A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling
Abstract
:1. Introduction
2. Research Background
3. Methods
- Disassembly Sequence and Strategies
- Manual Experimental Disassembly
- Automated Disassembly Conceptualization
- Automated Disassembly Implementation
4. Results
4.1. Publications Per Year and Category
4.2. Disassembly Sequence and Strategies
4.3. Manual Experimental Disassembly
4.4. Automated Disassembly Conceptualization
4.5. Automated Disassembly Implementation
5. Conclusions
- Recycling of LIBs has gained considerable attention, and numerous publications can be found in various databases. However, research focusing on the narrower aspect, i.e., disassembly, is less extensive than expected, although the number of relevant publications is continuously increasing.
- Planning disassembly sequences and determining the strategy occupies a significant position in the overall disassembly process, as a reasonable disassembly sequence can potentially reduce process times and costs, improving the overall efficiency. However, due to a wide variety of designs and layouts of LIBs from different manufacturers, it is impossible to find a universally applicable method for establishing a standard disassembly sequence or determining a universal strategy for all discarded LIBs. Therefore, a standardized or relatively uniform design and layout, as well as a similar choice of connection technologies for the LIBs, would greatly benefit the disassembly and recycling of the retired LIBs.
- Numerous parameters of interest in the disassembly of LIBs are repeatedly investigated in different categories. The major objective is to reduce the disassembly time and cost in a safe disassembly process. Optimal disassembly depth and novel material separation processes are equally desired. The identification of these interested parameters should be helpful to highlight the future research directions in the field of LIBs disassembly for recycling.
- Currently, most LIBs are manually disassembled, which can be challenging due to safety and efficiency concerns. Moreover, the capacity of manual disassembly cannot match the rapid growth of the number of LIBs consumed. The findings of the systematic literature review emphasize the importance of disassembling LIBs for recycling purposes. While significant research has been conducted on this topic from diverse perspectives, it is evident that further research is necessary, especially in automated disassembly and expanding the disassembly depth. Several gaps in the literature have been identified in this study, indicating potential areas for future research.
- Although many publications have already discussed concepts of automated disassembly, the implementation of such concepts is rather difficult and has not been widely explored. To ensure high efficiency and safe operation of automated disassembly process chains, it is imperative to develop novel concepts and conduct comprehensive investigations.
- Majority of the reviewed publications concentrate on disassembling LIBs at the pack and module levels, but they exhibit limited automated operations. Complete automated disassembly appears to be unfeasible. A partially automated disassembly workstation that incorporates robot–human collaboration has been demonstrated to be the most optimal option. Nevertheless, further research is required to investigate the degree of automation of the LIBs disassembly process.
- To date, no research has been found which explores the optimal depth of a disassembly process in correlation to parameters such as disassembly efficiency and the recycling rate. In the category Manual Experimental Disassembly, more than half of the researchers disassembled the cell, yet the disassembly process was not the main focus of their work, rather only a narrow scope of it. Only two publications specifically focused on systematic studies of the cell disassembly process. Thus, the research to extend the disassembly depth to individual components of the cells is insufficient and should be explored further.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A1. Summary of Full-Text Assessments within the Category Disassembly Sequence and Strategies
Reference | Research Highlights | |
Approach | Case Study and Main Conclusions | |
Wegener et. al. [41] | Planning approach based on priority matrix with disassembly graph. |
|
Ke et. al. [45] | Sequence planning method based on frame–subgroup structure. |
|
Gentilini et. al. [46] | Mathematical model to determine the disassembly sequence with the minimal hazardous voltages. |
|
Choux et. al. [47] | Autonomous task planner through computer vision system with YOLO algorithm |
|
Cerdas et al. [50] | Methodology for the estimation of disassembly sequences and automation potentials assessment |
|
Zhan et. al. [51] | Dual-objective disassembly sequence planning (DSP) optimization model |
|
Schwarz et al. [52] | Virtual disassembly tool based on the MTM-UAS method |
|
Baazouzi et. al. [53] | An adaptive disassembly planner with an integrated disassembly strategy optimizer |
|
Kong et. al. [54] | Parallel disassembly sequence planning using heuristic algorithms: NSGA-II, SPEA2, FPA, ABC, SAA. |
|
Gumanová et al. [55] | Disassembly sequences with disassembly graph derived from priority matrix. |
|
Cong et. al. [56] | Multi-objective mathematical model and hybrid genetic-firework algorithm based on the precedence graph. |
|
Alfaro-Algaba et. al. [57] | Model for disassembly process design of battery pack, based on the disassembly sequence planning (DSP). |
|
References
- China Energy Storage Alliance. Energy Storage Industry White Paper 2022 (Summary Version). Available online: https://en.cnesa.org/our-work (accessed on 26 March 2023).
