Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway †
Abstract
:1. Introduction
2. Materials and Methods
2.1. LIB Samples and Thermal Runaway Test Box
2.2. LIB Thermal Runaway Triggering Method
2.3. Detection of LIBs Thermal Runaway Emissions
3. Results and Discussion
3.1. Determination of TRT Temperature
3.2. Analysis of Thermal Runaway Behaviors of LIBs
3.3. Characterization of Cathode Materials of LIB Thermal Runaway
3.4. Analysis of Thermal Runaway Gaseous Products of LIB
- 2-Propenal (CAS#107-02-8, C3H4O)
- 2.
- Methyl vinyl ketone (CAS#78-94-4, C4H6O)
- 3.
- Propanenitrile (CAS#107-12-0, C3H5N)
- 4.
- Propanedinitrile (CAS#109-77-3, C3H2N2)
- 5.
- Thiocyanic acid ethyl ester (CAS#542-90-5, C3H5NS)
- 6.
- 1,2-dimethyl-hydrazine (CAS#540-73-8, C2H8N2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guyomard, D.; Tarascon, J.M. Rocking-Chair or Lithium-Ion Rechargeable Lithium Batteries. Adv. Mater. 1994, 6, 408–412. [Google Scholar] [CrossRef]
- Yang, H.; Bang, H.; Amine, K.; Prakash, J. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem. Soc. 2005, 152, A73–A79. [Google Scholar] [CrossRef]
- Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy Convers. Manag. X 2022, 16, 100310. [Google Scholar] [CrossRef]
- Song, L.; Zheng, Y.; Xiao, Z.; Wang, C.; Long, T. Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles. J. Electron. Mater. 2022, 51, 30–46. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, X.; Wang, Z.; Cong, W. Review of Thermal Runaway and Safety Management for Lithium-ion Traction Batteries in Electric Vehicles. J. Mech. Eng. 2021, 56, 91–118. [Google Scholar]
- Lyu, P.; Liu, X.; Qu, J.; Zhao, J.; Huo, Y.; Qu, Z.; Rao, Z. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 2020, 31, 195–220. [Google Scholar] [CrossRef]
- The Ministry of Public Security of the People’s Republic of China. The Total Number of Motor Vehicles in China Reached 417 Million, with over 500 Million Drivers and 13.1 Million New Energy Vehicles, a Year-on-Year Increase of 67.13%. Available online: https://www.mps.gov.cn/n2254314/n6409334/c8837510/content.html (accessed on 11 January 2023).
- Zhou, Y.; Wang, Z.; Hong, J.; Qu, C.; Shan, T.; Zhang, J.; Hou, Y. Review of Overcharge-to-thermal Runaway and the Control Strategy for Lithium-ion Traction Batteries in Electric Vehicles. J. Mech. Eng. 2022, 58, 112–135. [Google Scholar]
- Jia, Z.; Wang, Z.; Wang, Q.; Li, X.; Sun, F. Research on Thermal Runaway Mechanism and Safety Risk Control Method of Power Battery in New-Energy Vehicles. Automot. Eng. 2022, 44, 1689–1705. [Google Scholar]
- Qi, Z.; Liu, W.; Qi, W.; Li, X.; Wang, P.; Fang, S. Analysis and Research Status of The Cause of Thermal Runaway of Lithium Battery. In Proceedings of the International Conference on Optoelectronic Materials and Devices (ICOMD 2021), Guangzhou, China, 10 December 2021; SPIE: Bellingham, WA, USA, 2022; Volume 12164. [Google Scholar]
- Shan, T.; Wang, Z.; Hong, J.; Qu, C.; Zhang, J.; Zhou, Y.; Hou, Y. Overview of “Mechanical Abuse-thermal Runaway” of Electric Vehicle Power Battery and Its Safety Prevention and Control Technology. J. Mech. Eng. 2022, 58, 252–275. [Google Scholar]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Dubois, E.R.; Kherbouchi, H.; Bosson, J. Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference. IEEE Trans. Electromagn. Compat. 2020, 62, 2096–2100. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Xu, X.; Zhu, L.; Tong, G. Effects of Local Thermal Accumulation Conditions on the Thermal Characteristics of Lithium-Ion Batteries under High-Rate Charging. J. Energy Eng. 2020, 146, 04020072. