Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. KPIs of Current Batteries Based on Literature Reviews, Tear-Down Reports and Expert Interviews
KPI | Source | NMC-111 | NMC-532 | NMC-622 | NMC-811 | LFP | NCA |
---|---|---|---|---|---|---|---|
Gravimetric Energy Density Wh/kg | Literature | 140–170 [15] | 235–250 [19] | 280 [15] | 270 [22] | 175 [22] | 200–250 [28] |
193 [16] | 250 [17] | 260–290 [20] | 300 [15] | 90–140 [28] | 322 [29] | ||
170 [17] | 219–227 [13] | 260 [17] | 300 [23] | 160–180 [34] | 200–260 [30] | ||
174 [18] | 255–270 [13] | 244 [24] | 130–190 [29] | 236–260 [5] | |||
270–300 [19] | 168 [16] | 260–280 [17] | |||||
280 [17] | 185 [35] | 250–280 [44] | |||||
265–290 [44] | 150 [17] | ||||||
252 [13] | 166 [36] | ||||||
160–200 [44] | |||||||
165 [13] | |||||||
Experts | 150–190 | 170–220 | 200–280 | 240–340 | 190 | 240–340 | |
150–180 | 180–220 | 220–260 | 260–280 | 160–180 | 260–280 | ||
Model assumption | 180 | 220 | 260 | 280 | 185 | 280 | |
Volumetric Energy Density Wh/l | Literature | 230–410 [15] | 530–570 [19] | 650 [15] | 740 [22] | 380 [22] | 673–683 [26] |
567 [16] | 445–453 [13] | 680–800 [20] | 700 [15] | 457 [16] | 630–670 [45] | ||
490 [46] | 649–693 [13] | 680 [23] | 430 [35] | 700–850 [20] | |||
352 [18] | 660–700 [19] | 395 [46] | 866 [46] | ||||
737 [46] | 448 [36] | 550 [44] | |||||
735 [44] | 449 [38] | ||||||
532 [13] | 390 [44] | ||||||
362 [13] | |||||||
Experts | 300–450 | - | - | 550–740 | - | - | |
350–400 | 450–500 | 550–650 | 650–700 | 320–360 | 700–750 | ||
Model assumption | 400 | 500 | 650 | 700 | 430 | 750 | |
Lifecycles | Literature | 1750 [19] | 1250 [23] | 3500 [22] | 1000–1500 [28] | ||
1750 [19] | 2000 [28] | 1000 [17] | |||||
1500 [44] | 4000 [38] | 1000 [44] | |||||
Experts | 1800 | 1500 | 1500 | 1200 | 3500 | 800–1600 | |
1000 | 1000 | 1000 | 1000 | 3000 | 800–1000 | ||
Model assumption | 1500 | 1200 | 1200 | 1000 | 3500 | 1000 | |
Cost EUR/kWh | Literature | 75–85 [24] | 80–90 [24] | 90–100 [24] | 90 [22] | 65–75 [24] | |
108 [44] | 112 [44] | 90 [47] | |||||
102 [44] | |||||||
Experts | 145 | 130 | 100 | 90 | 70–110 | 80–130 | |
117–135 | 108–126 | 90–108 | 81–90 | 54–81 | 72–90 | ||
Model assumption | 145 | 130 | 100 | 90 | 80 | 90 |
2.2. KPIs of Future Batteries Based on Literature Reviews and Expert Interviews
KPI | Source | NMC2030 | LFP2030/ LMFP2030 | Solid State Battery | Sodium-Ion Battery | Lithium-Sulfur Battery |
---|---|---|---|---|---|---|
Gravimetric energy density Wh/kg | Literature | 300–350 [34] | 200–250 [34] | 300–450 [44] | 150 [44] | 400 [34] |
300–370 [20] | 210 [51] | 400 [63] | 150–160 [59] | 500 [44] | ||
325 [64] | 400 [65] | 160 [61] | 590 [16] | |||
343 [16] | 400–420 [64] | 160–200 [57] | ||||
350 [17] | 433 [16] | |||||
330 [66] | ||||||
Experts | 380 | 220 | 380 | 220 | 500 | |
