Electrochemical Behavior of Mixed Cu Powder and LiCl/Li13In3-Coated Li Powder Anodes in Lithium Metal Secondary Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Coating and Cell Fabrication
2.2. Characterization of Coating Materials and Electrodes
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Tikekar, M.D.; Choudhury, S.; Tu, Z.Y.; Archer, L.A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114. [Google Scholar] [CrossRef]
- Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Zhang, Q.Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 1, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 1, 19–29. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 1, 513–537. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 1, 2419–2430. [Google Scholar] [CrossRef]
- Luo, W.; Zhou, L.; Fu, K.; Yang, Z.; Wan, J.; Manno, M.; Yao, Y.; Zhu, H.; Yang, B.; Hu, L. A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Lett. 2015, 1, 6149–6154. [Google Scholar] [CrossRef]
- You, J.; Zhang, S.; Deng, L.; Li, M.; Zheng, X.; Li, J.; Zhou, Y.; Huang, L.; Sun, S. Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode. Electrochim. Acta 2019, 1, 636–644. [Google Scholar] [CrossRef]
- Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 2019, 1, 701–706. [Google Scholar] [CrossRef]
- Becking, J.; Grobmeyer, A.; Kolek, M.; Rodehorst, U.; Schulze, S.; Winter, M.; Bieker, P.; Stan, M.C. Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries. Adv. Mater. Interfaces 2017, 1, 7100166. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Fan, L.Z.; Nan, C.W.; Zhang, Q. Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries. Adv. Funct. Mater. 2019, 1, 1901047. [Google Scholar] [CrossRef]
- Yu, S.H.; Huang, X.; Brock, J.D.; Abruna, H.D. Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. J. Am. Chem. Soc. 2019, 1, 8441–8449. [Google Scholar] [CrossRef]
- Lopez, J.; Pei, A.; Oh, J.Y.; Wang, G.N.; Cui, Y.; Bao, Z. Effects of Polymer Coatings on Electrodeposited Lithium Metal. J. Am. Chem. Soc. 2018, 1, 11735–11744. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, X.B.; Xu, R.; Zhang, X.Q.; Yan, C.; Huang, J.Q.; Zhang, Q. Plating/Stripping Behavior of Actual Lithium Metal Anode. Adv. Energy Mater. 2019, 1, 1902254. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, L.; Shi, F.; Lei, T.; Chen, G.; Pei, A.; Sun, J.; Yan, K.; Zhou, G.; Xie, J.; et al. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. J. Am. Chem. Soc. 2017, 1, 11550–11558. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 1, 7436. [Google Scholar] [CrossRef]
- Lei, Q.; Zhang, Q.; Wu, X.; Wei, X.; Zhang, J.; Wang, K.; Chen, J. Towards ultra-stable lithium metal batteries: Interfacial ionic flux regulated through LiAl LDH-modified polypropylene separator. Chem. Eng. 2020, 395, 125187. [Google Scholar] [CrossRef]
- Ma, L.; Kim, M.; Archer, L.A. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chem. Mater. 2017, 1, 4181–4189. [Google Scholar] [CrossRef]
- Lu, Y.; Tu, Z.; Archer, L.A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 1, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wu, W.; Graff, G.L.; Zhang, J.; Sushko, M.L.; Chen, X.; Shao, Y.; Engelhard, M.H.; Nie, Z.; Xiao, J.; et al. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 1, 4450–4456. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.; Liang, Z.; Lee, H.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 1, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Lee, H.; Gao, T.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; Chu, S.; et al. Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. Nano. Lett. 2014, 1, 6016–6022. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano. Lett. 2017, 1, 3731–3737. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium. ACS. Cent. Sci. 2018, 1, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yin, Y.; Yang, C.; Guo, Y. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater. 2016, 1, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Kozen, A.C.; Lin, C.F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.B.; Rubloff, G.W.; Noked, M. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS. Nano. 2015, 1, 5884–5892. [Google Scholar] [CrossRef]
- Jia, W.; Wang, Q.; Yang, J.; Fan, C.; Wang, L.; Li, J. Pretreatment of Lithium Surface by Using Iodic Acid (HIO3) To Improve Its Anode Performance in Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 1, 7068–7074. [Google Scholar] [CrossRef]
- Song, J.; Lee, H.; Choo, M.J.; Park, J.K.; Kim, H.T. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Sci. Rep. 2015, 1, 14458. [Google Scholar] [CrossRef]
