar] [CrossRef]
- Huijgen, W.J.; Comans, R.N. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms. Environ. Sci. Technol. 2006, 40, 2790–2796. [Google Scholar] [CrossRef]
- El-Said, A.; Awad, A.; Ahmad, M.; Sabri, M.M.S.; Deifalla, A.F.; Tawfik, M. The mechanical behavior of sustainable concrete using raw and processed sugarcane bagasse ash. Sustainability 2022, 14, 11181. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Z.; Donne, S.; Forghani, M.; Liu, Y. Influence of red mud on mechanical and durability performance of self-compacting concrete. J. Hazard. Mater. 2019, 379, 120802. [Google Scholar] [CrossRef]
- Zain, M.F.M.; Islam, M.N.; Mahmud, F.; Jamil, M. Production of rice husk ash for use in concrete as a supplementary cementitious material. Constr. Build. Mater. 2011, 25, 798–805. [Google Scholar] [CrossRef]
- Bersisa, A.; Zekaria, A. Assessment of the mechanical properties of bagasse ash concrete. Eng. Sci. 2021, 6, 39–44. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B.; Adak, D.; Rajput, A.; Katare, V. Rice husk ash in structural concrete: Influence on strength, durability and sustainability. Discov. Concr. Cem. 2025, 1, 14. [Google Scholar] [CrossRef]



| Waste Type | Global Availability & Key Regions | Primary Sources | Current Disposal Issues | References |
|---|---|---|---|---|
| Mining Waste | ~1.4 billion tonnes/year of iron ore tailings; major producers include Brazil, China, and Australia. | Iron ore, coal, and other mineral extraction activities. | Tailings are often stored in dams; risk of dam failures and toxic leachate contaminating water bodies. | [23] |
| Fly Ash & Slag | Significant quantities from coal-fired power plants and steel, especially in the U.S., China, and India. | Combustion of coal in thermal power plants. | Contains heavy metals; improper disposal leads to air and water pollution; limited recycling in construction. | [24] |
| Chemical Waste | Global widespread; significant in chemical manufacturing hubs like the U.S., Germany, and China. | Chemical manufacturing, pharmaceuticals, and laboratories. | Hazardous nature; challenges in treatment and disposal; risk of soil and water contamination. | [25] |
| E-Waste | Electronic waste is also known as e-waste. Over 70% of global ends up in China; significant amounts also in India and Nigeria. | Disposed electronic devices/parts from consumers and industries. | Laid-back recycling leads to environmental pollution and health hazards; lack of proper infrastructure. | [26] |
| Textile Waste | countries with large textile industries are the major contributors. These countries include Bangladesh, India, and China. | Textile and dyeing industry. | Wastewater contains dyes and chemicals; solid waste disposal issues; informal recycling. | [27] |
| Paper Mill Waste | Abundant in countries with large paper industries like the U.S., Canada, and Finland. | Pulp and paper manufacturing industries. | Sludge disposal challenges; chemical residues in wastewater; air emissions. | [28] |
| Plastic Waste | Plastic waste is a global issue; prominent producers include the U.S., China, and European countries. | Plastic manufacturing and packaging industries. | Non-biodegradable nature; accumulation in landfills and oceans; recycling challenges. | [29] |
| Radioactive Waste | Produced in countries with nuclear power plants and medical facilities; notable producers include the U.S., France, and Russia. | Nuclear power generation, medical isotope production, and research laboratories. | Long-term storage challenges; risk of radiation leaking; high cost of disposal. | [30] |
| Biomedical Waste | Abundant in countries with large healthcare sectors like the U.S., India, and China. | Hospitals, clinics, and pharmaceutical industries. | Risk of infection; improper disposal leads to environmental pollution; need for specialized treatment. | [31] |