- Mondal, A.; Das, H.T. Energy storage batteries: Basic feature and applications. Ceramic Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 323–351. ISBN 9780323899567. [Google Scholar]
- Gao, Y.; Pan, Z.; Sun, J.; Liu, Z.; Wang, J. High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Lett. 2022, 14, 94. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; Mineral Commodity Summaries No. 2023; U.S. Geological Survey: Reston, VA, USA, 2023. Available online: http://pubs.er.usgs.gov/publication/mcs2023 (accessed on 20 March 2023).
- Statista. Estimated Market Demand for Lithium-Ion Batteries Used in Electric Vehicles in 2019 with a Forecast for 2020 through 2030 (in Gigawatt Hours) [Graph]. 2021. Available online: https://www.statista.com/statistics/309570/lithium-ion-battery-market-in-electric-vehicles/ (accessed on 13 March 2023).
- Statista. Demand Growth Index of Selected Battery-Related Minerals Worldwide for Clean Energy Technologies in 2040 Relative to 2020, by Scenario. 2023. Available online: https://www.statista.com/statistics/1270191/demand-growth-index-of-battery-minerals-for-clean-energy-worldwide/?locale=en (accessed on 20 March 2023).
- Transport & Environment. From Dirty Oil to Clean Batteries—Batteries vs Oil: A Comparison of Raw Material Requirements. 2021. Available online: https://www.transportenvironment.org/discover/batteries-vs-oil-comparison-raw-material-needs/ (accessed on 21 March 2023).
- CSIRO. The Challenge—A Serious Waste Problem. 2023. Available online: https://www.csiro.au/en/research/technology-space/energy/energy-in-the-circular-economy/battery-recycling (accessed on 20 March 2023).
- Deutsche Umwelthilfe e.V. Neues Batteriegesetz floppt: Nicht mal die niedrige Sammelmenge von 50 Prozent wird erreicht. 2022. Available online: https://www.duh.de/presse/pressemitteilungen/pressemitteilung/neues-batteriegesetz-floppt-nicht-mal-die-niedrige-sammelmenge-von-50-prozent-wird-erreicht/ (accessed on 26 March 2023).
- Zhao, Y.; Ruether, T.; Bhatt, A.; Staines, J. Australian Landscape for Lithium Ion Battery Recycling and Reuse in 2020—Current Status, Gap Analysis and Industry Perspectives; CSIRO: Canberra, Australia; FBI CRC: Bentley, Australia, 2021. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Environment, Public Health and Food Safety. New EU Regulatory Framework for Batteries—Setting Sustainability Requirements. 2022. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689337 (accessed on 20 March 2023).
- Statista. Estimated Electric Vehicle Battery Cell Price Breakdown as of 2020, by Category. 2020. Available online: https://www.statista.com/statistics/1176656/electric-vehicle-battery-price-by-category/?locale=en (accessed on 20 March 2023).
- Gaines, L.; Dai, Q.; Vaughey, J.T.; Gillard, S. Direct Recycling R&D at the ReCell Center. Recycling 2021, 6, 31. [Google Scholar] [CrossRef]
- Steward, D.; Mayyas, A.; Mann, M. Economics and Challenges of Li-Ion Battery Recycling from End-of-Life Vehicles. Procedia Manuf. 2019, 33, 272–279. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Bloomberg. Battery Scrap Available for Recycling in Europe in 2021, with a Forecast until 2030 (in 1000 Metric Tons). 2022. Available online: https://www.statista.com/statistics/1333918/europe-battery-scrap-available-recycling/ (accessed on 21 March 2023).
