MXene-Based Materials for Multivalent Metal-Ion Batteries
Abstract
:1. Introduction
2. MXene
2.1. Synthesis of MXene
2.1.1. Fluorine-Containing Etching Method
- HF Acid Etching
- In Situ Generation of HF
- Other Fluoride Salts
2.1.2. Fluorine-Free Etching Method
2.1.3. Non-Etching Methods
2.2. Properties of MXene
2.2.1. Structural Stability
2.2.2. Environmental Stability
2.2.3. Interlayer Stability
2.2.4. Mechanical Properties
2.2.5. Electronic Performance
2.2.6. Surface Terminals
3. Applications in Multivalent Metal-Ion Batteries (MMIBs)
3.1. Magnesium Ion Batteries (MIBs)
3.2. Aluminum Ion Batteries (AIBs)
3.3. Calcium Ion Batteries (CIBs)
Material | Cycling Performance | Rate Performance Capacity (mAh g−1) | Ref. | |||
---|---|---|---|---|---|---|
Ion Storage System | Current Density (mA g−1) | Initial Capacity (mAh g−1) | ||||
MXene | Ti2CO2 | MIB | / | 570 | / | [55] |
Ti3C2Tx/CTAB | MIB | 50 | 100 | 42 at 1 A g−1 | [40] | |
Mg0.21Ti3C2Tx | MIB | 50 | 210 | 55 at 0.5 A g−1 | [86] | |
Ti3C2Tx@C | MIB | 10 | 198.7 | 123.3 at 0.2A g−1 | [88] | |
Ti3C2Tx/CNT | HMLB | 10 | 105 | ∼50 at 1 A g−1 | [102] | |
Prelithiated-V2C | HMLB | 20 | 230.3 | 260.7 at 1 A g−1 | [103] | |
Ti3C2/CTAB | HMLB | 100 | 119.5 | 100.5 at 2 A g−1 | [104] | |
Ti2CO2 | AIB | / | 552 | / | [55] | |
V2CTx | AIB | 100 | 162 | ∼150 at 0.3 A g−1 | [111] | |
Fe2CS2 | AIB | / | 642 | / | [112] | |
Ti2CO2 | CIB | / | 487 | / | [55] | |
V3C2/graphene | CIB | / | 598.63 | / | [118] | |
V2CO2/graphene | CIB | / | 411.31 | / | [119] | |
Ti2CO2/graphene | CIB | / | 416.39 | / | [119] | |
V2CSe2 | CIB | / | 394.12 | / | [120] | |
MXene-based composites | MoS2/Ti3C2Tx | MIB | 50 | 165 | 93 at 0.2A g−1 | [89] |
TiS2/Ti3C2 | MIB | 50 | 97 | / | [90] | |
Ti3C2/CoSe2 | MIB | 20 | 114.5 | 75.7 at 1A g−1 | [91] | |
VS4@Ti3C2/C | MIB | 50 | 492 | 129 at 1A g−1 | [92] | |
LTO NSs@d-Ti3C2 | MIB | 20 | 320 | 42 at 0.3A g−1 | [93] | |
MnO2/V2C | MIB | 100 | 130 | 25 at 0.5A g−1 | [94] | |
Ti3C2@CTAB-Se | AIB | 100 | 583.7 | 68.1 at 0.3A g−1 | [113] | |
D-Ti3C2Tx@S@TiO2 | AIB | 100 | 209.2 | 51.8 at 0.5A g−1 | [114] | |
Classic cathode material | MoS2 | MIB | 50 | 62 | / | [89] |
TiS2 | MIB | 50 | 58 | / | [90] |
3.4. Zinc-Ion Batteries (ZIBs)
3.4.1. Anode
3.4.2. Capacitive Electrode
3.4.3. Composite Redox Cathode
- Manganese-Based Material/MXene
- Vanadium-Based Materials/MXene
- Other Categories Materials/MXene
3.4.4. Redox Cathode
4. Conclusions
5. Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guan, P.; Zhou, L.; Yu, Z.; Sun, Y.; Liu, Y.; Wu, F.; Jiang, Y.; Chu, D. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 2020, 43, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Lamiel, C.; Sufyan Javed, M.; Ahmad, M.; Chen, X.; Sahoo, S.; Ma, X.; Bajaber, M.A.; Zahid Ansari, M.; Zhang, K. Earth- and marine-life-resembling nanostructures for electrochemical energy storage. Chem. Eng. J. 2023, 454, 140313. [Google Scholar] [CrossRef]
- Kim, T.-H.; Park, J.-S.; Chang, S.K.; Choi, S.; Ryu, J.H.; Song, H.-K. The Current Move of Lithium Ion Batteries Towards the Next Phase. Adv. Energy Mater. 2012, 2, 860–872. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Fu, C.; Ding, Y.; Liu, G.; Cao, Y.; Chen, Z. Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries. ACS Mater. Lett. 2021, 3, 956–977. [Google Scholar] [CrossRef]
- Ming, F.; Liang, H.; Huang, G.; Bayhan, Z.; Alshareef, H.N. MXenes for Rechargeable Batteries Beyond the Lithium-Ion. Adv. Mater. 2021, 33, 2004039. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Lett. 2018, 3, 2480–2501. [Google Scholar] [CrossRef]
- Kravchyk, K.V.; Widmer, R.; Erni, R.; Dubey, R.J.C.; Krumeich, F.; Kovalenko, M.V.; Bodnarchuk, M.I. Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Sci. Rep. 2019, 9, 7988. [Google Scholar] [CrossRef] [Green Version]