- Li, N.W.; Shi, Y.; Yin, Y.X.; Zeng, X.X.; Li, J.Y.; Li, C.J.; Wan, L.J.; Wen, R.; Guo, Y.G. Inside Cover: A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes (Angew. Chem. Int. Ed. 6/2018). Angew. Chem. Int. Ed. 2018, 1, 1422. [Google Scholar] [CrossRef]
- Belov, D.G.; Yarmolenko, O.V.; Peng, A.; Efimov, O.N. Lithium surface protection by polyacetylene in situ polymerization. Synth. Met. 2006, 1, 745–751. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Yuen, P.Y.; Liu, K.; Xie, J.; Dauskardt, R.H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Adv. Mater. 2017, 1, 1605531. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Jin, Y.; Hu, X.; Zheng, Q.; Zhang, S.; Wang, Q.; Zhu, J. Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes. Adv. Mater. 2017, 1, 1603755. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Wang, C.; Pei, A.; Lopez, J.; Shi, F.; Chen, Z.; Sendek, A.D.; Lee, H.W.; Lu, Z.; Schneider, H.; et al. High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Lett. 2016, 1, 1247–1255. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, Y.; Cui, Y. Lithium Metal Anode Materials Design: Interphase and Host. Electrochem. Energy Rev. 2019, 1, 509–517. [Google Scholar] [CrossRef]
- Liang, X.; Pang, Q.; Kochetkov, I.R.; Sempere, M.S.; Huang, H.; Sun, X.; Nazar, L.F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 1, 17119. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Liang, Z.; Lee, H.W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632. [Google Scholar] [CrossRef]
- Yang, C.P.; Yin, Y.X.; Zhang, S.F.; Li, N.W.; Guo, Y.G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 1, 8058. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.B.; Zhao, C.Z.; Peng, H.J.; Shi, J.L.; Huang, J.Q.; Wang, J.; Wei, F.; Zhang, Q. Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Adv. Mater. 2016, 1, 2155–2162. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Shen, X.; Zhang, X.; Chen, X.; Cheng, X.; Yan, C.; Zhao, C.; Zhang, Q. Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule 2018, 1, 764–777. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, G.; Seh, Z.; Liu, N.; Wang, S.; Sun, J.; Lee, H.; Cui, Y. Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries. Chem 2016, 1, 287–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2014, 1, 11503–11618. [Google Scholar] [CrossRef]
- Tang, W.; Yin, X.; Chen, Z.; Fu, W.; Loh, K.P.; Zheng, G.W. Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Mater. 2018, 1, 289–296. [Google Scholar] [CrossRef]
- Hwang, S.W.; Yom, J.H.; Cho, S.M.; Yoon, W.Y. Electrochemical Behavior of Li–Cu Composite Powder Electrodes in Lithium Metal Secondary Batteries. ACS Appl. Mater. Interfaces 2017, 1, 22530–22538. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; hoon Baek, S.; Yoon, W.Y. Electrochemical Behavior of Compacted Lithium Powder Electrode in Li / V2O5 Rechargeable Battery. J. Electrochem. Soc. 2010, 1, A984–A987. [Google Scholar] [CrossRef]
- Son, B.; Bae, K.; Lee, K.; Yoon, W. Erratum: Electrochemical Behaviors of Lithium Powder Anode in Lithium-Sulfur Battery [J. Electrochem. Soc., 167, 100549 (2020)]. J. Electrochem. Soc. 2020, 1, 119001. [Google Scholar] [CrossRef]
- Jin, D.; Oh, J.; Friesen, A.; Kim, K.; Jo, T.; Lee, Y.M.; Ryou, M.H. Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability. ACS Appl. Mater. Interfaces 2018, 1, 16521–16530. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Wen, Z.; Wu, M.; Shen, C.; Wang, Q.; Jin, J.; Wu, X. A lithium anode protection guided highly-stable lithium–sulfur battery†. Chem. Commun. 2014, 1, 14209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Kim, B.H.; Yoon, W.Y. Electrochemical Behavior of Mixed Cu Powder and LiCl/Li13In3-Coated Li Powder Anodes in Lithium Metal Secondary Batteries. Batteries 2023, 9, 299. https://doi.org/10.3390/batteries9060299
Choi S, Kim BH, Yoon WY. Electrochemical Behavior of Mixed Cu Powder and LiCl/Li13In3-Coated Li Powder Anodes in Lithium Metal Secondary Batteries. Batteries. 2023; 9(6):299. https://doi.org/10.3390/batteries9060299
Chicago/Turabian StyleChoi, Sanghyeon, Byung Hyuk Kim, and Woo Young Yoon. 2023. "Electrochemical Behavior of Mixed Cu Powder and LiCl/Li13In3-Coated Li Powder Anodes in Lithium Metal Secondary Batteries" Batteries 9, no. 6: 299. https://doi.org/10.3390/batteries9060299
APA StyleChoi, S., Kim, B. H., & Yoon, W. Y. (2023). Electrochemical Behavior of Mixed Cu Powder and LiCl/Li13In3-Coated Li Powder Anodes in Lithium Metal Secondary Batteries. Batteries, 9(6), 299. https://doi.org/10.3390/batteries9060299