300–360 | 350–500 | 160–200 | ||||
Model assumption | 350 | 220 | 400 | 200 | 500 | |
Volumetric energy density Wh/l | Literature | 750 [66] | 780 [65] | 190 [44] | 400 [34] | |
800–1000 [20] | 800 [44] | 350 [61] | 600 [44] | |||
1000 [34] | 800–1000 [34] | 931 [16] | ||||
1054 [16] | 900 [64] | |||||
1044 [46] | ||||||
Experts | 950 | 900 | - | |||
800–1000 | >1000 | 360–500 | ||||
Model assumption | 950 | 500 | 1000 | 350 | ||
Life Cycles | Literature | 1500 [66] | 2500 [65] | 1000 [60] | 100 [34] | |
800–1000 [64] | 1000 [59] | |||||
Experts | 1500 | 5000 | 300 | 2500 | 800 | |
– | 400–800 | 3500 | ||||
Model assumption | 1500 | 5000 | 500 | 3500 | ||
Cost EUR/kWh | Literature | 70–100 [34] | 60 [61] | 500 [34] | ||
95 [14] | 24–33 [58] | |||||
Experts | 70 | 50–75 | 120–180 | |||
70–90 | 50–70 | 61–82 | ||||
Model assumption | 70 | 60 | 150 | 50 |
2.3. Techno-Economic Model
Component | S-Segment | M-Segment | L-Segment | Source |
---|---|---|---|---|
Battery pack | Depending on used cell chemistry | Table 1 and Table 2 | ||
Charger | 381 EUR | [77] | ||
Electric motor | PSM: 6.31 EUR/kW | |||
ASM: 5.14 EUR/kW | [73] | |||
SSM: 5.32 EUR/kW | ||||
Power electronics | 323 EUR | 760 EUR | 1235 EUR | [77] |
Rest of Vehicle | 7506 EUR | 13,687 EUR | 26,115 EUR | [77] |
Contribution margin | 20% | 20% | 20% | [77] |
OEM Margin | 5% | 10% | 15% | [77] |
Dealer Margin | 15% | 15% | 15% | [77] |
3. Results
3.1. Model Validation
3.2. Comparison of Current Cell Chemistries
3.3. Comparison of Future Cell Chemistries
4. Discussion
4.1. Model Outputs
4.2. Expert Estimates and Strategies of Automotive Manufacturers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
BEV | Battery Electric Vehicle |
CtP | Cell-to-Pack |
ICEV | Internal Combustion Engine Vehicle |
KPI | Key Performance Indicator |
LFP | Lithium Iron Phosphate |
LIB | Lithium Ion Battery |
LMFP | Lithium Manganese Iron Phosphate |
LMO | Lithium Manganese Oxide |
MRL | Market Readiness Level |
NCA | Lithium Nickel Cobalt Aluminium Oxide |
NMC | Lithium Nickel Manganese Cobalt Oxide |
OEM | Original Equipment Manufacturer |
SIB | Sodium-Ion Battery |
TRL | Technology Readiness Level |
WLTP | Worldwide Harmonized Light Vehicles Test Procedure |
Appendix A
Appendix B
Appendix B.1
Appendix B.2
References
- Hagedorn, M.; Hartmann, S.; Heilert, D.; Harter, C.; Olschewski, I.; Eckstein, L.; Baum, M.; Henzelman, J. Automobile Wertschöpfung 2030/2050; Bundesministeriums für Wirtschaft und Energie-Endbericht: Frankfurt, Germany, 2019.
- Tschöke, H.; Gutzmer, P.; Pfund, T. Elektrifizierung des Antriebsstrangs; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit. Das System der CO2-Flottengrenzwerte für PKW und Leichte Nutzfahrzeuge. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Luft/zusammenfassung_co2_flottengrenzwerte.pdf (accessed on 31 March 2022).