- Statista. Size of The Global Market for Lithium-Ion Battery Recycling in 2019 with Forecasts for 2020 to 2027 (in Billion U.S. Dollars). 2021. Available online: https://www.statista.com/statistics/1103263/li-ion-battery-recycling-market-size/ (accessed on 21 March 2023).
- Islam, M.T.; Iyer-Raniga, U. Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling 2022, 7, 33. [Google Scholar] [CrossRef]
- Regatieri, H.R.; Ando Junior, O.H.; Salgado, J.R.C. Systematic Review of Lithium-Ion Battery Recycling Literature Using ProKnow-C and Methodi Ordinatio. Energies 2022, 15, 1485. [Google Scholar] [CrossRef]
- Xiao, J.; Jiang, C.; Wang, B. A Review on Dynamic Recycling of Electric Vehicle Battery: Disassembly and Echelon Utilization. Batteries 2023, 9, 57. [Google Scholar] [CrossRef]
- Lai, X.; Huang, Y.; Gu, H.; Deng, C.; Han, X.; Feng, X.; Zheng, Y. Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Mater. 2021, 40, 96–123. [Google Scholar] [CrossRef]
- Kampker, A.; Wessel, S.; Fiedler, F.; Maltoni, F. Battery pack remanufacturing process up to cell level with sorting and repurposing of battery cells. J. Remanufacturing 2021, 11, 1–23. [Google Scholar] [CrossRef]
- Tao, Y.; Rahn, C.D.; Archer, L.A.; You, F. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 2021, 7, eabi7633. [Google Scholar] [CrossRef]
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. [Google Scholar] [CrossRef]
- Jena, K.K.; AlFantazi, A.; Mayyas, A.T. Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy Fuels 2021, 35, 18257–18284. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of lithium recycling from waste lithium ion batteries: A review. Mater. Adv. 2021, 2, 3234–3250. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 2012, 207, 173–182. [Google Scholar] [CrossRef]
- Latini, D.; Vaccari, M.; Lagnoni, M.; Orefice, M.; Mathieux, F.; Huisman, J.; Tognotti, L.; Bertei, A. A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J. Power Sources 2022, 546, 231979. [Google Scholar] [CrossRef]
- Perea, A.; Paolella, A.; Dubé, J.; Champagne, D.; Mauger, A.; Zaghib, K. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. J. Power Sources 2018, 399, 392–397. [Google Scholar] [CrossRef]
- Wuschke, L.; Jäckel, H.-G.; Leißner, T.; Peuker, U.A. Crushing of large Li-ion battery cells. Waste Manag. 2019, 85, 317–326. [Google Scholar] [CrossRef]
- Sloop, S.; Crandon, L.; Allen, M.; Koetje, K.; Reed, L.; Gaines, L.; Sirisaksoontorn, W.; Lerner, M. A direct recycling case study from a lithium-ion battery recall. Sustain. Mater. Technol. 2020, 25, e00152. [Google Scholar] [CrossRef]
- Ji, Y.; Kpodzro, E.E.; Jafvert, C.T.; Zhao, F. Direct recycling technologies of cathode in spent lithium-ion batteries. CTR 2021, 1, 124–151. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, K.; Zhang, L. Sustainable Recycling of Electrode Materials in Spent Li-Ion Batteries through Direct Regeneration Processes. ACS EST Eng. 2022, 2, 586–605. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Li, J.; Essehli, R.; Belharouak, I. Sustainable Direct Recycling of Lithium-Ion Batteries via Solvent Recovery of Electrode Materials. ChemSusChem 2020, 13, 5664–5670. [Google Scholar] [CrossRef]
- Yu, X.; Li, W.; Gupta, V.; Gao, H.; Tran, D.; Sarwar, S.; Chen, Z. Current Challenges in Efficient Lithium-Ion Batteries’ Recycling: A Perspective. Glob. Chall. 2022, 6, 2200099. [Google Scholar] [CrossRef]
- Duan, X.; Zhu, W.; Ruan, Z.; Xie, M.; Chen, J.; Ren, X. Recycling of Lithium Batteries—A Review. Energies 2022, 15, 1611. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Wegener, K.; Andrew, S.; Raatz, A.; Dröder, K.; Herrmann, C. Disassembly of Electric Vehicle Batteries Using the Example of the Audi Q5 Hybrid System. Procedia CIRP 2014, 23, 155–160. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Tarvydas, D.; Tsiropoulos, I.; Lebedeva, N. Li-Ion Batteries for Mobility and Stationary Storage Applications: Scenarios for Costs and Market Growth; Publications Office of the European Unionn: Luxembourg, 2018; ISBN 978-92-79-97254-6. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2018—Towards Cross-Modal Electrification. 2018. Available online: https://www.iea.org/reports/global-ev-outlook-2018 (accessed on 21 March 2023).