- Dymek, C.J.; Williams, J.L.; Groeger, D.J.; Auborn, J.J. An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids. J. Electrochem. Soc. 1984, 131, 2887. [Google Scholar] [CrossRef]
- Geng, D.; Yang, H.Y. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Adv. Mater. 2018, 30, 1800865. [Google Scholar] [CrossRef]
- Li, S.-L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118–151. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.J.; Liao, C.; Hafez, A.M.; Zhu, H.L.; Wu, S.P. Two-dimensional MXenes for energy storage. Chem. Eng. J. 2018, 338, 27–45. [Google Scholar] [CrossRef]
- Mateen, A.; Ansari, M.Z.; Hussain, I.; Eldin, S.M.; Albaqami, M.D.; Bahajjaj, A.A.A.; Javed, M.S.; Peng, K.-Q. Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor. Compos. Commun. 2023, 38, 101493. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; et al. Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Adv. Electron. Mater. 2021, 7, 2000967. [Google Scholar] [CrossRef]
- Greaves, M.; Barg, S.; Bissett, M.A. MXene-Based Anodes for Metal-Ion Batteries. Batter. Supercaps 2020, 3, 214–235. [Google Scholar] [CrossRef]
- Cheng, L.; Li, X.; Zhang, H.; Xiang, Q. Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation. J. Phys. Chem. Lett. 2019, 10, 3488–3494. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Deysher, G.; Shuck, C.E.; Hantanasirisakul, K.; Frey, N.C.; Foucher, A.C.; Maleski, K.; Sarycheva, A.; Shenoy, V.B.; Stach, E.A.; Anasori, B.; et al. Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals. ACS Nano 2020, 14, 204–217. [Google Scholar] [CrossRef]
- Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M.W.; Persson, P.O.Å.; et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949. [Google Scholar] [CrossRef] [Green Version]
- Thörnberg, J.; Halim, J.; Lu, J.; Meshkian, R.; Palisaitis, J.; Hultman, L.; Persson, P.O.Å.; Rosen, J. Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2−xC MXene scrolls. Nanoscale 2019, 11, 14720–14726. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S.; et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, K.; Ricciardulli, A.G.; Zhang, P.; Liao, Z.; Lohe, M.R.; Zschech, E.; Blom, P.W.M.; Pisula, W.; Müllen, K.; et al. A Delamination Strategy for Thinly Layered Defect-Free High-Mobility Black Phosphorus Flakes. Angew. Chem. Int. Ed. 2018, 57, 4677–4681. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef]
- Cui, G.; Zheng, X.; Lv, X.; Jia, Q.; Xie, W.; Gu, G. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram. Int. 2019, 45, 23600–23610. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhou, A.G.; Chen, J.F.; Jin, J.; Zhou, W.J.; Wang, L.B.; Hu, Q.K. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017, 416, 781–789. [Google Scholar] [CrossRef]
- Zhang, T.; Pan, L.M.; Tang, H.; Du, F.; Guo, Y.H.; Qiu, T.; Yang, J. Synthesis of two-dimensional Ti3C2Tx MXene using HCl plus LiF etchant: Enhanced exfoliation and delamination. J. Alloys Compd. 2017, 695, 818–826. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhou, J.; Wang, S.W.; Wang, B.X.; Shen, C.; Wang, L.B.; Hu, Q.K.; Huang, Q.; Zhou, A.G. Preparation of High-Purity V2C MXene and Electrochemical Properties as Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A709–A713. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Dyatkin, B.; Gogotsi, Y.; Barsoum, M.W. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 2013, 139, 147–152. [Google Scholar] [CrossRef]
- Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.-Å.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26, 2374–2381. [Google Scholar] [CrossRef] [PubMed]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.Q.; Kota, S.; Walsh, P.L.; Zhao, M.Q.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [Green Version]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Unocic, R.R.; Armstrong, B.L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44, 9353–9358. [Google Scholar] [CrossRef]
- Mashtalir, O.; Lukatskaya, M.R.; Zhao, M.-Q.; Barsoum, M.W.; Gogotsi, Y. Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Adv. Mater. 2015, 27, 3501–3506. [Google Scholar] [CrossRef]
- Ma, R.; Sasaki, T. Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality. Acc. Chem. Res. 2015, 48, 136–143. [Google Scholar] [CrossRef]
- Xu, M.; Lei, S.L.; Qi, J.; Dou, Q.Y.; Liu, L.Y.; Lu, Y.L.; Huang, Q.; Shi, S.Q.; Yan, X.B. Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. ACS Nano 2018, 12, 3733–3740. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.P.; Wang, F.X.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X.L. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. Int. Ed. 2018, 57, 15491–15495. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yuan, M.; Lin, L.; Yang, H.; Nan, C.; Li, H.; Sun, G.; Yang, X. Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene. ACS Mater. Lett. 2019, 1, 628–632. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Shao, H.; Lin, Z.F.; Lu, J.; Liu, L.Y.; Duployer, B.; Persson, P.O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef]
- Chaitoglou, S.; Tsipas, P.; Speliotis, T.; Kordas, G.; Vavouliotis, A.; Dimoulas, A. Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo2C heterostructures over liquid catalyst. J. Cryst. Growth 2018, 495, 46–53. [Google Scholar] [CrossRef]
- Zhao, H.; Cai, K.; Ma, Z.; Cheng, Z.; Jia, T.; Kimura, H.; Fu, Q.; Tao, H.; Xiong, L. Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition. J. Appl. Phys. 2018, 123, 053301. [Google Scholar] [CrossRef] [Green Version]
- Meshkian, R.; Ingason, A.S.; Dahlqvist, M.; Petruhins, A.; Arnalds, U.B.; Magnus, F.; Lu, J.; Rosen, J. Theoretical stability, thin film synthesis and transport properties of the Mon +1GaCn MAX phase. Phys. Status Solidi (RRL) Rapid Res. Lett. 2015, 9, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Meshkian, R.; Näslund, L.-Å.; Halim, J.; Lu, J.; Barsoum, M.W.; Rosen, J. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 2015, 108, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Verger, L.; Natu, V.; Carey, M.; Barsoum, M.W. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends Chem. 2019, 1, 656–669. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R.C. Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano 2014, 8, 9606–9615. [Google Scholar] [CrossRef]
- Wang, H.-W.; Naguib, M.; Page, K.; Wesolowski, D.J.; Gogotsi, Y. Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. Chem. Mater. 2016, 28, 349–359. [Google Scholar] [CrossRef]
- Sun, N.; Guan, Z.R.X.; Zhu, Q.Z.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Lett. 2020, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.F.; Lin, S.; Huang, Y.N.; Tong, P.; Zhao, B.C.; Zhu, X.B.; Sun, Y.P. Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 2019, 373, 203–212. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.Z.; Miao, J.W.; Zhang, P.; Wan, P.B.; He, L.Z.; Xu, B. Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries. Small 2019, 15, 1904293. [Google Scholar] [CrossRef]
- Ren, C.E.; Zhao, M.-Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage. ChemElectroChem 2016, 3, 689–693. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, C.; Zhou, G.; Pan, Z.-Z.; Ma, J.; Nishihara, H.; He, Y.-B.; Kang, F.; Lv, W.; Yang, Q.-H. Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Adv. Funct. Mater. 2021, 31, 2100793. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, J.; Si, C.; Sun, Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.H.; Zhang, Q.F.; Legut, D.; Si, C.; Germann, T.C.; Lookman, T.; Du, S.Y.; Francisco, J.S.; Zhang, R.F. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B 2016, 94, 104103. [Google Scholar] [CrossRef]
