A Short Review: Comparison of Zinc–Manganese Dioxide Batteries with Different pH Aqueous Electrolytes
Abstract
:1. Introduction
2. Alkaline Electrolyte Zn-MnO2 Batteries
3. Mild to Acidic Electrolyte Zn-MnO2 Batteries
4. Dual/Amphoteric Electrolyte Zn-MnO2 Batteries
5. Challenges and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, J.; Gourdin, G.; Qu, D. Modern Applications of Green Chemistry. In Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 771–860. [Google Scholar]
- Ziegler, M.S.; Mueller, J.M.; Pereira, G.D.; Song, J.; Ferrara, M.; Chiang, Y.-M.; Trancik, J.E. Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule 2019, 3, 2134–2153. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of Thermal Runaway in Lithium-Ion Cells. J. Electrochem. Soc. 2018, 165, A1303–A1308. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Tian, J.; Ma, X.; Wang, B.; Li, W.; Wang, Q. Adhesive Nanocomposites of Hypergravity Induced Co3O4 Nanoparticles and Natural Gels as Li-Ion Battery Anode Materials with High Capacitance and Low Resistance. RSC Adv. 2017, 7, 21061–21067. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.B.; Lambert, T.N.; Chalamala, B.R. Rechargeable Alkaline Zinc–Manganese Oxide Batteries for Grid Storage: Mechanisms, Challenges and Developments. Mater. Sci. Eng. R Rep. 2021, 143, 100593. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Choi, J.; Lee, S.; Kim, J.; Han, D.; Jang, H.; Park, M. Recent Progress in High-voltage Aqueous Zinc-based Hybrid Redox Flow Batteries. Chem. Asian J. 2023, 18, e202201052. [Google Scholar] [CrossRef]
- Seong, W.M.; Park, K.-Y.; Lee, M.H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal Self-Discharge in Lithium-Ion Batteries. Energy Environ. Sci. 2018, 11, 970–978. [Google Scholar] [CrossRef]
- Duh, Y.S.; Lin, K.H.; Kao, C.S. Experimental Investigation and Visualization on Thermal Runaway of Hard Prismatic Lithium-Ion Batteries Used in Smart Phones. J. Therm. Anal. Calorim. 2018, 132, 1677–1692. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Zaman, W.; Hatzell, K.B. Processing and Manufacturing of next Generation Lithium-Based All Solid-State Batteries. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101003. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; Hu, F.; Wang, Y.; Hu, X.; Li, H. Over-Heating Triggered Thermal Runaway Behavior for Lithium-Ion Battery with High Nickel Content in Positive Electrode. Energy 2021, 224, 120072. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Z.; Sun, T. Safety Challenges and Safety Measures of Li-Ion Batteries. Energy Sci. Eng. 2021, 9, 1647–1672. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, W.; Rasmussen, K.D.; Zhu, X.; Lundhaug, M.; Müller, D.B.; Tan, J.; Keiding, J.K.; Liu, L.; Dai, T.; et al. Battery Technology and Recycling Alone Will Not Save the Electric Mobility Transition from Future Cobalt Shortages. Nat. Commun. 2022, 13, 1341. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, Y.; Lin, Z.; Xie, P.; Lu, H.; Xu, J. A Novel Approach to Recovery of Lithium Element and Production of Holey Graphene Based on the Lithiated Graphite of Spent Lithium Ion Batteries. Chem. Eng. J. 2022, 436, 135011. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Liu, J.; Hao, Y.; Tang, Y.; Li, Y. The Impacts of Critical Metal Shortage on China’s Electric Vehicle Industry Development and Countermeasure Policies. Energy 2022, 248, 123646. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, W.; Li, X. Progress and Perspectives of Flow Battery Technologies. Electrochem. Energy Rev. 2019, 2, 492–506. [Google Scholar] [CrossRef]