| Construction Debris | High volumes globally; especially in fast growing regions like Asia and the Middle East. | Construction, renovation, and demolition activities. | Large volumes; limited recycling; most times ends up in landfills; potential for hazardous materials. | [32] |
| Hazardous Waste | High in Asia-Pacific, North America, and Europe due to rapid industrialization and legacy adulteration. | Chemical manufacturing, metal processing, and electronics industry. | Improper disposal leads to soil and groundwater contamination, health risks, and illegal dumping. | [33] |
| Industrial Sludge | Predominant in industrialized countries; increasing in Asia and Latin America. | Wastewater treatment, metal processing, mining. | Landfilling raises environmental issues; drying and incineration are energy intensive. | [34] |
| Asbestos Waste | persistent in Russia, China, India, Brazil; legacy waste in many banned countries. | Construction, shipbuilding, automotive industries. | Hazardous to health when airborne; disposal requires strict handling and encapsulation. | [35] |
| Food Processing Waste | Globally generated, particularly high in North America and Europe; significant production losses in developing regions. | Food and beverage industry, agriculture. | Causes methane emissions in landfills; underused in bioenergy or composting. | [36] |
| Packaging Waste | High volumes in EU, North America; rapid growth in Asia-Pacific. | Manufacturing, retail, logistics. | Plastic-based materials resist degradation; recycling rates are low; leads to aquatic pollution. | [37] |
| Standard Code | Region | SCMs Covered | Key Criteria (Concise) | Standard Type | Reference |
|---|---|---|---|---|---|
| ASTM C618 | USA/widely used globally | Coal fly ash & raw/calcined natural pozzolans for use in concrete | Chemical & physical limits for fly ash/natural pozzolan (classification into Classes, requirements for SiO2 + Al2O3 + Fe2O3, LOI, moisture, SO3, strength/activity index and physical tests). See official scope/details. | Product/admixture standard (SCMs for concrete) | [63] |
| ASTM C989/C989M | USA | Ground Granulated Blast Furnace Slag (GGBFS) (slag cement) | Defines strength grades (e.g., Grades 80/100/120), chemical limits (sulfide/sulfate), fineness/activity index and compressive strength requirements for slag cement used as a cementitious material. | Product/slag cement specification (SCM/cementitious material) | [66] |
| ASTM C1240 | USA | Silica fume for use in cementitious mixtures | Chemical and physical minimums (SiO2 content typically ≥85% by mass, limits on moisture, LOI; specific test/packing/conformity rules). | Product standard (silica fume for concrete/cementitious mixes) | [69] |
| EN 450-1 (BS EN 450-1:2012) | Europe | Fly ash for concrete (Type II addition under EN 206) | Requirements for siliceous fly ash used directly in concrete: reactive SiO2 (method reference to EN-196/EN-197 [67]), combined oxides (SiO2 + Al2O3 + Fe2O3), LOI categories (A/B/C—typical limits in EN practice; e.g., Category A ≈ ≤5%, B ≈ ≤7%, C ≈ ≤9%), chloride ≤ 0.10%, SO3 ≤ 3%, fineness/conformity rules. (EN 450-1 is the product standard for fly ash as a concrete addition.) | Product standard SCM used directly in concrete (Type II addition) | [70] |
| EN 15167-1 | Europe | GGBFS (ground granulated blast furnace slag) for use in concrete, mortar and grout | Chemical & physical property limits, quality control and conformity criteria for GGBFS used directly in concrete (i.e., Type II addition). EN 15167-1 sets reactivity/activity test requirements and acceptance classes. | Product standard—SCM used directly in concrete (Type II addition) | [71] |