- Zha, X.-H.; Luo, K.; Li, Q.; Huang, Q.; He, J.; Wen, X.; Du, S. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhys. Lett. 2015, 111, 26007. [Google Scholar] [CrossRef]
- Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W. First principles study of two-dimensional early transition metal carbides. MRS Commun. 2012, 2, 133–137. [Google Scholar] [CrossRef]
- Plummer, G.; Anasori, B.; Gogotsi, Y.; Tucker, G.J. Nanoindentation of monolayer Tin+1CnTx MXenes via atomistic simulations: The role of composition and defects on strength. Comput. Mater. Sci. 2019, 157, 168–174. [Google Scholar] [CrossRef]
- Si, C.; Jin, K.-H.; Zhou, J.; Sun, Z.; Liu, F. Large-Gap Quantum Spin Hall State in MXenes: D-Band Topological Order in a Triangular Lattice. Nano Lett. 2016, 16, 6584–6591. [Google Scholar] [CrossRef] [PubMed]
- Dillon, A.D.; Ghidiu, M.J.; Krick, A.L.; Griggs, J.; May, S.J.; Gogotsi, Y.; Barsoum, M.W.; Fafarman, A.T. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26, 4162–4168. [Google Scholar] [CrossRef]
- Lai, S.; Jeon, J.; Jang, S.K.; Xu, J.; Choi, Y.J.; Park, J.-H.; Hwang, E.; Lee, S. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale 2015, 7, 19390–19396. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Yunoki, S. Topological insulators in the ordered double transition metals M′2M″C2 MXenes (M′ = Mo, W; M″ = Ti, Zr, Hf). Phys. Rev. B 2016, 94, 125152. [Google Scholar] [CrossRef] [Green Version]
- Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.-Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Ivanovskii, A.L. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations. J. Solid State Chem. 2013, 207, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.Q.; Nam, K.W.; Yang, X.Q.; Kolesnikov, A.I.; Kent, P.R.C. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.A.; Shao, X.F.; Li, F.; Zhao, M.W. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 2018, 455, 522–526. [Google Scholar] [CrossRef]
- Hope, M.A.; Forse, A.C.; Griffith, K.J.; Lukatskaya, M.R.; Ghidiu, M.; Gogotsi, Y.; Grey, C.P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102. [Google Scholar] [CrossRef] [Green Version]
- Persson, I.; Näslund, L.-Å.; Halim, J.; Barsoum, M.W.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P.O.Å. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 2018, 5, 015002. [Google Scholar] [CrossRef]
- Tang, J.; Peng, X.; Lin, T.; Huang, X.; Luo, B.; Wang, L. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience 2021, 1, 203–211. [Google Scholar] [CrossRef]
- Jiang, M.; Fu, C.; Meng, P.; Ren, J.; Wang, J.; Bu, J.; Dong, A.; Zhang, J.; Xiao, W.; Sun, B. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries. Adv. Mater. 2022, 34, 2102026. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloys 2020, 8, 963–979. [Google Scholar] [CrossRef]
- Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries. Adv. Funct. Mater. 2020, 30, 1908528. [Google Scholar] [CrossRef]
- Chen, S.S.; Zhao, D.; Chen, L.; Liu, G.R.; Ding, Y.; Cao, Y.L.; Chen, Z.X. Emerging Intercalation Cathode Materials for Multivalent Metal-Ion Batteries: Status and Challenges. Small Struct. 2021, 2, 2100082. [Google Scholar] [CrossRef]
- Wei, C.; Tan, L.; Zhang, Y.; Wang, Z.; Feng, J.; Qian, Y. Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Mater. 2022, 52, 299–319. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Ren, C.E.; Alhabeb, M.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Magnesium-Ion Storage Capability of MXenes. ACS Appl. Energy Mater. 2019, 2, 1572–1578. [Google Scholar] [CrossRef]