- Luo, H.; Liu, B.; Yang, Z.; Wan, Y.; Zhong, C. The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. Electrochem. Energy Rev. 2022, 5, 187–210. [Google Scholar] [CrossRef]
- Yadav, G.G.; Wei, X.; Huang, J.; Turney, D.; Nyce, M.; Banerjee, S. Accessing the Second Electron Capacity of MnO2 by Exploring Complexation and Intercalation Reactions in Energy Dense Alkaline Batteries. Int. J. Hydrogen Energy 2018, 43, 8480–8487. [Google Scholar] [CrossRef] [Green Version]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Shin, J.; Seo, J.K.; Yaylian, R.; Huang, A.; Meng, Y.S. A Review on Mechanistic Understanding of MnO2 in Aqueous Electrolyte for Electrical Energy Storage Systems. Int. Mater. Rev. 2020, 65, 356–387. [Google Scholar] [CrossRef] [Green Version]
- Akinyele, D.; Belikov, J.; Levron, Y. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems. Energies 2017, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Xu, K.; Liu, N.; Reed, D.; Li, X. Crossroads in the Renaissance of Rechargeable Aqueous Zinc Batteries. Mater. Today 2021, 45, 191–212. [Google Scholar] [CrossRef]
- Takamura, T. PRIMARY BATTERIES—AQUEOUS SYSTEMS | Alkaline Manganese–Zinc. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 28–42. [Google Scholar]
- Owens, B.B.; Reale, P.; Scrosati, B. PRIMARY BATTERIES | Overview. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 22–27. [Google Scholar]
- D’Ambrose, M.J.; Turney, D.E.; Yadav, G.G.; Nyce, M.; Banerjee, S. Material Failure Mechanisms of Alkaline Zn Rechargeable Conversion Electrodes. ACS Appl. Energy Mater. 2021, 4, 3381–3392. [Google Scholar] [CrossRef]
- Yadav, G.G.; Gallaway, J.W.; Turney, D.E.; Nyce, M.; Huang, J.; Wei, X.; Banerjee, S. Regenerable Cu-Intercalated MnO2 Layered Cathode for Highly Cyclable Energy Dense Batteries. Nat. Commun. 2017, 8, 14424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yi, J.; Wu, K.; Jiang, Y.; Liu, Y.; Zhao, B.; Li, W.; Zhang, J. Rechargeable Zn–MnO2 Batteries: Advances, Challenges and Perspectives. Nanotechnology 2020, 31, 122001. [Google Scholar] [CrossRef] [PubMed]
- Faegh, E.; Omasta, T.; Hull, M.; Ferrin, S.; Shrestha, S.; Lechman, J.; Bolintineanu, D.; Zuraw, M.; Mustain, W.E. Understanding the Dynamics of Primary Zn-MnO2 Alkaline Battery Gassing with Operando Visualization and Pressure Cells. J. Electrochem. Soc. 2018, 165, A2528–A2535. [Google Scholar] [CrossRef]
- Perez-Antolin, D.; Sáez-Bernal, I.; Colina, A.; Ventosa, E. Float-Charging Protocol in Rechargeable Zn–MnO2 Batteries: Unraveling the Key Role of Mn2+ Additives in Preventing Spontaneous PH Changes. Electrochem. Commun. 2022, 138, 107271. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N.; et al. Decoupling Electrolytes towards Stable and High-Energy Rechargeable Aqueous Zinc–Manganese Dioxide Batteries. Nat. Energy 2020, 5, 440–449. [Google Scholar] [CrossRef]
- Bai, L.; Qu, D.Y.; Conway, B.E.; Zhou, Y.H.; Chowdhury, G.; Adams, W.A. Rechargeability of a Chemically Modified MnO2/Zn Battery System at Practically Favorable Power Levels. J. Electrochem. Soc. 1993, 140, 884–889. [Google Scholar] [CrossRef]