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Zhou, T.; Yang, K.; Wei, S.; Tang, N.; Dang, N.; Li, H.; Qiu, X.; Chen, L. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 2016, 27, 313–319. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, M.; Zhu, L.; Chen, H.; Huang, W.; Yao, J.; Yuan, Z.; Xu, C.; Feng, X. Study on Thermal Runaway Behavior of Li-Ion Batteries Using Different Abuse Methods. Batteries 2022, 8, 201. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Li, Z. Numerical modeling of thermal runaway in high-energy lithium-ion battery packs induced by multipoint heating. Case Stud. Therm. Eng. 2022, 38, 102335. [Google Scholar] [CrossRef]
- Shelkea, A.V.; Buston, J.E.; Gill, J.; Howard, D.; Williams, R.C.; Read, E.; Abaza, A.; Cooper, B.; Richards, P.; Wen, J.X. Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse. Int. J. Heat Mass Transf. 2022, 194, 123099. [Google Scholar] [CrossRef]
- Kwak, E.; Kim, J.; Hong, S.H.; Oh, K. Detailed modeling investigation of thermal runaway pathways of a lithium iron phosphate battery. Int. J. Energy Res. 2022, 46, 1146–1167. [Google Scholar] [CrossRef]
- Zhao, W.; Rohde, M.; Mohsin, I.U.; Ziebert, C.; Du, Y.; Seifert, H.J. Combined Thermal Runaway Investigation of Coin Cells with an Accelerating Rate Calorimeter and a Tian-Calvet Calorimeter. Batteries 2022, 8, 15. [Google Scholar] [CrossRef]
- Cheng, Q.; Lan, Q.; Zhao, J.; Liu, C.; Cao, Y. Research Progress of Causes and Countermeasures on Thermal Runaway of Lithium Ion Battery. J. Jianghan Univ. Nat. Sci. Ed. 2018, 46, 11–16. [Google Scholar]
- Huang, P. Research on the Fire Risk of Lithium Ion Battery and the Critical Condition of Thermal Runaway Behavior; University of Science and Technology of China: Hefei, China, 2018. [Google Scholar]
- Luo, Q. Experimental Study on Thermal Runaway Process of Lithium Ion Batteries under Charging and Discharging Conditions; Nanjing Tech University: Nanjing, China, 2015. [Google Scholar]
- Zhao, X. Heat Generation of Lithium Ion Battery during Cycling under Adiabatic Condition; University of Science and Technology of China: Hefei, China, 2014. [Google Scholar]
- Winter, M.; Appel, W.K.; Evers, B.; Hodal, T.; Möller, K.-C.; Schneider, I.; Wachtler, M.; Wagner, M.R.; Wrodnigg, G.H.; Besenhard, J.O. Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries. Mon. Chem. 2001, 132, 473–486. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.; Zhu, W.; Zhang, D.; Li, Z.; Wang, H.; Sun, H.; Wang, B.; Fan, L.-Z. A two-step strategy for constructing stable gel polymer electrolyte interfaces for long-life cycle lithium metal batteries. J. Mater. 2022, 8, 1048–1057. [Google Scholar] [CrossRef]
- Tanaka, N.; Bessler, W.G. Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells. Solid State Ion. 2014, 262, 70–73. [Google Scholar] [CrossRef]
- Jia, L.; Wang, D.; Yin, T.; Li, X.; Li, L.; Dai, Z.; Zheng, L. Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries. ACS Omega 2022, 7, 14562–14570. [Google Scholar] [CrossRef]
- Mei, W.; Duan, Q.; Wang, Q.; Li, Y.; Li, X.; Zhu, J.; Wang, Q. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures. Energy Storage Sci. Technol. 2021, 10, 202–209. [Google Scholar]
- Hu, Y.; Li, Y.; Lian, F.; Zhong, S.; Li, P. The study of the thermal runaway of Li-ion batteries. Chin. J. Power Sources 2006, 30, 833–836. [Google Scholar]
- Gang, M.B.; Kim, N.J. Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries. J. Korean Soc. Geotherm. Hydrothermal Energy 2021, 17, 1–10. [Google Scholar]