- Gao, Q.; Come, J.; Naguib, M.; Jesse, S.; Gogotsi, Y.; Balke, N. Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene. Faraday Discuss. 2017, 199, 393–403. [Google Scholar] [CrossRef]
- Liu, F.F.; Liu, Y.C.; Zhao, X.D.; Liu, X.B.; Fan, L.Z. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 2019, 7, 16712–16719. [Google Scholar] [CrossRef]
- Xu, M.; Bai, N.; Li, H.-X.; Hu, C.; Qi, J.; Yan, X.-B. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chin. Chem. Lett. 2018, 29, 1313–1316. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D.; Zhang, D.; Wei, Y.; Qu, D.; Guo, Y. Study on MXene-supported Layered TiS2 as Cathode Materials for Magnesium Batteries. Int. J. Electrochem. Sci. 2019, 14, 11102–11109. [Google Scholar] [CrossRef]
- Liu, F.F.; Wang, T.T.; Liu, X.B.; Jiang, N.; Fan, L.Z. High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. Chem. Eng. J. 2021, 426, 130747. [Google Scholar] [CrossRef]
- Zhu, J.L.; Zhang, X.; Gao, H.G.; Shao, Y.T.; Liu, Y.N.; Zhu, Y.F.; Zhang, J.G.; Li, L.Q. VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery. J. Power Sources 2022, 518, 230731. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Chai, Z.; Zheng, X.; Li, J.; Yang, Y.; Zhu, J.; Jin, X.; Li, Q.; Xu, D. Alternate-stacked Li4Ti5O12 nanosheets/d-Ti3C2 flexible film as a current collector-free, high-capacity and robust cathode for rechargeable Mg batteries. Nano Sel. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.N.; Xu, D.H.; Zhang, D.H.; Wei, Y.C.; Guo, Y.X. Study on MnO2/MXene-V2C composite as cathode for magnesium ion battery. Int. J. Electrochem. Sci. 2020, 15, 11227–11237. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, B.Q.; Hu, C.F.; Chen, H.D.; Huang, J.J.; Yan, D.; Peng, S.L. Construction Strategy of VO2@V2C 1D/2D Heterostructure and Improvement of Zinc-Ion Diffusion Ability in VO2 (B). ACS Appl. Mater. Interfaces 2022, 14, 28760–28768. [Google Scholar] [CrossRef]
- Chen, C.; Xie, X.Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.Q.; Urbankowski, P.; Miao, L.; Jiang, J.J.; Gogotsi, Y. MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 1846–1850. [Google Scholar] [CrossRef]
- Sha, D.W.; Lu, C.J.; He, W.; Ding, J.X.; Zhang, H.; Bao, Z.H.; Cao, X.; Fan, J.C.; Dou, Y.; Pan, L.; et al. Surface Selenization Strategy for V2CTx MXene toward Superior Zn-Ion Storage. ACS Nano 2022, 16, 2711–2720. [Google Scholar] [CrossRef]
- Gao, P.; Shi, H.; Ma, T.; Liang, S.; Xia, Y.; Xu, Z.; Wang, S.; Min, C.; Liu, L. MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 51028–51038. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, S.; Lai, Y.; Ding, M.; Cao, Y.; Chen, Z. A stable “rocking-chair” zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy 2022, 100, 107520. [Google Scholar] [CrossRef]
- Shi, M.J.; Wang, B.; Chen, C.; Lang, J.W.; Yan, C.; Yan, X.B. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 24635–24644. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Gogotsi, Y.; Alshareef, H.N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Byeon, A.; Zhao, M.Q.; Ren, C.E.; Halim, J.; Kota, S.; Urbankowski, P.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 4296–4300. [Google Scholar] [CrossRef]
- Liu, F.F.; Liu, Y.C.; Zhao, X.D.; Liu, K.Y.; Yin, H.Q.; Fan, L.Z. Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. Small 2020, 16, 1906076. [Google Scholar] [CrossRef]
- Li, X.H.; Tang, Y.K.; Liu, L.; Zhang, Y.; Sheng, R.; NuLi, Y.N. Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J. Colloid Interface Sci. 2022, 608, 2455–2462. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci. 2004, 278, 160–165. [Google Scholar] [CrossRef]