- Hertzberg, B.J.; Huang, A.; Hsieh, A.; Chamoun, M.; Davies, G.; Seo, J.K.; Zhong, Z.; Croft, M.; Erdonmez, C.; Meng, Y.S.; et al. Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn–MnO2 Alkaline Battery. Chem. Mater. 2016, 28, 4536–4545. [Google Scholar] [CrossRef]
- Ingale, N.D.; Gallaway, J.W.; Nyce, M.; Couzis, A.; Banerjee, S. Rechargeability and Economic Aspects of Alkaline Zinc-Manganese Dioxide Cells for Electrical Storage and Load Leveling. J. Power Sources 2015, 276, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Bruck, A.M.; Kim, M.A.; Ma, L.; Ehrlich, S.N.; Okasinski, J.S.; Gallaway, J.W. Bismuth Enables the Formation of Disordered Birnessite in Rechargeable Alkaline Batteries. J. Electrochem. Soc. 2020, 167, 110514. [Google Scholar] [CrossRef]
- Rus, E.D.; Moon, G.D.; Bai, J.; Steingart, D.A.; Erdonmez, C.K. Electrochemical Behavior of Electrolytic Manganese Dioxide in Aqueous KOH and LiOH Solutions: A Comparative Study. J. Electrochem. Soc. 2016, 163, A356–A363. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.; Duay, J.; Lambert, T.N.; Aidun, R. Impact of Triethanolamine as an Additive for Rechargeable Alkaline Zn/MnO2 Batteries under Limited Depth of Discharge Conditions. J. Electrochem. Soc. 2017, 164, A3684–A3691. [Google Scholar] [CrossRef]
- Minakshi, M.; Singh, P. Synergistic Effect of Additives on Electrochemical Properties of MnO2 Cathode in Aqueous Rechargeable Batteries. J. Solid State Electrochem. 2012, 16, 1487–1492. [Google Scholar] [CrossRef]
- Poosapati, A.; Vadnala, S.; Negrete, K.; Lan, Y.; Hutchison, J.; Zupan, M.; Madan, D. Rechargeable Zinc-Electrolytic Manganese Dioxide (EMD) Battery with a Flexible Chitosan-Alkaline Electrolyte. ACS Appl. Energy Mater. 2021, 4, 4248–4258. [Google Scholar] [CrossRef]
- Minakshi, M.; Ralph, D. A Novel Sodium-Ion Rechargeable Battery. ECS Trans. 2013, 45, 95–102. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, J.; Wang, R.; Li, Y.; Ren, Y. From Spent Zn–MnO2 Primary Batteries to Rechargeable Zn–MnO2 Batteries: A Novel Directly Recycling Route with High Battery Performance. J. Environ. Manag. 2021, 298, 113473. [Google Scholar] [CrossRef]
- Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.; Kim, J. The Dominant Role of Mn2+ Additive on the Electrochemical Reaction in ZnMn2O4 Cathode for Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2020, 28, 407–417. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Zhong, G.; Xu, K.; Wei, Z.; Su, W.; Lu, X. γ-MnO2 Nanorods/Graphene Composite as Efficient Cathode for Advanced Rechargeable Aqueous Zinc-Ion Battery. J. Energy Chem. 2020, 43, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Seo, S.-D.; Kim, D.-W. Comparative Study on Ternary Spinel Cathode Zn–Mn–O Microspheres for Aqueous Rechargeable Zinc-Ion Batteries. J. Alloy. Compd. 2019, 800, 478–482. [Google Scholar] [CrossRef]
- Xu, D.; Li, B.; Wei, C.; He, Y.-B.; Du, H.; Chu, X.; Qin, X.; Yang, Q.-H.; Kang, F. Preparation and Characterization of MnO2/Acid-Treated CNT Nanocomposites for Energy Storage with Zinc Ions. Electrochim. Acta 2014, 133, 254–261. [Google Scholar] [CrossRef]