- Liu, Y.; Tian, Q.; Zhu, J. Reviewed on thermal stability of anode material for lithium-ion battery. New Chem. Mater. 2012, 40, 28–30. [Google Scholar]
- Wang, C.-J.; Zhu, Y.-L.; Gao, F.; Wang, K.-K.; Zhao, P.-L.; Meng, Q.-F.; Wu, Q.-B. Morphology, Structure, and Thermal Stability Analysis of Aged Lithium-Ion Battery Materials. J. Electrochem. Soc. 2020, 167, 140550. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Preger, Y.; Ivanov, S.; Langendorf, J.; Torres-Castro, L.; Lamb, J.; Chalamala, B.; Ferreira, S.R. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 2019, 435, 226777. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Bai, J.; Gao, T.; Mao, N. Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery. Appl. Therm. Eng. 2022, 212, 118565. [Google Scholar] [CrossRef]
- Abels, G.; Bardenhagen, I.; Schwenzel, J.; Langer, F. Thermal Stability of Polyethylene Oxide Electrolytes in Lithium Nickel Manganese Cobalt Oxide Based Composite Cathodes. J. Electrochem. Soc. 2022, 169, 020560. [Google Scholar] [CrossRef]
- Ma, Y. The Research of Lithium-Ion Battery Security; University of Electronic Science and Technology of China: Chengdu, China, 2013. [Google Scholar]
- Xie, H.; Sun, J.; Li, J.; Zhou, T.; Wei, S.; Yi, Z. Research of leaked toxics from Li-ion battery electrical heat triggering thermal runaway. Energy Storage Sci. Technol. 2019, 8, 1082–1088. [Google Scholar]
- Jin, C.; Sun, Y.; Wang, H.; Zheng, Y.; Wang, S.; Rui, X.; Xu, C.; Feng, X.; Wang, H.; Ouyang, M. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl. Energy 2022, 312, 118760. [Google Scholar] [CrossRef]
- Walker, W.Q.; Cooper, K.; Hughes, P.; Doemling, I.; Akhnoukh, M.; Taylor, S.; Darst, J.; Billman, J.; Sharp, M.; Petrushenko, D.; et al. The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries. J. Power Sources 2022, 524, 230645. [Google Scholar] [CrossRef]
- Vassighi, A.; Semenov, O.; Sachdev, M. Thermal Runaway Avoidance during Burn-in. In Proceedings of the 2004 IEEE International Reliability Physics Symposium Proceedings, Phoenix, AZ, USA, 25–29 April 2004; pp. 655–656. [Google Scholar]
- Chen, J.; Gao, F.; Li, X.; Yang, K.; Wang, S.; Yang, R. The Study of the Toxicity of the Gas Released on Lithium Ion Battery during Combustion. In Proceedings of the 2017 2nd International Conference on Automation, Mechanical and Electrical Engineering (AMEE 2017), Shenzhen, China, 17–18 September 2017; Volume 87, pp. 199–200. [Google Scholar]
- Bertilsson, S.; Larsson, F.; Furlani, M.; Albinsson, I.; Mellander, B.-E. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy. J. Power Sources 2017, 365, 446–455. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Zhou, T.; Wei, S.; Xie, H.; Tang, N.; Dang, S.; Yang, K.; Li, H.; Qiu, X.; et al. Composition and Toxicity detection standard method of lithium ion battery thermal runaway leakage. Energy Storage Sci. Technol. 2020, 9, 633–637. [Google Scholar]
- Feng, X.; Sun, J.; Ouyang, M.; Wang, F.; He, X.; Lu, L.; Peng, H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J. Power Sources 2015, 275, 261–273. [Google Scholar] [CrossRef]
- Lai, X.; Jin, C.; Yi, W.; Han, X.; Feng, X.; Zheng, Y.; Ouyang, M. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Mater. 2021, 35, 470–499. [Google Scholar] [CrossRef]
- Kim, J.; Mallarapu, A.; Finegan, D.P.; Santhanagopalan, S. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway. J. Power Sources 2021, 489, 229496. [Google Scholar] [CrossRef]
- T/CIAPS0018-2022; Composition Detection Method and Toxicity Classification of Traction Battery Thermal Runaway Leakage. China Industrial Association of Power Sources: Beijing, China, 2022.
