Preparation of Li2S-AlI3-LiI Composite Solid Electrolyte and Its Application in All-Solid-State Li-S Battery
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
- The first plateau: CuS + 1.96Li+ + 1.96e− → Li2S + Cu1.96S.
- The second plateau: Cu1.96S + 2Li+ → Li2S + 1.96Cu.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. Adv. Mater. 2019, 31, e1901131. [Google Scholar] [CrossRef] [PubMed]
- Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J.P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58–74. [Google Scholar] [CrossRef]
- Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627–631. [Google Scholar] [CrossRef]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef]
- Adeli, P.; Bazak, J.D.; Park, K.H.; Kochetkov, I.; Huq, A.; Goward, G.R.; Nazar, L.F. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew. Chem. 2019, 58, 8681–8686. [Google Scholar] [CrossRef]
- Feng, X.; Chien, P.-H.; Patel, S.; Zheng, J.; Immediato-Scuotto, M.; Xin, Y.; Hung, I.; Gan, Z.; Hu, Y.-Y. Synthesis and characterizations of highly conductive and stable electrolyte Li10P3S12I. Energy Storage Mater. 2019, 22, 397–401. [Google Scholar] [CrossRef]
- Sakuda, A.; Yamauchi, A.; Yubuchi, S.; Kitamura, N.; Idemoto, Y.; Hayashi, A.; Tatsumisago, M. Mechanochemically Prepared Li2S-P2S5-LiBH4 Solid Electrolytes with an Argyrodite Structure. ACS Omega 2018, 3, 5453–5458. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, W.; Payzant, E.A.; Yu, X.; Wu, Z.; Dudney, N.J.; Kiggans, J.; Hong, K.; Rondinone, A.J.; Liang, C. Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975–978. [Google Scholar] [CrossRef]
- Hayashi, A.; Fukuda, T.; Hama, S.; Yamashita, H.; Morimoto, H.; Minami, T.; Tatsumisago, M. Lithium ion conducting glasses and glass-ceramics in the system Li2S-MxSy (M = Al, Si and P) prepared by mechanical milling. J. Ceram. Soc. Jpn. 2004, 112, S695–S699. [Google Scholar]
- Kondo, S.; Takada, K.; Yamamura, Y. New lithium ion conductors based on Li2S-SiS2 system. Solid State Ionics 1992, 53–56, 1183–1186. [Google Scholar] [CrossRef]
- Takada, K.; Aotani, N.; Kondo, S. Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2. J. Power Sources 1993, 43–44, 135–141. [Google Scholar] [CrossRef]
- Hayashi, A.; Fukuda, T.; Morimoto, H.; Minami, T.; Tatsumisago, M. Amorphous solid electrolytes in the system Li2S-Al2S3-SiS2 prepared by mechanical milling. J. Mater. Sci. 2004, 39, 5125–5127. [Google Scholar] [CrossRef]
- Kinoshita, S.; Okuda, K.; Machida, N.; Naito, M.; Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ion. 2014, 256, 97–102. [Google Scholar] [CrossRef]
- Seh, Z.W.; Wang, H.; Hsu, P.-C.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y. Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 2014, 7, 672. [Google Scholar] [CrossRef]
- Wu, F.; Magasinski, A.; Yushin, G. Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. J. Mater. Chem. A 2014, 2, 6064–6070. [Google Scholar] [CrossRef]
- Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Lett. 2016, 16, 4521–4527. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Z.; Dudney, N.J.; Liang, C. Lithium Superionic Sulfide Cathode for All-Solid Lithium-Sulfur Batteries. ACS Nano 2013, 7, 2829–2833. [Google Scholar] [CrossRef]
- Jiang, H.; Han, Y.; Wang, H.; Zhu, Y.; Guo, Q.; Jiang, H.; Zheng, C.; Xie, K. Li2S-Li3PS4 (LPS) Composite Synthesized by Liquid-Phase Shaking for All-Solid-State Lithium-Sulfur Batteries with High Performance. Energy Technol. 2020, 8, 2000023. [Google Scholar] [CrossRef]
- Hakari, T.; Hayashi, A.; Tatsumisago, M. Li2S-Based Solid Solutions as Positive Electrodes with Full Utilization and Superlong Cycle Life in All-Solid-State Li/S Batteries. Adv. Sustain. Syst. 2017, 1, 1700017. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Takaki, M.; Kazuhiro, H.; Hiroyuki, M.; Atsunori, M. Dual effect of MgS addition on Li2S ionic conductivity and all-solid-state Li–S cell performance. SN Appl. Sci. 2020, 2, 1803. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Takaki, M.; Hiroyuki, M.; Atsunori, M. Preparation of Li2-3xAlxS for All-Solid-State Li-S Battery. Front. Energy Res. 2021, 8, 606023. [Google Scholar] [CrossRef]