- IEA. Global EV Outlook 2022—Securing Supplies for an Electric Future. 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022 (accessed on 21 March 2023).
- Ke, Q.; Zhang, P.; Zhang, L.; Song, S. Electric Vehicle Battery Disassembly Sequence Planning Based on Frame-Subgroup Structure Combined with Genetic Algorithm. Front. Mech. Eng. 2022, 6, 576642. [Google Scholar] [CrossRef]
- Gentilini, L.; Mossali, E.; Angius, A.; Colledani, M. A safety oriented decision support tool for the remanufacturing and recycling of post-use H&EVs Lithium-Ion batteries. Procedia CIRP 2020, 90, 73–78. [Google Scholar] [CrossRef]
- Choux, M.; Marti Bigorra, E.; Tyapin, I. Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack. Metals 2021, 11, 387. [Google Scholar] [CrossRef]
- Gaines, L. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 2014, 1–2, 2–7. [Google Scholar] [CrossRef]
- Norgren, A.; Carpenter, A.; Heath, G. Design for Recycling Principles Applicable to Selected Clean Energy Technologies: Crystalline-Silicon Photovoltaic Modules, Electric Vehicle Batteries, and Wind Turbine Blades. J. Sustain. Metall. 2020, 6, 761–774. [Google Scholar] [CrossRef]
- Cerdas, F.; Gerbers, R.; Andrew, S.; Schmitt, J.; Dietrich, F.; Thiede, S.; Dröder, K.; Herrmann, C. Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries. In Recycling of Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management; Kwade, A., Diekmann, J., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 83–97. ISBN 978-3-319-70572-9. [Google Scholar] [CrossRef]
- Zhan, C.; Zhang, X.; Tian, G.; Pham, D.T.; Ivanov, M.; Aleksandrov, A.; Fu, C.; Zhang, J.; Wu, Z. Environment-oriented disassembly planning for end-of-life vehicle batteries based on an improved northern goshawk optimisation algorithm. Environ. Sci. Pollut. Res. 2023, 30, 47956–47971. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.; Rübenbauer, W.; Rutrecht, B.; Pomberger, R. Forecasting Real Disassembly Time of Industrial Batteries Based on Virtual MTM-UAS Data. Procedia CIRP 2018, 69, 927–931. [Google Scholar] [CrossRef]
- Baazouzi, S.; Rist, F.P.; Weeber, M.; Birke, K.P. Optimization of Disassembly Strategies for Electric Vehicle Batteries. Batteries 2021, 7, 74. [Google Scholar] [CrossRef]
- Kong, S.; Zhang, Y.; Liu, W. Parallel Disassembly Sequence Planning of Retired Lithium-ion-battery Pack based on Heuristic Algorithm. J. Phys. Conf. Ser. 2022, 2254, 012010. [Google Scholar] [CrossRef]
- Gumanová, V.; Sobotová, L. Proposal for disassembly of electric vehicle batteries used in the volkswagen jetta hybrid system. In Proceedings of the ICTEP 2019 —International Council of Environmental Engineering Education—”Technologies of Environmental Protection”—Proceedings, Starý Smokovec, Slovakia, 23–25 October 2019. [Google Scholar] [CrossRef]
- Cong, L.; Zhou, K.; Liu, W.; Li, R. Retired Lithium-Ion Battery Pack Disassembly Line Balancing Based on Precedence Graph Using a Hybrid Genetic-Firework Algorithm for Remanufacturing. J. Manuf. Sci. Eng. Trans. Asme 2023, 145, 051007. [Google Scholar] [CrossRef]
- Alfaro-Algaba, M.; Ramirez, F.J. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recycl. 2020, 154, 104461. [Google Scholar] [CrossRef]