- Han, K.; An, F.; Yan, F.; Chen, H.; Wan, Q.; Liu, Y.; Li, P.; Qu, X. High-Performance Aqueous Zn–MnO2 Batteries Enabled by the Coupling Engineering of K + Pre-Intercalation and Oxygen Defects. J. Mater. Chem. A Mater. 2021, 9, 15637–15647. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. An Electrolytic Zn–MnO2 Battery for High-Voltage and Scalable Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 7823–7828. [Google Scholar] [CrossRef]
- Kim, S.J.; Wu, D.; Housel, L.M.; Wu, L.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S.; Zhu, Y. Toward the Understanding of the Reaction Mechanism of Zn/MnO2 Batteries Using Non-Alkaline Aqueous Electrolytes. Chem. Mater. 2021, 33, 7283–7289. [Google Scholar] [CrossRef]
- Boytsova, O.V.; Shekunova, T.O.; Baranchikov, A.E. Nanocrystalline Manganese Dioxide Synthesis by Microwave-Hydrothermal Treatment. Russ. J. Inorg. Chem. 2015, 60, 546–551. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zheng, X.; Zhang, X.; Chao, D.; Qiao, S.; Alshareef, H.N.; Cui, Y.; Chen, W. Opportunities of Aqueous Manganese-Based Batteries with Deposition and Stripping Chemistry. Adv. Energy Mater. 2021, 11, 2002904. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Peng, Y.; Yang, W.; Barg, S.; Liu, Z.; Kinloch, I.A.; Bissett, M.A.; Dryfe, R.A.W. Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO2 Batteries: Implementation of Charging Process by Electrodeposition of MnO2. ChemSusChem 2020, 13, 4103–4110. [Google Scholar] [CrossRef]
- Mitha, A.; Mi, H.; Dong, W.; Cho, I.S.; Ly, J.; Yoo, S.; Bang, S.; Hoang, T.K.A.; Chen, P. Thixotropic Gel Electrolyte Containing Poly(Ethylene Glycol) with High Zinc Ion Concentration for the Secondary Aqueous Zn/LiMn2O4 Battery. J. Electroanal. Chem. 2019, 836, 1–6. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Qiu, C.; Zhu, X.; Xue, L.; Ni, M.; Zhao, Y.; Liu, B.; Xia, H. The Function of Mn2+ Additive in Aqueous Electrolyte for Zn/δ-MnO2 Battery. Electrochim. Acta 2020, 351, 136445. [Google Scholar] [CrossRef]
- Demir-Cakan, R.; Palacin, M.R.; Croguennec, L. Rechargeable Aqueous Electrolyte Batteries: From Univalent to Multivalent Cation Chemistry. J. Mater. Chem. A Mater. 2019, 7, 20519–20539. [Google Scholar] [CrossRef]
- Chao, D.; Ye, C.; Xie, F.; Zhou, W.; Zhang, Q.; Gu, Q.; Davey, K.; Gu, L.; Qiao, S. Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. Adv. Mater. 2020, 32, 2001894. [Google Scholar] [CrossRef]
- Dūrena, R.; Zukuls, A.; Vanags, M.; Šutka, A. How to Increase the Potential of Aqueous Zn-MnO2 Batteries: The Effect of PH Gradient Electrolyte. Electrochim. Acta 2022, 434, 141275. [Google Scholar] [CrossRef]
- Li, C.; Xie, X.; Liang, S.; Zhou, J. Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries. Energy Environ. Mater. 2020, 3, 146–159. [Google Scholar] [CrossRef]
- Ibrahim, M.A. Improving the Throwing Power of Acidic Zinc Sulfate Electroplating Baths. J. Chem. Technol. Biotechnol. 2000, 75, 745–755. [Google Scholar] [CrossRef]
- Li, J. Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nanomicro. Lett. 2022, 14, 112. [Google Scholar] [CrossRef]
- Zhang, G.-R.; Shen, L.-L.; Mei, D. Enhanced Electrocatalysis at Ionic Liquid Modified Solid–Liquid Interfaces. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Hasegawa, S.; Shimotani, K.; Kishi, K.; Watanabe, H. Electricity Generation from Decomposition of Hydrogen Peroxide. Electrochem. Solid-State Lett. 2005, 8, A119. [Google Scholar] [CrossRef]