| EN 13263-1 (BS EN 13263-1) | Europe | Silica fume for concrete (by-product of silicon/ferrosilicon production) | Defines chemical/physical requirements for silica fume used as a Type II addition: typical SiO2 ≥ 85% and high specific surface (EN gives ranges/requirements; conformity/test methods included). | Product standard SCM used directly in concrete (Type II addition) | [69] |
| EN 197-1 | Europe | Common cement composition & conformity criteria (lists allowed constituents, e.g., fly ash, GGBFS, natural pozzolans) | Specifies cement types (CEM I, CEM II, CEM III, …) and permissible constituents and proportions (i.e., cements containing SCMs). EN 197-1 governs cements (their composition & conformity), not the direct-use product requirements for raw SCMs in concrete is in EN 450-1 [70]/EN 15167-1 [71]/EN 13263-1 etc [69]. | Cement standard (composition & conformity for cement that include SCMs as constituents) | [67] |
| EN 206 (supporting standard) | Europe | Concrete standard—defines additions/Type I (inert) & Type II (pozzolanic/latent hydraulic) | EN 206 specifies how Type II additions are treated in concrete (and references EN 450-1 [70], EN 13263 [69] etc. for product requirements). It is useful to cite when discussing how SCM product standards relate to concrete practice. | Concrete standard (links product standards to concrete use) | [72] |
| IS 3812 | India | Pulverised fuel ash (fly ash) used in cement, mortar & concrete | Specifies chemical and physical requirements, pozzolanic activity, particle size, LOI limits and testing procedures for fly ash used as pozzolana or for partial cement replacement in concrete/cement manufacture. | National product standard SCM used in cement & concrete | [73] |
| BS 8615 | UK/UK adoption | Natural pozzolans (natural pozzolana & calcined natural pozzolana) | Provides production, chemical composition, reactivity/durability and conformity requirements for natural pozzolans to be used with Portland cement (references EN-197-1) [67]. Useful for RHA/pozzolanic agricultural ashes in UK context. | National/product standard SCMs (natural/calcined pozzolanas) | [74] |
| NBR 12653 | Brazil | Pozzolans (e.g., rice husk ash, metakaolin)—classification & test limits | Brazilian ABNT standard that gives pozzolanic index limits, LOI/moisture limits and grinding/fineness guidance for agricultural/other pozzolans intended for cement replacement; widely referenced in RHA/regional SCM studies. | National product standard—SCMs/pozzolans | State-of-the-art reviews on RHA and pozzolans reference NBR-12653 when reporting Brazilian limits and test methods [75]. |
| S/N | Waste Material | Pozzolanic/Hydraulic Reactivity | SiO2/Al2O3/CaO Content | Fineness | Cement Compatibility | Availability & Consistency | Environmental Benefit | Standards Compliance | Total/70 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Fly Ash (FA) | 9 | 9 | 8 | 9 | 10 | 10 | 9 | 64 |
| 2 | GGBFS | 9 | 9 | 7 | 9 | 9 | 9 | 9 | 61 |
| 3 | Silica Fume (SF) | 10 | 10 | 10 | 8 | 6 | 8 | 8 | 60 |
| 4 | Red Mud | 5 | 6 | 6 | 5 | 9 | 7 | 3 | 41 |
| 5 | Rice Husk Ash (RHA) | 8 | 9 | 6 | 8 | 8 | 9 | 7 | 54 |
| 6 | Palm Oil Fuel Ash (POFA) | 7 | 8 | 7 | 7 | 7 | 6 | 6 | 48 |
| 7 | Bottom Ash (BA) | 5 | 6 | 5 | 6 | 8 | 7 | 5 | 42 |
| 8 | Waste Glass Powder (WGP) | 7 | 8 | 7 | 3 | 7 | 8 | 5 | 45 |
| 9 | Marble Dust Waste (MDW) | 3 | 3 | 6 | 6 | 7 | 6 | 4 | 36 |
| 10 | FGDG | 6 | 7 | 6 | 7 | 7 | 7 | 6 | 46 |
| 11 | Ceramic Dust Waste (CDW) | 4 | 6 | 3 | 6 | 6 | 3 | 4 | 32 |
| 12 | Napier Grass Ash (NGA) | 6 | 7 | 7 | 6 | 3 | 8 | 4 | 41 |
| 13 | Biomass Ash | 6 | 7 | 6 | 6 | 6 | 8 | 5 | 44 |
| 14 | Calcined Clay | 9 | 9 | 8 | 9 | 8 | 8 | 9 | 60 |
| 15 | Aspiration Dust | 4 | 5 | 5 | 5 | 6 | 6 | 3 | 34 |