- Aral Aktiengesellschaft. Aral Studie. Trends beim Autokauf 2021; Aral Aktiengesellschaft: Bochum, Germany, 2021. [Google Scholar]
- Vekić, N. Lithium-Ionen-Batterie für die Elektromobilität: Status, Zukunftsperspektiven, Recycling; ThinkTank Industrial: Birmingham, UK, 2020. [Google Scholar]
- Volkswagen. Power Day: Volkswagen präsentiert Technology-Roadmap für Batterie und Laden bis 2030; Volkswagen: Wolfsburg, Germany, 2021. [Google Scholar]
- Mercedes-Benz Group AG. Mercedes-Benz Strategy: Update: Electric Drive; Mercedes-Benz: Stuttgart, Germany, 2021. [Google Scholar]
- Werwitzke, C. Toyota Skizziert Batterie-Roadmap bis 2030. Available online: https://www.electrive.net/2021/09/08/toyota-skizziert-batterie-roadmap-bis-2030/ (accessed on 24 March 2022).
- Köllner, C. Was ist Die Cell-to-Pack-Technologie? Available online: https://www.springerprofessional.de/batterie/automobilproduktion/was-ist-die-cell-to-pack-technologie-/23684340 (accessed on 22 March 2023).
- Korthauer, R. Handbuch Lithium-Ionen-Batterien, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sebastian Schaal. Daimler plant mit LFP-Zellen ab 2024. Available online: https://www.electrive.net/2021/10/28/daimler-plant-mit-lfp-zellen-ab-2024/ (accessed on 22 March 2023).
- Mercedes-Benz Group AG. Der neue EQS: Die Traktionsbatterie (1). Available online: https://group-media.mercedes-benz.com/marsMediaSite/de/instance/ko/Der-neue-EQS-die-Traktionsbatterie1.xhtml?oid=49582033 (accessed on 21 March 2022).
- A2MAC1. Automotive Benchmarking: xEV Powertrain: Battery Cell Analysis; A2MAC1: Boulogne-Billancourt, France, 2023. [Google Scholar]
- IHS Markit. Battery Cost Trends in the European Union and Mainland China. WHITEPAPER, 27 July 2021.
- Volkswagen, A.G. Leistungsstark und Skalierbar. Available online: https://www.volkswagen-newsroom.com/de/storys/leistungsstark-und-skalierbar-4244 (accessed on 19 March 2022).
- Yang, C. Running battery electric vehicles with extended range: Coupling cost and energy analysis. Appl. Energy 2022, 306, 118116. [Google Scholar] [CrossRef]
- Battery 2030 + Roadmap. Battery2030—Inventing the Sustanable Batteries of the Future: Research Needs and Future Actions; EU: Brussel, Luxembourg, 2020.
- Lima, P. Samsung SDI 94 Ah Battery Cell Full Specifications. Available online: https://pushevs.com/2018/04/05/samsung-sdi-94-ah-battery-cell-full-specifications/ (accessed on 4 April 2022).
- Lima, P. CATL Archieves 304 Wh/kg in New Battery Cells. Available online: https://pushevs.com/2019/03/30/catl-achieves-304-wh-kg-in-new-battery-cells/ (accessed on 2 April 2022).
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- BMW i-Future Electric Cars ans SUVs. Available online: https://www.just-auto.com/features/bmw-i-future-electric-cars-and-suvs/ (accessed on 11 March 2022).
- Karch, M. Advantages and disadvantages of different battery cell chemistries. Real life Scenarios, Presentation, Lead Battery Technology. E-Force One AG, 8 December 2021. [Google Scholar]
- Butcher, L. ShoreDot Exceeds 1000 Cycles with Silicon-Anode Li-Ion Batterie. Available online: https://www.enginetechnologyinternational.com/news/electric-powertrain-technologies/storedot-exceeds-1000-cycles-with-silicon-anode-li-ion-batteries.html#prettyPhoto (accessed on 2 April 2022).
- McKinsey & Company. Building Better Batteries: Insights on Chemistry and Design from China. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/building-better-batteries-insights-on-chemistry-and-design-from-china (accessed on 2 April 2022).
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Nam, G.W.; Park, N.Y.; Park, K.J.; Yang, J.; Liu, J.; Yoon, C.S.; Sun, Y.K. Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Lett. 2019, 4, 2995–3001. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Huang, J. Ein Vergleich von NMC / NCA Lithium-Ionen-Akku und LFP-Batterie. Available online: https://poworks.com/de/ein-vergleich-von-nmc-nca-lithium-ionen-akku-und-lfp-batterie (accessed on 2 April 2022).