- Du, A.; Zhang, Z.; Qu, H.; Cui, Z.; Qiao, L.; Wang, L.; Chai, J.; Lu, T.; Dong, S.; Dong, T.; et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ. Sci. 2017, 10, 2616–2625. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Nam, K.-W.; Ling, C.; Arthur, T.S.; Song, W.; Knapp, A.M.; Ehrlich, S.N.; Yang, X.-Q.; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110–113. [Google Scholar] [CrossRef]
- Zhang, E.; Cao, W.; Wang, B.; Yu, X.; Wang, L.; Xu, Z.; Lu, B. A novel aluminum dual-ion battery. Energy Storage Mater. 2018, 11, 91–99. [Google Scholar] [CrossRef]
- Mohandas, K.S.; Sanil, N.; Noel, M.; Rodriguez, P. Electrochemical intercalation of aluminium chloride in graphite in the molten sodium chloroaluminate medium. Carbon 2003, 41, 927–932. [Google Scholar] [CrossRef]
- Yang, H.; Li, H.; Li, J.; Sun, Z.; He, K.; Cheng, H.-M.; Li, F. The Rechargeable Aluminum Battery: Opportunities and Challenges. Angew. Chem. Int. Ed. 2019, 58, 11978–11996. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries. ACS Nano 2017, 11, 11135–11144. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jung, S.C.; Han, Y.K. Fe2CS2 MXene: A promising electrode for Al-ion batteries. Nanoscale 2020, 12, 5324–5331. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Wang, X.X.; Zhang, W.M.; Yang, S.P. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem. Eng. J. 2020, 398, 125679. [Google Scholar] [CrossRef]
- Huo, X.G.; Wang, X.X.; Li, Z.Y.; Liu, J.; Li, J.L. Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries. Nanoscale 2020, 12, 3387–3399. [Google Scholar] [CrossRef] [PubMed]
- Monti, D.; Ponrouch, A.; Araujo, R.B.; Barde, F.; Johansson, P.; Palacín, M.R. Multivalent Batteries—Prospects for High Energy Density: Ca Batteries. Front. Chem. 2019, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Aurbach, D.; Skaletsky, R.; Gofer, Y. The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes. J. Electrochem. Soc. 1991, 138, 3536. [Google Scholar] [CrossRef]
- Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M.R. Towards a calcium-based rechargeable battery. Nat. Mater. 2016, 15, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Dinda, P.P.; Meena, S. A V3C2 MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries. J. Phys. Condens. Matter 2021, 33, 175001. [Google Scholar] [CrossRef]
- Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C. Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications. J. Phys. Chem. Lett. 2019, 10, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Z.; Ma, Y.H.; Zhang, Q.F.; Huang, R.; Gao, B.L.; Li, Z.W.; Li, G.N.; Liang, F. First-principles investigation of V2CSe2 MXene as a potential anode material for non-lithium metal ion batteries. Curr. Appl. Phys. 2022, 41, 7–13. [Google Scholar] [CrossRef]
- Ma, L.; Zhi, C. Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochem. Commun. 2021, 122, 106898. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano 2020, 14, 16321–16347. [Google Scholar] [CrossRef] [PubMed]
- Yufit, V.; Tariq, F.; Eastwood, D.S.; Biton, M.; Wu, B.; Lee, P.D.; Brandon, N.P. Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries. Joule 2019, 3, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Li, H.F.; Ma, L.T.; Han, C.P.; Wang, Z.F.; Liu, Z.X.; Tang, Z.J.; Zhi, C.Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.L.; Wei, C.L.; Xi, B.J.; Xiong, S.L.L.; Feng, J.K.; Qian, Y.T. Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano 2019, 13, 11676–11685. [Google Scholar] [CrossRef]
- Zhou, J.H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.T.; Li, L.; Chen, R.J. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries. Adv. Mater. 2022, 34, 2106897. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Cao, B.; Zhu, Q.; Xu, B. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries. Acta Phys. Chim. Sin. 2023, 39, 2210027. [Google Scholar] [CrossRef]