- Kay, I.; Farhad, S.; Mahajan, A.; Esmaeeli, R.; Hashemi, S.R. Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling. Energies 2022, 15, 4856. [Google Scholar] [CrossRef]
- Zorn, M.; Ionescu, C.; Klohs, D.; Zähl, K.; Kisseler, N.; Daldrup, A.; Hams, S.; Zheng, Y.; Offermanns, C.; Flamme, S.; et al. An Approach for Automated Disassembly of Lithium-Ion Battery Packs and High-Quality Recycling Using Computer Vision, Labeling, and Material Characterization. Recycling 2022, 7, 48. [Google Scholar] [CrossRef]
- Lander, L.; Tagnon, C.; Nguyen-Tien, V.; Kendrick, E.; Elliott, R.; Abbott, A.P.; Edge, J.S.; Offer, G.J. Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs. Appl. Energy 2023, 331, 120437. [Google Scholar] [CrossRef]
- Rosenberg, S.; Huster, S.; Baazouzi, S.; Glöser-Chahoud, S.; Al Assadi, A.; Schultmann, F. Field Study and Multimethod Analysis of an EV Battery System Disassembly. Energies 2022, 15, 5324. [Google Scholar] [CrossRef]
- Rallo, H.; Benveniste, G.; Gestoso, I.; Amante, B. Economic analysis of the disassembling activities to the reuse of electric vehicles Li-ion batteries. Resour. Conserv. Recycl. 2020, 159, 104785. [Google Scholar] [CrossRef]
- Rohr, S.; Wagner, S.; Baumann, M.; Muller, S.; Lienkamp, M. A techno-economic analysis of end of life value chains for lithium-ion batteries from electric vehicles. In Proceedings of the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 11–13 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–14, ISBN 978-1-5386-1692-5. [Google Scholar]
- Werner, D.M.; Mütze, T.; Peuker, U.A. Influence of Cell Opening Methods on Electrolyte Removal during Processing in Lithium-Ion Battery Recycling. Metals 2022, 12, 663. [Google Scholar] [CrossRef]
- Werner, D.M.; Mütze, T.; Peuker, U.A. Influence of cell opening methods on organic solvent removal during pretreatment in lithium-ion battery recycling. Waste Manag. Res. 2022, 40, 1015–1026. [Google Scholar] [CrossRef]
- Kim, H.-I.; Sohn, J.-S.; Kim, S.-K.; Yang, D.-H.; Byun, S.-H. Development of Technology for Recycling Large-Capacity Lithium-Ion Batteries for EV, ESS. In REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I); The Minerals, Metals & Materials Series; Lazou, A., Daehn, K., Fleuriault, C., Gökelma, M., Olivetti, E., Meskers, C., Eds.; Springer: Cham, Germany, 2022; pp. 173–180. ISBN 978-3-030-92563-5. [Google Scholar] [CrossRef]
- Santos, M.d.; Garde, I.A.A.; Ronchini, C.M.B.; Filho, L.C.; de Souza, G.B.M.; Abbade, M.L.F.; Regone, N.N.; Jegatheesan, V.; de Oliveira, J.A. A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib. Resour. Conserv. Recycl. 2021, 175, 105863. [Google Scholar] [CrossRef]
- Marshall, J.; Gastol, D.; Sommerville, R.; Middleton, B.; Goodship, V.; Kendrick, E. Disassembly of Li ion cells—Characterization and safety considerations of a recycling scheme. Metals 2020, 10, 773. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, H.; Bi, H.; He, P.; Gao, S. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Waste Manag. Res. 2021, 39, 607–619. [Google Scholar] [CrossRef]
- Bi, H.; Zhu, H.; Zu, L.; Gao, Y.; Gao, S.; Wu, Z. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries. Waste Manag. Res. 2019, 37, 1217–1228. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, Y.; Fan, M.; Li, T.; Wozny, J.; Zhou, Y.; Wang, X.; Chueh, Y.-L.; Liang, Z.; Zhou, G.; et al. Precise separation of spent lithium-ion cells in water without discharging for recycling. Energy Storage Mater. 2022, 45, 1092–1099. [Google Scholar] [CrossRef]