- Cohen, J.L.; Volpe, D.J.; Westly, D.A.; Pechenik, A.; Abruña, H.D. A Dual Electrolyte H2/O2 Planar Membraneless Microchannel Fuel Cell System with Open Circuit Potentials in Excess of 1.4 V. Langmuir 2005, 21, 3544–3550. [Google Scholar] [CrossRef] [PubMed]
- Choban, E.R.; Spendelow, J.S.; Gancs, L.; Wieckowski, A.; Kenis, P.J.A. Membraneless Laminar Flow-Based Micro Fuel Cells Operating in Alkaline, Acidic, and Acidic/Alkaline Media. Electrochim. Acta 2005, 50, 5390–5398. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Z.; Qiao, J.; Chen, R.; Qiao, G.; Yang, J. Ultrahigh Voltage and Energy Density Aluminum-air Battery Based on Aqueous Alkaline-acid Hybrid Electrolyte. Int. J. Energy Res. 2020, 44, 10652–10661. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, W.; Luo, S.; Zhao, X.; Kwok, H.Y.H.; Xu, X.; Leung, D.Y.C. High-Performance Solid-State Metal-Air Batteries with an Innovative Dual-Gel Electrolyte. Int. J. Hydrog. Energy. 2022, 47, 15024–15034. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, R.; Liu, C.; Ma, M.C.; Wang, W.; Yang, G.; Leung, M.K.H.; Liu, F.; Feng, S.P. Trielectrolyte Aluminum-Air Cell with High Stability and Voltage beyond 2.2 V. Mater. Today Phys. 2020, 14, 100242. [Google Scholar] [CrossRef]
- Chen, B.; Leung, D.Y.C.; Xuan, J.; Wang, H. A Mixed-PH Dual-Electrolyte Microfluidic Aluminum–Air Cell with High Performance. Appl. Energy 2017, 185, 1303–1308. [Google Scholar] [CrossRef]
- Cai, P.; Li, Y.; Chen, J.; Jia, J.; Wang, G.; Wen, Z. An Asymmetric-Electrolyte Zn−Air Battery with Ultrahigh Power Density and Energy Density. ChemElectroChem 2018, 5, 589–592. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, T.; Dai, Y.; Wang, Y.; Guo, Z.; Zhai, S.; Yu, J.; Zhi, C.; Ni, M. All-in-One and Bipolar-Membrane-Free Acid-Alkaline Hydrogel Electrolytes for Flexible High-Voltage Zn-Air Batteries. Chem. Eng. J. 2022, 430, 132718. [Google Scholar] [CrossRef]
- Leong, K.W.; Wang, Y.; Pan, W.; Luo, S.; Zhao, X.; Leung, D.Y.C. Doubling the Power Output of a Mg-Air Battery with an Acid-Salt Dual-Electrolyte Configuration. J. Power Sources 2021, 506, 230144. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, P.; Chen, K.; Ding, Y.; Chen, L.; Chen, W.; Wen, Z. High-Voltage Rechargeable Alkali–Acid Zn–PbO2 Hybrid Battery. Angew. Chem. Int. Ed. 2020, 59, 23593–23597. [Google Scholar] [CrossRef]
- Gao, T.; Sun, Y.; Gong, L.; Ma, C.; Wang, J.; Su, L. 2.8 V Aqueous Lead Dioxide–Zinc Rechargeable Battery Using H2SO4–K2SO4–KOH Three Electrolytes. J. Electrochem. Soc. 2020, 167, 020552. [Google Scholar] [CrossRef]
- Wu, H.; Liu, S.-J.; Lian, K. Aqueous Based Dual-Electrolyte Rechargeable Pb–Zn Battery with a 2.8 V Operating Voltage. J. Energy Storage 2020, 29, 101305. [Google Scholar] [CrossRef]
- Yu, F.; Pang, L.; Wang, X.; Waclawik, E.R.; Wang, F.; Ostrikov, K.; Wang, H. Aqueous Alkaline–Acid Hybrid Electrolyte for Zinc-Bromine Battery with 3V Voltage Window. Energy Storage Mater. 2019, 19, 56–61. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Z.; Xia, Y.; Wang, Y. High-Voltage Aqueous Battery Approaching 3 V Using an Acidic–Alkaline Double Electrolyte. Chem. Commun. 2013, 49, 2204. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.G.; Turney, D.; Huang, J.; Wei, X.; Banerjee, S. Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO2–Zn Aqueous Batteries. ACS Energy Lett. 2019, 4, 2144–2146. [Google Scholar] [CrossRef]