| 16 | Bagasse Ash | 7 | 8 | 6 | 7 | 6 | 9 | 6 | 49 |
| 17 | Boiler Slag | 5 | 6 | 3 | 6 | 7 | 7 | 4 | 39 |
| 18 | Egg Shells | 3 | 3 | 4 | 4 | 6 | 3 | 2 | 25 |
| 19 | Metakaolin (MK) | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 64 |
| 20 | Copper Slags | 6 | 7 | 6 | 6 | 3 | 7 | 5 | 40 |
| 21 | Other Non-Ferrous Slags | 5 | 6 | 5 | 5 | 6 | 6 | 4 | 37 |
| 22 | Lead/Zinc Slags | 4 | 5 | 4 | 4 | 5 | 5 | 3 | 30 |
| 23 | Blast Furnace Dust | 5 | 6 | 5 | 5 | 6 | 6 | 4 | 37 |
| 24 | Steel Slag | 7 | 8 | 7 | 7 | 8 | 8 | 6 | 51 |
| 25 | Geopolymer Binders | 9 | 9 | 8 | 9 | 7 | 9 | 7 | 58 |
| 26 | Oil-Based Mud | 3 | 4 | 4 | 3 | 5 | 5 | 2 | 26 |
| 27 | Kaolinitic Waste | 8 | 9 | 7 | 8 | 7 | 8 | 7 | 54 |
| SCM | Strength Contribution | Durability | LCA GWP (kg CO2-eq/Ton) | Availability | Main Limitation | Usage Case Study |
|---|---|---|---|---|---|---|
| Fly Ash | Abundant, good long-term strength, eco-friendly | High | 50–200 | Declining | Variable quality, slow early strength | Mass concrete, blended cements |
| GGBFS | High durability, consistent quality | Very High | 50–150 | Regional | Alkali activation needed | Marine and sulfate-resistant concrete |
| Silica Fume | High strength, low permeability | Very High | 90–200 | Limited | Workability, handling. Expensive, densification issues | High-performance/ultra-high-strength concrete |
| Calcined Clay | Abundant clay sources, good reactivity | High | 350–450 | Broad | Calcination, purity. Moderate strength gain, variability in kaolinite | Low-carbon cement blends (e.g., LC3) |
| Metakaolin | Very high reactivity, improves durability | High | 400–600 | Niche | Expensive, energy-intensive processing | Precast, white concrete, specialty applications |
| SCM | Durability Enhancement | Environmental Impact (CO2 Saving) | Economic Viability | Standards Compatibility | Global Availability | Long-Term Strength Gain | ASR Mitigation Potential | Carbon Avoidance Credit | Ease of Blending & Use | Resource Circularity Impact | References |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Fly Ash | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | [5,115,116,117,118,119,120,121,122,123,124] |
| GGBFS | 5 | 5 | 4 | 5 | 3 | 4 | 4 | 4 | 4 | 4 | [1,108,125,126,127,128,129] |
| Silica Fume | 5 | 4 | 2 | 5 | 2 | 5 | 5 | 3 | 3 | 2 | [10,49,130,131,132,133,134] |
| Calcined Clay | 4 | 4 | 5 | 3 | 4 | 3 | 2 | 3 | 3 | 4 | [16,39,135,136,137] |
| Metakaolin | 5 | 3 | 2 | 3 | 2 | 4 | 3 | 2 | 3 | 3 | [99,138,139,140,141,142,143,144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akintayo, B.D.; Babatunde, O.M.; Akintayo, D.C.; Olanrewaju, O.A. Transforming Industrial Waste into Low-Carbon Cement: A Multi-Criteria Assessment of Supplementary Cementitious Materials for Sustainable Concrete Design. Recycling 2025, 10, 211. https://doi.org/10.3390/recycling10060211
Akintayo BD, Babatunde OM, Akintayo DC, Olanrewaju OA. Transforming Industrial Waste into Low-Carbon Cement: A Multi-Criteria Assessment of Supplementary Cementitious Materials for Sustainable Concrete Design. Recycling. 2025; 10(6):211. https://doi.org/10.3390/recycling10060211
Chicago/Turabian StyleAkintayo, Busola Dorcas, Olubayo Moses Babatunde, Damilola Caleb Akintayo, and Oludolapo Akanni Olanrewaju. 2025. "Transforming Industrial Waste into Low-Carbon Cement: A Multi-Criteria Assessment of Supplementary Cementitious Materials for Sustainable Concrete Design" Recycling 10, no. 6: 211. https://doi.org/10.3390/recycling10060211
APA StyleAkintayo, B. D., Babatunde, O. M., Akintayo, D. C., & Olanrewaju, O. A. (2025). Transforming Industrial Waste into Low-Carbon Cement: A Multi-Criteria Assessment of Supplementary Cementitious Materials for Sustainable Concrete Design. Recycling, 10(6), 211. https://doi.org/10.3390/recycling10060211