- Yuan, B.; Zhang, Z.; Li, H.; Gao, Y.; Yang, C. A Review on Gas Production Mechanism and Detection Methods of Traction Battery. China Auto 2022, 12, 32–39. [Google Scholar]
- Jin, Y.; Zheng, Z.; Wei, D.; Jiang, X.; Lu, H.; Sun, L.; Tao, F.; Guo, D.; Liu, Y.; Gao, J.; et al. Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning. Joule 2020, 4, 1714–1729. [Google Scholar] [CrossRef]
- Khcheian, K.E.; Revenko, O.M.; Tikhonova, M.P. Synthesis of acrylonitrile from acetonitrile. Chem. Tech. 1972, 5, 260. [Google Scholar]
- Li, X.; Yang, S.; Qian, C.; Chen, X. Synthesis of Propionitrile by Acrylonitrile Hydrogenation over the Ni Catalyst in the Gas-solid Phase. Chem. React. Eng. Technol. 2017, 33, 15–20. [Google Scholar]
- Xu, Z. Development of Fine Catalytic Synthesis. Spec. Petrochem. 1986, 4, 31–41. [Google Scholar]
- Shi, E.; Gan, C.; Zhang, P.; Zhao, J.; Zhao, S. Research progress of nitrile-based compounds for lithium ion batteries. Power Sources 2020, 44, 281–284. [Google Scholar]
- You, X. Progress on Production Technology of Hydrazine Hydrate. Jiangsu Chem. Ind. 2001, 29, 22–25. [Google Scholar]
- Liu, C. Study on the Synthesis of Benzoyl Chloride by Hydrolysis Method. Shandong Chem. Ind. 2015, 44, 36–37. [Google Scholar]
- Li, C. Synthesis and carcinogenicity test of 1,2-dimethylhydrazine. Bull. Sci. Technol. 1986, 2, 40–42. [Google Scholar]
Battery Type | NMC | LCO | LFP |
---|---|---|---|
Capacity | 2200 mAh | 2600 mAh | 1300 mAh |
Operating Voltage | 3.70 V | 3.70 V | 3.20 V |
Cathode Materials | LixNi1/3Co1/3Mn1/3O2 | LiCoO2 | LiFePO4 |
Toxicity | Via Mouth/mg·kg−1 | Via Skin/mg·kg−1 | Inhalation/mg·m−3 |
---|---|---|---|
Very Toxic | (0, 25] | (0, 50] | (0, 200] |
Highly Toxic | (25, 200] | (50, 400] | (200, 500] |
Toxic | (200, 2000] | (400, 2000] | (500, 2500] |
Low Toxic | (2000, 20,000] | (2000, 20,000] | (2500, 20,000] |
Order | Name | Toxicity | 0% | 30% | 50% | 100% |
---|---|---|---|---|---|---|
1 | 2-Propenal | Very toxic | √ * | |||
2 | Methyl vinyl ketone | Very toxic | √ | |||
3 | 1,3-Cyclopentadiene | Highly toxic | √ | |||
4 | 1,3-Butadiene | Toxic | √ | |||
5 | 1,3-Pentadiene | Toxic | √ | |||
6 | 1-Undecanol | Toxic | √ | √ | √ | |
7 | 2-Butanone | Toxic | √ | √ | ||
8 | 2-Butene | Toxic | √ | √ | ||
9 | Benzene | Toxic | √ | √ | √ | |
10 | Benzene, 1,3-dimethyl- | Toxic | √ | |||
11 | Benzene, 2-propenyl- | Toxic | √ | √ | ||
12 | Butanal | Toxic | √ | √ | ||
13 | Cyclohexane | Toxic | √ | √ | √ | |
14 | Cyclohexanone | Toxic | √ | √ | √ | |
15 | Ethylbenzene | Toxic | √ | √ | ||
16 | Heptane | Toxic | √ | √ | ||
17 | Isooctanol | Toxic | √ | √ | √ | |
18 | o-Xylene | Toxic | √ | |||
19 | p-Xylene | Toxic | √ | |||
20 | Styrene | Toxic | √ | √ | √ | |
21 | Toluene | Toxic | √ | √ | √ | |
22 | α-Methylstyrene | Toxic | √ | √ |
Order | Name | Toxicity | 0% | 30% | 50% | 100% |
---|---|---|---|---|---|---|
1 | 2-Propenal | Very toxic | √ * | |||
2 | Methyl vinyl ketone | Very toxic | √ | |||
3 | Propanedinitrile | Very toxic | √ | |||
4 | Propanenitrile | Very toxic | √ | |||
5 | 1,3-Cyclopentadiene | Highly toxic | √ | √ | ||
6 | 2-Butenal | Highly toxic | √ | |||
7 | 2-Propen-1-ol | Highly toxic | √ | |||