- Liu, C.; Chi, X.; Han, Q.; Liu, Y. A High Energy Density Aqueous Battery Achieved by Dual Dissolution/Deposition Reactions Separated in Acid-Alkaline Electrolyte. Adv Energy Mater. 2020, 10, 1903589. [Google Scholar] [CrossRef]
- Fan, W.; Liu, F.; Liu, Y.; Wu, Z.; Wang, L.; Zhang, Y.; Huang, Q.; Fu, L.; Wu, Y. A High Voltage Aqueous Zinc–Manganese Battery Using a Hybrid Alkaline-Mild Electrolyte. Chem. Commun. 2020, 56, 2039–2042. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Tang, Z.; Li, C.; Luo, L.; Pu, J.; Wen, Z.; Liu, Y.; Ji, Y.; Xie, J.; Wang, L.; et al. Precise Proton Redistribution for Two-Electron Redox in Aqueous Zinc/Manganese Dioxide Batteries. Adv Energy Mater. 2021, 11, 2102055. [Google Scholar] [CrossRef]
- Samanta, P.; Ghosh, S.; Bolar, S.; Kolya, H.; Kang, C.-W.; Samanta, P.; Chandra Murmu, N.; Kuila, T. Acid–Alkaline Electrolyte for the Development of High-Energy Density Zn-Ion Batteries through Structural Modification of MoS2 by MnO2. ACS Appl. Energy Mater. 2022, 5, 8581–8591. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, Q.-X.; Xue, T.; Cheng, G.; Wu, J.-D.; Ning, L.; Yan, X.-H.; Lu, Y.-J.; Zou, Z.-L.; Wang, B.-P.; et al. Salt Bridge-Intermediated Three Phase Decoupling Electrolytes for High Voltage Electrolytic Aqueous Zinc-Manganese Dioxides Battery. Chem. Eng. J. 2023, 451, 138775. [Google Scholar] [CrossRef]
- Cui, Y.; Zhuang, Z.; Xie, Z.; Cao, R.; Hao, Q.; Zhang, N.; Liu, W.; Zhu, Y.; Huang, G. High-Energy and Long-Lived Zn–MnO2 Battery Enabled by a Hydrophobic-Ion-Conducting Membrane. ACS Nano 2022, 16, 20730–20738. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chi, X.; Yang, C.; Liu, Y. High-Voltage Aqueous Zinc Batteries Achieved by Tri-functional Metallic Bipolar Electrodes. Energy Environ. Mater. 2023, 6, e12300. [Google Scholar] [CrossRef]
Ref. | Year of Publishing | Anode Material | Cathode Material | Anolyte | Catholyte | Membrane | Potential | Cycling | Maximum Capacity | Capacity Retention | Stability |
---|---|---|---|---|---|---|---|---|---|---|---|
[78] | 2013 | Zn-plate | KMnO4 dissolved in catholyte (Ti mesh as a current collector) | 2 M KOH + 2 M LiOH | 1 M H2SO4 + KMnO4 | Li-ion exchange membrane (Li1+x+yAlxTi2−xSiyP3−yO12) | 2.8 V OCP | - | from 510 mAh/g (discharge current density of 37.5 mA/g) to 750 mAh/g (discharge current density of 375 mA/g) | - | ~110 h (with an intermittent supply of KMnO4) |
[79] | 2019 | Zn-foil | 85 wt% electrolytic manganese dioxide + 15 wt% multiwalled carbon nanotubes on carbon felt | ~45 wt% KOH solution in potassium polyacrylate | 1 M MnSO4 + 0.5 M H2SO4 mixed in ratio of 4:1 | Four-layers of cellophane | 2.45 OCP | 120 cycles (capacity 62 mAh/g) at C/2 | 308 mAh/g at C/2 | 100% | 35 h |
Zn-foil | 85 wt% electrolytic manganese dioxide + 15 wt% multiwalled carbon nanotubes on carbon felt | ~45 wt% KOH solution in potassium polyacrylate | 1 M MnSO4 + 0.5 M H2SO4 mixed in ratio of 1:3 | Four-layers of cellophane | 2.8 OCP | 35 cycles (capacity 62 mAh/g) at C/2 | 308 mAh/g at C/2 | 100% | 35 h | ||
[80] | 2020 | Zn-foil | potentiostatic electrodeposited MnO2 on carbon cloth | 2.4 M KOH + 0.1 M Zn(CH3COO) | 0.5 M H2SO4 + 1.0 M MnSO4 | bipolar membrane (Fumasep FBM) | 2.42 V at 2 mA/cm2 | 1500 cycles (capacity of 0.4 mAh/cm2) at the current density of 2 mA/cm2 | 0.4 mAh/cm2 at the current density of 2 mA/cm2 | ~90% | 200 h |