- Pražanová, A.; Míka, M.H.; Knap, V. Lithium-ion battery module-to-cell: Disassembly and material analysis. J. Phys. Conf. Ser. 2022, 2382, 012002. [Google Scholar] [CrossRef]
- Schmitt, J.; Haupt, H.; Kurrat, M.; Raatz, A. Disassembly automation for lithium-ion battery systems using a flexible gripper. In Proceedings of the IEEE 15th International Conference on Advanced Robotics: New Boundaries for Robotics, ICAR, Tallinn, Estonia, 20–23 June 2011; pp. 291–297. [Google Scholar] [CrossRef]
- Herrmann, C.; Raatz, A.; Mennenga, M.; Schmitt, J.; Andrew, S. Assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In Leveraging Technology for a Sustainable World.; Dornfeld, D., Linke, B., Eds.; Springer: Berlin, Heidelberg, 2012; pp. 149–154. ISBN 978-3-642-29069-5. [Google Scholar] [CrossRef]
- Herrmann, C.; Raatz, A.; Andrew, S.; Schmitt, J. Scenario-based development of disassembly systems for automotive lithium ion battery systems. Adv. Mater. Res. 2014, 907, 391–401. [Google Scholar] [CrossRef]
- Hellmuth, J.F.; DiFilippo, N.M.; Jouaneh, M.K. Assessment of the automation potential of electric vehicle battery disassembly. J. Manuf. Syst. 2021, 59, 398–412. [Google Scholar] [CrossRef]
- Wegener, K.; Chen, W.H.; Dietrich, F.; Dröder, K.; Kara, S. Robot Assisted Disassembly for the Recycling of Electric Vehicle Batteries. Procedia CIRP 2015, 29, 716–721. [Google Scholar] [CrossRef]
- Garg, A.; Zhou, L.; Zheng, J.; Gao, L. Qualitative framework based on intelligent robotics for safe and efficient disassembly of battery modules for recycling purposes. IOP Conf. Ser.: Earth Environ. Sci. 2020, 463, 12159. [Google Scholar] [CrossRef]
- Zhou, L.; Garg, A.; Zheng, J.; Gao, L.; Oh, K.-Y. Battery pack recycling challenges for the year 2030: Recommended solutions based on intelligent robotics for safe and efficient disassembly, residual energy detection, and secondary utilization. Energy Storage 2021, 3, e190. [Google Scholar] [CrossRef]
- Fleischer, J.; Gerlitz, E.; Rieß, S.; Coutandin, S.; Hofmann, J. Concepts and Requirements for Flexible Disassembly Systems for Drive Train Components of Electric Vehicles. Procedia CIRP 2021, 98, 577–582. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Gonzalez, H.C.; Stolkin, R. Semi-autonomous behaviour tree-based framework for sorting electric vehicle batteries components. Robotics 2021, 10, 82. [Google Scholar] [CrossRef]
- Yin, H.; Xiao, J.; Wang, G. Human-Robot Collaboration Re-Manufacturing for Uncertain Disassembly in Retired Battery Recycling. In Proceedings of the 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM, Ma’anshan, China, 18–20 November 2022; pp. 595–598. [Google Scholar] [CrossRef]
- Blankemeyer, S.; Wiens, D.; Wiese, T.; Raatz, A.; Kara, S. Investigation of the potential for an automated disassembly process of BEV batteries. Procedia CIRP 2021, 98, 559–564. [Google Scholar] [CrossRef]
- Tan, W.J.; Chin, C.; Garg, A.; Gao, L. A hybrid disassembly framework for disassembly of electric vehicle batteries. Int. J. Energy Res. 2021, 45, 8073–8082. [Google Scholar] [CrossRef]