- Wissenschaftliche Dienste—Deutscher Bundestag. Energiespeicher der Elektromobilität: Entwicklung der Energiedichten; Deutscher Bundestag: Bonn, Germany, 2020.
- Thielmann, A.; Sauer, A.; Wietschel, M. Gesamt-Roadmap Energiespeicher für die Elektromobilität; Fraunhofer: Munich, Germany, 2015. [Google Scholar]
- Purwanto, A.; Yudha, C.S.; Ubaidillah, U.; Widiyandari, H.; Ogi, T.; Haerudin, H. NCA cathode material: Synthesis methods and performance enhancement efforts. Mater. Res. Express 2018, 5, 122001. [Google Scholar] [CrossRef]
- Mielke, W. Modellierung von Kennlinien, Impedanzspektren und Thermischem Verhalten einer Lithium-Eisenphosphat-Batterie; Universität Stuttgart: Stuttgart, Germany, 2011. [Google Scholar]
- Thielmann, A.; Neef, C.; Hettesheimer, T.; Döscher, H.; Wietschel, M.; Tübke, J. Energiespeicher-Roadmap (Update 2017): Hiochenergie-Batterien 2030+ und Perspektiven Zukünftiger Batterietechnologien; Fraunhofer: Munich, Germany, 2017. [Google Scholar]
- Svolt Energy Technology (Europe) GmbH. 2. Battery day: Svolt kündigt Produktions-Kapazitäten von 600 GWh bis 2025 an. Available online: https://svolt-eu.com/2-battery-day-svolt-kuendigt-produktions-kapazitaeten-von-600-gwh-bis-2025-an/ (accessed on 3 March 2022).
- Lima, P. This Is Why BYD Blade Battery Is Ahead of Competition. Available online: https://pushevs.com/2021/08/10/this-is-why-byd-blade-battery-is-ahead-of-competition/ (accessed on 4 April 2022).
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Lima, P. The comeback of LFP Batteries. Available online: https://pushevs.com/2019/08/16/the-comeback-of-lfp-batteries/ (accessed on 5 April 2022).
- Battery University. BU-216: Summary Table of Lithium-Based Batteries. Available online: https://batteryuniversity.com/article/bu-216-summary-table-of-lithium-based-batteries (accessed on 11 March 2022).
- Cui, Y. Silicon anodes. Nat. Energy 2021, 6, 995–996. [Google Scholar] [CrossRef]
- PK Components GmbH. Lithium-Titanat-Batterien von Shengquan. Available online: https://www.pk-components.de/ressourcen/empfohlene-bauelemente/lithium-titanat-batterien-lto-batterien.html (accessed on 1 April 2022).
- Osiak, M.; Geaney, H.; Armstrong, E.; O’Dwyer, C. Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2014, 2, 9433. [Google Scholar] [CrossRef]
- Intertek. Solid-State Lithium Ion Batteries—The Challenges. Available online: https://www.intertek.com/blog/2019-05-21-lion/ (accessed on 5 May 2022).
- Volta Foundation. Annual Battery Report (2022); Volta Foundation: San Francisco, CA, USA, 2022. [Google Scholar]
- Schaal, S. Samsung erhöht Nickel-Anteil in NCA-Batterien. Available online: https://www.electrive.net/2021/06/11/samsung-erhoeht-nickel-anteil-in-nca-batterien/ (accessed on 3 April 2022).
- Rathi, A.; Murray, P.; Dottle, R. The Hidden Science Making Batteries Better, Cheaper and Everywhere. Available online: https://www.bloomberg.com/graphics/2021-inside-lithium-ion-batteries/?cmpid=BBD042721_hyperdrive&utm_medium=email&utm_source=newsletter&utm_term=210427&utm_campaign=hyperdrive (accessed on 4 April 2022).
- Stanek, R.; Gallus, D.; Konersmann, B.; Ferstl, F. Tesla Battery Day 2020—Technology Announcement Analysis; P3 Technology Report; P3 Automative: Stuttgart, Germany, 2020. [Google Scholar]
- NASA. Technology Readiness Level Definitions. appenB. Available online: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf (accessed on 26 March 2022).