[58] | 2020 | Zn-foil | carbon-felt as a cathode-less current-collector | 3 M NaOH + 0.3 M ZnO | 3 M MnSO4 + 0.3 M H2SO4 + 0.06 M NiSO4 | Selective membrane (no more information provided) | 2.44 at 1 mA/cm (1C) | 450 cycles (capacity of 1.0 mAh/cm2) at 2C | 1.0 mAh/cm2 (or ~270 mAh/g) at 1C | 99.9% | 140 h |
[81] | 2020 | Zn-foil | MnO2 + acetylene black + PTFE (70:20:10) | 1 M NaOH + 0.01 M Zn(CH3CO2)2 | 2 M ZnSO4 + 0.1 M MnSO4 | Nafion 115 | 2.2 V | 90 cycles (capacity 282.2–428.6 mAh/g) at 200 mA/g | 300 mAh/g at (not specified) | ~100% | Not shown |
[82] | 2021 | Zn-foil | MnO2 powder coated on Ti foil | 2 M ZnSO4 + H2SO4 gelled in polyacrylamide | 2 M ZnSO4 (with adjusted pH = 7) gelled in polyacrylamide | Neutral layer: 2 M ZnSO4 gelled in sodium polyacrylate | 1.8 V at 5 A/g | 5000 cycles (capacity of 150 mAh/g) at 5 A/g | 516 mAh/g at 0.05 A/g | 93.18% | >6 months |
[59] | 2022 | Zn-foil | MnO2 + carbon black (13:5) on carbon felt | 1 M KOH Pluronic® F-127 hydrogel | 0.5 M H2SO4 Pluronic® F-127 hydrogel | - | 2.4 V OCP | 200 cycles (discharge for 120 s) at 1 mA/s | 25 mAh/g at 20 mA/g | - | >25 h |
[83] | 2022 | Zn-foil | MoS-MnO2 heterostructure + conductive carbon + PVDF (80:15:5) on carbon cloth | 1 M Zn(ClO4)2 + acetonitrile + water + H2SO4 | 1 M Zn(ClO4)2 + acetonitrile + water + KOH | PVA+PVP crosslinked membrane | 1.9 V (at the start of discharge at 0.2 A/g) | 5000 cycles (160 mAh/g) at 10 A/g | 464 mAh/g at 0.2 A/g | 74% | Not shown |
[84] | 2022 | Zn-foil | potentiostatic electrodeposited MnO2 from catholyte on carbon cloth | 0.3 M ZnO + 3 M NaOH | 3 M MnSO4 + 0.3 M H2SO4 | agar with Na2SO4 | 2.5 V at 0.1 C | 350 cycles (capacity ~550 mAh/g) at 1 C | 577.8 mAh/g at 1C | 94% | >350 h |
[85] | 2022 | Zn-foil | electrochemically deposited MnO2 on carbon paper | 0.5 M ZnSO4 + 1 M LiTFSI (bis(trifluoromethane)sulfonimide lithium salt) | 1 M MnSO4 + 1 M HTFSI (bis(trifluoromethanesulfonyl)imide) | dual-hydrophobic-induced membrane (consisting of polymer/ionic liquid/graphene mixture) | 2.05 V at 1 mA/cm | 2000 cycles (fixed area capacity of 1 mAh/cm2) at 1 mA/cm2 | 18 mAh/cm2 at 1 mA/cm2 | 98% | 2275 h |
[86] | 2023 | Zn-foil | carbon cloth | 2.4 M KOH + 0.1 M Zn(CH3COO)2 | 1.0 M H2SO4 + 0.3 M CuSO4 + 1.0 M MnSO4 | Cu foil | 1.84 V at 2.5 mA/cm2 | 3500 (capacity ~0.5 mAh/cm2) at 2.5 mA/cm2 | 0.5 mAh/cm2 at 2.5 mA/cm2 | ~125% (Coulombic efficiency after 3500 cycles) | >107 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durena, R.; Zukuls, A. A Short Review: Comparison of Zinc–Manganese Dioxide Batteries with Different pH Aqueous Electrolytes. Batteries 2023, 9, 311. https://doi.org/10.3390/batteries9060311
Durena R, Zukuls A. A Short Review: Comparison of Zinc–Manganese Dioxide Batteries with Different pH Aqueous Electrolytes. Batteries. 2023; 9(6):311. https://doi.org/10.3390/batteries9060311
Chicago/Turabian StyleDurena, Ramona, and Anzelms Zukuls. 2023. "A Short Review: Comparison of Zinc–Manganese Dioxide Batteries with Different pH Aqueous Electrolytes" Batteries 9, no. 6: 311. https://doi.org/10.3390/batteries9060311
APA StyleDurena, R., & Zukuls, A. (2023). A Short Review: Comparison of Zinc–Manganese Dioxide Batteries with Different pH Aqueous Electrolytes. Batteries, 9(6), 311. https://doi.org/10.3390/batteries9060311