- Weyrich, M.; Natkunarajah, N. Conception of an automated plant for the disassembly of lithium-ion batteries. In Proceedings of the Conference: 6th International Conference on Life Cyle Management (LCM), Gothenburg, Sweden, 25–28 August 2013. [Google Scholar]
- Gerbers, R.; Wegener, K.; Dietrich, F.; Dröder, K. Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries. In Recycling of Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management; Kwade, A., Diekmann, J., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 99–126. ISBN 978-3-319-70572-9. [Google Scholar] [CrossRef]
- Gerbers, R.; Mücke, M.; Dietrich, F.; Dröder, K. Simplifying Robot Tools by Taking Advantage of Sensor Integration in Human Collaboration Robots. Procedia CIRP 2016, 44, 287–292. [Google Scholar] [CrossRef]
- Dröder, K.; Dietrich, F.; Tornow, A.; Löchte, C.; Wonnenberg, B.; Gerbers, R.; Bobka, P. Transfersysteme. In Handbuch Industrie 4.0; Reinhart, G., Ed.; Carl Hanser Verlag GmbH & Co., KG: München, Germany, 2017; pp. 429–450. ISBN 978-3-446-44642-7. [Google Scholar]
- Li, L.; Zheng, P.; Yang, T.; Sturges, R.; Ellis, M.W.; Li, Z. Disassembly Automation for Recycling End-of-Life Lithium-Ion Pouch Cells. JOM 2019, 71, 4457–4464. [Google Scholar] [CrossRef]
- Li, L.; Maftouni, M.; Kong, Z.J.; Li, Z. An Automated Recycling Process of End-of-Life Lithium-Ion Batteries Enhanced by Online Sensing and Machine Learning Techniques. In REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I); Lazou, A., Daehn, K., Fleuriault, C., Gökelma, M., Olivetti, E., Meskers, C., Eds.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2022; pp. 475–486. ISBN 978-3-030-92563-5. [Google Scholar] [CrossRef]
- Bi, H.; Zhu, H.; Zu, L.; Gao, Y.; Gao, S.; Bai, Y. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Waste Manag. Res. 2020, 38, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Zhu, H.; Zu, L.; He, S.; Gao, Y.; Peng, J. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries. Waste Manag. Res. 2019, 37, 767–780. [Google Scholar] [CrossRef] [PubMed]
Database | Keywords and Boolean Operators |
---|---|
Scopus | TITLE-ABS-KEY (electric vehicle batter* OR lithium-ion batter*) AND (disassembl* OR dismantl*) AND (recycl*) |
SpringerLink | All of the words “electric vehicle batter* OR lithium-ion batter*” AND “disassembl*” OR “dismantle*” AND “recycl*” |
Web of Science | TITLE-ABS-KEY (electric vehicle batter* OR lithium-ion batter*) AND (disassembl* OR dismantl*) AND (recycl*) |
ScienceDirect | With terms “electric vehicle batter* OR lithium-ion batter*” AND TITLE-ABS-KEY (disassembl* OR dismantl*) AND (recycl*) |
IEEE Xplore | All Metadata (recycl*) AND (lithium-ion) AND (disassembl*) OR (dismantl*) |
Investigated Parameter | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Disassembly Depth | Disassembly Complexity | Disassembly Priority | Disassembly Time | Disassembly Cost | Energy Consumption | Design for Disassembly | Automated Disassembly | Safety | Accuracy | Economic Profit | Environmental Profit | |
Wegener et al. [41] | x | x | x | x | ||||||||
Ke et al. [45] | x | x | ||||||||||
Gentilini et al. [46] | x | x | x | |||||||||
Choux et al. [47] | x | x | x | |||||||||
Cerdas et al. [50] | x | x | x | x | ||||||||