- Automotive Coucil. Automotive-Technology and Manufactruring Readiness-Level. Available online: https://www.smmt.co.uk/wp-content/uploads/sites/2/Automotive-Technology-and-Manufacturing-Readiness-Levels.pdf (accessed on 26 March 2022).
- The National Academies of Sciences, Engineering, Medicine. Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy 2025–2035; National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Daniel Bleakley. Tesla Supplier CATL to Produce M3P Batteries That Will Deliver Big Boost in Range for EVs. Available online: https://thedriven.io/2023/03/27/tesla-supplier-catl-to-produce-m3p-batteries-that-will-deliver-big-boost-in-range-for-evs/ (accessed on 28 March 2023).
- Schaal, S. Mercedes und Stellantis Steigen bei Feststoffakkuentwickler Factorial Energy ein. Available online: https://www.electrive.net/2021/12/01/mercedes-und-stellantis-steigen-bei-feststoffakku-entwickler-factorial-energy-ein/ (accessed on 25 March 2022).
- Volkswagen. Volkswagen erhöht Anteil an QuantumScape; Volkswagen: Wolfsburg, Germany, 2020. [Google Scholar]
- BMW. Neue Zelltechnologie für Neue Klasse: BMW Group stärkt Batteriekompetenzen als Teil der Initiative European Battery Innovation; BMW: Munich, Germany, 2021. [Google Scholar]
- Battery University. BU-212: Future Batteries: Sodium-ion (Na-Ion). Available online: https://batteryuniversity.com/article/bu-212-future-batteries (accessed on 29 March 2022).
- Ma, J.; Li, Y.; Grundish, N.S.; Goodenough, J.B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L.; et al. The 2021 battery technology roadmap. J. Phys. D Appl. Phys. 2021, 54, 183001. [Google Scholar] [CrossRef]
- CATL. CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. Available online: https://www.catl.com/en/news/665.html (accessed on 29 March 2022).
- Wunderlich-Pfeiffer, F. CATL Stellt Erste Natrium-Ionen-Akkus Für Autos Vor. Available online: https://www.golem.de/news/akkutechnik-catl-stellt-erste-natrium-ionen-akkus-fuer-autos-vor-2107-158529.html (accessed on 29 March 2022).
- Wunderlich-Pfeiffer. Natrium-Ionen-Akkus Werden echte Lithium-Alternative. Available online: https://www.golem.de/news/akkutechnik-und-e-mobilitaet-natrium-ionen-akkus-werden-echte-lithium-alternative-2106-156863.html (accessed on 29 March 2022).
- Richert, F. New Sodium-Ion Battery Advance Could Challenge Lithium-Ion: Battery Development. Available online: https://www.power-and-beyond.com/new-sodium-ion-battery-advance-could-challenge-lithium-ion-a-941730/ (accessed on 29 March 2022).
- Hackmann, M. Current Technology Roadmap: LI-ION and next-Gen Technology Solutions for the Automotive Industry. Reuters, 13 October 2021. [Google Scholar]
- Deutsches Zentrum für Luft- und Raumfahrt, e.V. Technologiekalender—Strukturwandel Automobil Baden-Würtemberg: Technologiesteckbriefe. Available online: https://verkehrsforschung.dlr.de/public/documents/2020/Technologiesteckbriefe_TKBW_2020.pdf (accessed on 3 April 2022).
- Doppelbauer, M. Grundlagen der Elektromobilität; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2020: Entering the Decade of Electric Drive? International Energy Agency: Paris, France, 2020.
- Sion Power. Sion Power Demonstrates More Than 2500 Cycles in Licerion Rechargeble Battery Technology. Available online: https://sionpower.com/2022/sion-power-demonstrates-more-than-2500-cycles-in-licerion-rechargeable-battery-technology/ (accessed on 4 April 2022).
- Kost, J. Farasis hat Nächste Generation von EV Batteriezellen mit Energiedichte von Mehr als 330 Wh/kg Entwickelkt und Erfolgreich Validiert. Available online: https://www.presseportal.de/pm/131934/4874105 (accessed on 4 April 2022).