- Li, X.L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.D.; Liang, G.J.; Zhao, Y.W.; Ma, L.T.; Li, M.A.; et al. Toward a Practical Zn Powder Anode: Ti3C2Tx MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano 2021, 15, 14631–14642. [Google Scholar] [CrossRef]
- Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Zhang, N.N.; Huang, S.; Yuan, Z.S.; Zhu, J.C.; Zhao, Z.F.; Niu, Z.Q. Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 2861–2865. [Google Scholar] [CrossRef]
- Li, X.L.; Li, M.A.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z.D.; Liang, G.J.; Chen, Z.; Du, S.Y.; et al. Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti3C2 MXenes. ACS Nano 2022, 16, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Shen, Y.; Min, J.; Pang, J.; Zheng, Y.; Gu, T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano 2021, 15, 15259–15273. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wei, C.; Zhang, Y.; An, Y.; Xiong, S.; Feng, J. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J. 2022, 431, 134277. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021, 41, 343–353. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.M.; Jiang, Y.P.; Li, X.L.; Liu, Y.; Xiao, H.H.; Ma, Y.; Huang, Y.Y.; Yuan, G.H. Tailoring Ultrahigh Energy Density and Stable Dendrite-Free Flexible Anode with Ti3C2Tx MXene Nanosheets and Hydrated Ammonium Vanadate Nanobelts for Aqueous Rocking-Chair Zinc Ion Batteries. Adv. Funct. Mater. 2021, 31, 2103210. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.; Yu, Q.; Wang, Q.; Wang, M.; Ni, T.; Ruan, L.; Zeng, W. A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. J. Power Sources 2021, 504, 230076. [Google Scholar] [CrossRef]
- Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q. Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Lett. 2021, 13, 89. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Wang, D.; Yang, Q.; Ma, L.; Huang, Z.; Liang, G.; Chen, A.; Guo, Y.; Dong, B.; et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 2021, 14, 3492–3501. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Zeng, W.; Wang, M.; Ruan, L.; Ma, Y. A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO2–CNTs Cathode and MXene Anode. Nano-Micro Lett. 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wang, S.; Wang, Q.; Chen, X.; Du, X.; Wang, M.; Zhao, Y.; Dong, C.; Ruan, L.; Zeng, W. A new flexible zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J. Power Sources 2020, 446, 227345. [Google Scholar] [CrossRef]
- Huang, L.; Lin, Y.; Zeng, W.; Xu, C.; Chen, Z.; Wang, Q.; Zhou, H.; Yu, Q.; Zhao, B.; Ruan, L.; et al. Highly Transparent and Flexible Zn-Ti3C2Tx MXene Hybrid Capacitors. Langmuir 2022, 38, 5968–5976. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ao, H.; Qi, K.; Zhang, X.; Liu, M.; Zhou, T.; Wang, S.; Xia, G.; Zhu, Y. A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor. Mater. Today Energy 2021, 19, 100598. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.L.; Guo, X.H.; Ruan, L.M.; Wei, N.; Ma, Y.; Li, J.Y.; Wang, M.; Li, W.Q.; Zeng, W. MXene-Reduced Graphene Oxide Aerogel for Aqueous Zinc-Ion Hybrid Supercapacitor with Ultralong Cycle Life. Adv. Electron. Mater. 2019, 5, 1900537. [Google Scholar] [CrossRef]
- Wang, C.D.; Wei, S.Q.; Chen, S.M.; Cao, D.F.; Song, L. Delaminating Vanadium Carbides for Zinc-Ion Storage: Hydrate Precipitation and H+/Zn2+ Co-Action Mechanism. Small Methods 2019, 3, 1900495. [Google Scholar] [CrossRef]
- Maughan, P.A.; Tapia-Ruiz, N.; Bimbo, N. In-situ pillared MXene as a viable zinc-ion hybrid capacitor. Electrochim. Acta 2020, 341, 136061. [Google Scholar] [CrossRef]