- Gamo, H.; Maeda, T.; Hikima, K.; Deguchi, M.; Fujita, Y.; Kawasaki, Y.; Sakuda, A.; Muto, H.; Phuc, N.H.H.; Hayashi, A.; et al. Synthesis of an AlI3-doped Li2S positive electrode with superior performance in all-solid-state batteries. Mater. Adv. 2022, 3, 2488–2494. [Google Scholar] [CrossRef]
- Rajagopal, R.; Park, M.-H.; Subramanian, Y.; Jung, Y.J.; Ryu, K.-S. Synthesis and electrochemical performance of antiperovskite-like Li3SI solid electrolyte. J. Electroanal. Chem. 2021, 895, 115477. [Google Scholar] [CrossRef]
- Tamori, R.; Machida, N.; Shigematsu, T. Preparation of Li4.4Si Alloy by Use of Mechanical Milling Methods and Its Properties as Negative Electrodes in Lithium Cells. J. Jpn. Soc. Powder Powder Metall. 2001, 48, 267–273. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Gamo, H.; Hikima, K.; Muto, H.; Matsuda, A. Novel (100-x-y)Li3PS4-xLiBF4-yLiCl amorphous solid electrolytes for all-solid-state Li ion battery. J. Non-Cryst. Solids 2022, 593, 121768. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Maeda, T.; Yamamoto, T.; Muto, H.; Matsuda, A. Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries. Electron. Mater. 2021, 2, 39–48. [Google Scholar] [CrossRef]
- Suyama, M.; Kato, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 2018, 286, 158–162. [Google Scholar] [CrossRef]
- Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 2015, 137, 1384–1387. [Google Scholar] [CrossRef]
- Suzuki, K.; Sakuma, M.; Hori, S.; Nakazawa, T.; Nagao, M.; Yonemura, M.; Hirayama, M.; Kanno, R. Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ion. 2016, 288, 229–234. [Google Scholar] [CrossRef]
- Xu, R.C.; Xia, X.H.; Yao, Z.J.; Wang, X.L.; Gu, C.D.; Tu, J.P. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochim. Acta 2016, 219, 235–240. [Google Scholar] [CrossRef]
- Wei, J.; Kim, H.; Lee, D.-C.; Hu, R.; Wu, F.; Zhao, H.; Alamgir, F.M.; Yushin, G. Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. J. Power Sources 2015, 294, 494–500. [Google Scholar] [CrossRef]
- Gombotz, M.; Wilkening, H.M.R. Fast Li Ion Dynamics in the Mechanosynthesized Nanostructured Form of the Solid Electrolyte Li3YBr6. ACS Sustain. Chem. Eng. 2020, 9, 743–755. [Google Scholar] [CrossRef]
- Hanghofer, I.; Brinek, M.; Eisbacher, S.L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H.M.R. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys. Chem. Chem. Phys. PCCP 2019, 21, 8489–8507. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘universal’ dielectric respond. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Ngai, K.L.; Jonscher, A.K.; White, C.T. On the origin of the universal dielectric respond in condensed matter. Nature 1979, 277, 185–189. [Google Scholar] [CrossRef]
- Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M. All-solid-state Li S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 2003, 5, 701–705. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anh Tu, T.; Phuc, N.H.H.; Anh, L.T.Q.; Toan, T.V. Preparation of Li2S-AlI3-LiI Composite Solid Electrolyte and Its Application in All-Solid-State Li-S Battery. Batteries 2023, 9, 290. https://doi.org/10.3390/batteries9060290
Anh Tu T, Phuc NHH, Anh LTQ, Toan TV. Preparation of Li2S-AlI3-LiI Composite Solid Electrolyte and Its Application in All-Solid-State Li-S Battery. Batteries. 2023; 9(6):290. https://doi.org/10.3390/batteries9060290
Chicago/Turabian StyleAnh Tu, Tran, Nguyen Huu Huy Phuc, Luong Thi Quynh Anh, and Tran Viet Toan. 2023. "Preparation of Li2S-AlI3-LiI Composite Solid Electrolyte and Its Application in All-Solid-State Li-S Battery" Batteries 9, no. 6: 290. https://doi.org/10.3390/batteries9060290
APA StyleAnh Tu, T., Phuc, N. H. H., Anh, L. T. Q., & Toan, T. V. (2023). Preparation of Li2S-AlI3-LiI Composite Solid Electrolyte and Its Application in All-Solid-State Li-S Battery. Batteries, 9(6), 290. https://doi.org/10.3390/batteries9060290