8 | Furfural | Highly toxic | √ | |||
9 | Naphthalene | Highly toxic | √ | √ | ||
10 | Oxirane, ethyl- | Highly toxic | √ | |||
11 | α-Methylstyrene | Toxic | √ | √ | ||
12 | 1,3-Butadiene | Toxic | √ | √ | ||
13 | 1,3-Pentadiene | Toxic | √ | |||
14 | 1-Butanol | Toxic | √ | |||
15 | 1-Propene, 2-methyl- | Toxic | √ | √ | √ | |
16 | 1-Undecanol | Toxic | √ | √ | ||
17 | 2-Butanone | Toxic | √ | √ | ||
18 | 2-Butene | Toxic | √ | √ | ||
19 | Benzaldehyde | Toxic | √ | |||
20 | Benzene | Toxic | √ | √ | ||
21 | Benzene, 1,3-dimethyl- | Toxic | √ | √ | ||
22 | Benzene, 2-propenyl- | Toxic | √ | |||
23 | Butanal | Toxic | √ | √ | ||
24 | Cyclohexane | Toxic | √ | √ | ||
25 | Cyclohexanone | Toxic | √ | √ | ||
26 | Diisopropylamine | Toxic | √ | |||
27 | Ethylbenzene | Toxic | √ | √ | ||
28 | Heptane | Toxic | √ | √ | ||
29 | Indene | Toxic | √ | |||
30 | Isooctanol | Toxic | √ | √ | ||
31 | o-Xylene | Toxic | √ | √ | ||
32 | Propanal, 2-methyl- | Toxic | √ | |||
33 | p-Xylene | Toxic | √ | √ | ||
34 | Styrene | Toxic | √ | √ | ||
35 | Toluene | Toxic | √ | √ |
Order | Name | Toxicity | 0% | 30% | 50% | 100% |
---|---|---|---|---|---|---|
1 | Hydrazine, 1,2-dimethyl- | Very toxic | √ * | √ | ||
2 | Thiocyanic acid, ethyl ester | Very toxic | √ | |||
3 | 1-Butanamine | Highly toxic | √ | |||
4 | 2-Propenoic acid | Highly toxic | √ | |||
5 | Furfural | Highly toxic | √ | |||
6 | Hydrazine, 1,1-dimethyl- | Highly toxic | √ | |||
7 | Propylene oxide | Highly toxic | √ | |||
8 | 1,3-Dioxolane | Toxic | √ | |||
9 | 1,4-Dioxane | Toxic | √ | √ | ||
10 | 1-Propanol | Toxic | √ | |||
11 | 2-Butanol | Toxic | √ | |||
12 | 2-Butanone | Toxic | √ | |||
13 | Acetic acid | Toxic | √ | √ | ||
14 | Acetone | Toxic | √ | |||
15 | Benzene | Toxic | √ | √ | ||
16 | Benzene, 1,3-dimethyl- | Toxic | √ | |||
17 | Butanal | Toxic | √ | |||
18 | Cyclohexane | Toxic | √ | |||
19 | Cyclohexanone, 2-methyl- | Toxic | √ | |||
20 | Dimethyl sulfide | Toxic | √ | |||
21 | Ethanethiol | Toxic | √ | |||
22 | Ethene, methoxy- | Toxic | √ | |||
23 | Formamide, N,N-dimethyl- | Toxic | √ | |||
24 | Propanal | Toxic | √ | |||
25 | Propanal, 2-methyl- | Toxic | √ | |||
26 | p-Xylene | Toxic | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Sun, J.; Li, J.; Wei, S.; Chen, J.; Dang, S.; Tang, N.; Zhu, Y.; Lian, Y.; Guo, J.; et al. Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway. Batteries 2023, 9, 308. https://doi.org/10.3390/batteries9060308
Zhou T, Sun J, Li J, Wei S, Chen J, Dang S, Tang N, Zhu Y, Lian Y, Guo J, et al. Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway. Batteries. 2023; 9(6):308. https://doi.org/10.3390/batteries9060308
Chicago/Turabian StyleZhou, Tian, Jie Sun, Jigang Li, Shouping Wei, Jing Chen, Shengnan Dang, Na Tang, Yuefeng Zhu, Yukun Lian, Jun Guo, and et al. 2023. "Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway" Batteries 9, no. 6: 308. https://doi.org/10.3390/batteries9060308
APA StyleZhou, T., Sun, J., Li, J., Wei, S., Chen, J., Dang, S., Tang, N., Zhu, Y., Lian, Y., Guo, J., Zhang, F., Xie, H., Li, H., Qiu, X., & Chen, L. (2023). Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway. Batteries, 9(6), 308. https://doi.org/10.3390/batteries9060308