- ADAC. Renault Zoe R110 Z.E. 50 (52 kWh) Life (inkl. Batterie) (10/19–02/22). Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/renault/zoe/1generation-facelift/301605/#technische-daten (accessed on 24 April 2022).
- ADAC. VW ID.3 Pro S (77 kWh) (4-Sitzer) (ab 05/21). Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/vw/id3/1generation/320813/#technische-daten (accessed on 24 April 2022).
- Leichsenring, S. VW ID.3 enthüllt: Da ist sie, die Serienversion. Available online: https://de.motor1.com/news/369580/vw-id3-enthullt-serienversion/ (accessed on 24 April 2022).
- Leichsenring, S. Mercedes EQS: 245 Oder 385 kW—und eine Perfomance-Version. Available online: https://insideevs.de/news/499098/Mercedes-EQS--mehr-technische-Daten/ (accessed on 24 April 2022).
- Stegmaier, G. Alles über den Zukunfts-Antrieb. Available online: https://www.auto-motor-und-sport.de/tech-zukunft/cw-wert-rekorde-bei-elektroautos-reichweite-mercedes-eqs-vergleich-s-klasse/ (accessed on 24 April 2022.).
- Markus Grabitz. E-Auto EQXX besteht 1000-Kilometer-Test. Stuttgarter Zeitung, 14 April 2022.
- Stanek, R.; Kirchen, J.; Klein, A.; Rupp, M.; Flemming, J.; Steiner, L.; Knecht, T. Wertschöpfungspotenziale von E-Motoren für den Automobilbereich in Baden-Würtemberg: Themenpapier Cluster; Elektromobilität Süd-West: Stuttgart, Germany, 2021. [Google Scholar]
- Kurzweil, P.; Dietlmeier, O. Elektrochemische Speicher: Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Rahmenbedingungen, 2nd ed.; Aktualisierte und Erweiterte Auflage, Ed.; Lehrbuch, Springer Vieweg: Wiesbaden, Germany; Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Yang, X.G.; Liu, T.; Wang, C.Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 2021, 6, 176–185. [Google Scholar] [CrossRef]
- BloombergNEF. Hitting the EV Inflection Point: Electric Vehicle Price Parity and Phasing out Combustion Vehicle Sales in Europe; BloombergNEF: London, UK, 2021. [Google Scholar]
- Institute of Vehicle Concepts. VECTOR21: Scenario and Market Analysis Software for Simulating Future Vehicle Markets; Institute of Vehicle Concepts: Stuttgart, Germany, 2022. [Google Scholar]
- ADAC. Mercedes-Benz EQS 450+ (ab 10/21). Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/mercedes-benz/eqs/297/320198/#technische-daten (accessed on 6 May 2022).
- Schwarzer, C.M. Wie Die WLTP-Reichweite von Elektroautos Ermittelt Wird. Available online: https://www.electrive.net/2022/04/02/wie-die-wltp-reichweite-von-elektroautos-ermittelt-wird/ (accessed on 6 May 2022).
- Sebastian Schaal. “Power Day”: Volkswagen plant Einheits-Batteriezelle: Sechs Europa-Gigafabriken, 18.000 Schnellladepunkte und Bidirektionales Laden Sind Geplant. Available online: https://www.electrive.net/2021/03/15/power-day-volkswagen-plant-einheits-batteriezelle-ab-2023/ (accessed on 21 March 2022).
- Stefan Leichsenring. Mercedes EQA und EQB Bekommen ab 2024/2025 LFP-Batterien: Günstigere Akkus mit Weniger Energiedichte für die nächste Generation von EQA und EQB. Available online: https://insideevs.de/news/544605/mercedes-eqa-eqb-lfp-batterien/ (accessed on 21 March 2022).
- Stellantis. Stellantnis Presents Its Elektrification Strategy. Available online: https://www.stellantis.com/en/investors/events/ev-day-2021 (accessed on 25 March 2022).