Zhan et al. [51] | x | x | x | x | ||||||||
Schwarz et al. [52] | x | x | ||||||||||
Baazouzi et al. [53] | x | x | x | |||||||||
Kong et al. [54] | x | x | x | x | ||||||||
Gumanová et al. [55] | x | x | x | x | ||||||||
Cong et al. [56] | x | x | x | x | x | |||||||
Alfaro-Algaba et al. [57] | x | x | x | x |
Disassembly Level | Investigated Parameter | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pack Level | Module Level | Cell Level | Disassembly Time | Disassembly Cost | Energy Consumption | Design for Disassembly | Required Human Power | Material Analysis | Discharge for Disassembly | Materials Separation | Disassembly Efficiency | Health | Safety | Recycling Efficiency | Waste Generation | Economic Profit | |
Lander et al. [60] | x | x | x | x | x | ||||||||||||
Rosenberg et al. [61] | x | x | x | x | x | ||||||||||||
Rallo et al. [62] | x | x | x | x | x | ||||||||||||
Werner et al. [64,65] | x | x | x | x | |||||||||||||
Kim et al. [66] | x | x | x | x | x | x | |||||||||||
Santos et al. [67] | x | x | x | x | |||||||||||||
Marshall et al. [68] | x | x | x | x | |||||||||||||
Wu et al. [69] | x | x | x | x | |||||||||||||
Bi et al. [70] | x | x | x | x | |||||||||||||
Zhao et al. [71] | x | x | x | x | x | x | |||||||||||
Pražanová et al. [72] | x | x | x | x |
Reference | Degree of Automation | Scope of Concept | Disassembly Depth |
---|---|---|---|
Schmitt et al. [73] | No mention | Concrete |
|
Herrmann et al. [74] | Semi-automated | Abstract |
|
Herrmann et al. [75] | Semi-automated | Concrete |
|
Hellmuth et al. [76] | No mention | Abstract |
|
Wegner et al. [77] | Semi-automated | Concrete |
|
Garg et al. [78] | No mention | Concrete |
|
Zhou et al. [79] | No mention | Concrete |
|
Fleischer et al. [80] | No mention | Concrete |
|
Rastegarpanah et al. [81] | Semi-automated | Concrete |
|
Yin et al. [82] | Semi-automated | Abstract |
|
Blankemeyer et al. [83] | No mention | Abstract |
|
Tan et al. [84] | Semi-automated | Abstract |
|
Weyrich et al. [85] | Semi-automated | Abstract |
|
Reference | Methodology and Technology |
---|---|
Kay et al. [58] | Automated cutting and gripping in module-to-cell disassembly:
|
Zorn et al. [59] | Automated grasping and sorting in pack-to-module disassembly:
|
Gerbers et al. [86] | Human robot collaboration in module-to-cell disassembly:
|
Li et al. [89,90] | Automated pouch cell disassembly station:
|
Bi et al. [91] | Automated hard-case cell opening and removal:
|
Bi et al. [92] | Automated hard-case cell opening:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Kaden, N.; Dröder, K. A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling. Batteries 2023, 9, 297. https://doi.org/10.3390/batteries9060297
Wu S, Kaden N, Dröder K. A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling. Batteries. 2023; 9(6):297. https://doi.org/10.3390/batteries9060297
Chicago/Turabian StyleWu, Shubiao, Nicolaj Kaden, and Klaus Dröder. 2023. "A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling" Batteries 9, no. 6: 297. https://doi.org/10.3390/batteries9060297
APA StyleWu, S., Kaden, N., & Dröder, K. (2023). A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling. Batteries, 9(6), 297. https://doi.org/10.3390/batteries9060297