- Schaal, S. Battery Day: Tesla Zeigt Neue 4680-Batteriezelle: Tesla könnte mit der Neuen Zelle die Grenzen von 50 USD/kWh Batteriesystemkosten Knacken. Available online: https://www.electrive.net/2020/09/23/battery-day-tesla-zeigt-neue-4680-batteriezelle/ (accessed on 22 March 2022).
- Leichsenring, S. “Ford+”: BEVs Sollen so Profitabel Werden wie Verbrenner: Dazu Sollen die Batteriekosten bis 2025 μm 40 Prozent auf 100 Dollar pro kWh Sinken. Available online: https://insideevs.de/news/509794/delivering-ford-elektrozukunft-batteriekosten-plattformen/ (accessed on 24 March 2022).
Variable | Symbol | Unit | Renault Zoe | Volkswagen ID.3 | Mercedes EQS | |||
---|---|---|---|---|---|---|---|---|
Vehicle power | P | kW | 80 | 150 | 300 | |||
Vehicle mass (w/o battery) | kg | 1251 | 1440 | 1798 | ||||
Battery weight (reference) | kg | 326 | 495 | 682 | ||||
Battery capacity (reference) | kWh | 55 | 82 | 114 | ||||
Battery volume | l | 325 | 369 | 546 | ||||
Frontal area | A | m2 | 2.27 | 2.36 | 2.51 | |||
Variable | Symbol | Unit | S-Segment | M-Segment | L-Segment | |||
2022 | 2030 | 2022 | 2030 | 2022 | 2030 | |||
Drag coefficient | - | 0.33 | 0.28 | 0.27 | 0.23 | 0.20 | 0.18 | |
Rolling resistance coefficient | - | 0.009 | 0.0077 | 0.009 | 0.0077 | 0.009 | 0.0077 | |
Efficiency of electric motor | - | 0.95 | 0.98 | 0.95 | 0.98 | 0.95 | 0.98 | |
Battery charging efficiency (AC) | - | 0.95 | 0.99 | 0.95 | 0.99 | 0.95 | 0.99 | |
Battery discharge efficiency | - | 0.95 | 0.99 | 0.95 | 0.99 | 0.95 | 0.99 | |
Efficiency Power electronics | - | 0.95 | 0.99 | 0.95 | 0.99 | 0.95 | 0.99 | |
Efficiency Transmission | - | 0.98 | 0.99 | 0.98 | 0.99 | 0.98 | 0.99 | |
Overall efficiency | - | 0.84 | 0.95 | 0.84 | 0.95 | 0.84 | 0.95 |
Property | Unit | Segment S (Renault Zoe) | Segment M (VW ID3) | Segment L (Mercedes EQS) |
---|---|---|---|---|
Cell chemistry | NMC-721 | NMC-721 | NMC-811 | |
Gross battery capacity | kWh | 55 | 82 | 114 |
Calculated consumption | kWh/100 km | 16.3 | 16.3 | 17.6 |
WLTP consumption | kWh/100 km | 17.2 | 15.7 | 16.1 |
Deviation | −5% | 4% | 9% | |
Calculated range | km | 336 | 497 | 644 |
WLTP range | km | 395 | 525 | 768 |
Deviation | −15% | −5% | −16% | |
Assumed cost of battery cell | EUR/kWh | 95 | 95 | 90 |
Calculated cost of battery | EUR | 7001 | 10,439 | 13,728 |
Calculated sales price vehicle | EUR | 27,969 | 48,923 | 83,376 |
List price vehicle | EUR | 31,990 | 42,460 | 107,326 |
Deviation | −13% | 15% | −22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasselwander, S.; Meyer, M.; Österle, I. Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market. Batteries 2023, 9, 379. https://doi.org/10.3390/batteries9070379
Hasselwander S, Meyer M, Österle I. Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market. Batteries. 2023; 9(7):379. https://doi.org/10.3390/batteries9070379
Chicago/Turabian StyleHasselwander, Samuel, Markus Meyer, and Ines Österle. 2023. "Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market" Batteries 9, no. 7: 379. https://doi.org/10.3390/batteries9070379
APA StyleHasselwander, S., Meyer, M., & Österle, I. (2023). Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market. Batteries, 9(7), 379. https://doi.org/10.3390/batteries9070379