- Fan, Z.; Jin, J.; Li, C.; Cai, J.; Wei, C.; Shao, Y.; Zou, G.; Sun, J. 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink. ACS Nano 2021, 15, 3098–3107. [Google Scholar] [CrossRef]
- Li, Z.; Guo, D.; Wang, D.; Sun, M.; Sun, H. Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. J. Power Sources 2021, 506, 230197. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, Z.; Li, X.; Liu, Z.; Li, H.; Liang, G.; Wang, D.; Huang, Q.; Zhang, S.; Chen, S.; et al. A Wholly Degradable, Rechargeable Zn–Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano 2019, 13, 8275–8283. [Google Scholar] [CrossRef]
- Luo, S.J.; Xie, L.Y.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.S.; Schmidt, O.G.; Wang, L. Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery. Adv. Funct. Mater. 2019, 29, 1901336. [Google Scholar] [CrossRef]
- Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M. Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. ACS Nano 2021, 15, 2971–2983. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhang, Y.; Gong, Z.; Lu, T.; Pan, L. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. J. Colloid Interface Sci. 2021, 593, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, J.; Liang, S. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim. Sin. 2021, 37, 2005020. [Google Scholar] [CrossRef]
- Liu, C.; Xu, W.; Mei, C.; Li, M.-C.; Xu, X.; Wu, Q. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J. 2021, 405, 126737. [Google Scholar] [CrossRef]
- Shi, Z.; Ru, Q.; Pan, Z.; Zheng, M.; Chi-Chun Ling, F.; Wei, L. Flexible Free-Standing VO2/MXene Conductive Films as Cathodes for Quasi-Solid-State Zinc-Ion Batteries. ChemElectroChem 2021, 8, 1091–1097. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Cao, B.; Du, H.; Lu, H.; Ma, Y.; Wang, H.; Guo, H.; Huang, Q.; Xu, B.; et al. Van der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution. ACS Nano 2022, 16, 14539–14548. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. Phase Transition Induced Unusual Electrochemical Performance of V2CTX MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano 2020, 14, 541–551. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al. In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2008033. [Google Scholar] [CrossRef]
- Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun. 2020, 56, 6412–6415. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Wei, H.; Wei, C.; Tao, Y.; Li, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries. Chem. Mater. 2020, 32, 4054–4064. [Google Scholar] [CrossRef]
- Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J. Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V2Ox@V2CTx) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 4677–4689. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, W.; Cao, Z.; Gao, S.; Chee, M.O.L.; Zhang, X.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Zn2+-Intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J. Mater. Chem. A 2021, 9, 17994–18005. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Z.; Li, X.-L.; Pei, L.; Jones, J.; Zhou, Y.-N.; Dong, P.; Wang, L.; Ye, M.; Shen, J. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Storage Mater. 2022, 45, 568–577. [Google Scholar] [CrossRef]
- Dong, C.; Xu, F.; Chen, L.; Chen, Z.; Cao, Y. Design Strategies for High-Voltage Aqueous Batteries. Small Struct. 2021, 2, 2100001. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Adv. Energy Mater. 2020, 10, 2001791. [Google Scholar] [CrossRef]
- Long, F.; Zhang, Q.; Shi, J.; Wen, L.; Wu, Y.; Ren, Z.; Liu, Z.; Hou, Y.; Mao, K.; Niu, K.; et al. Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1 T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J. 2022, 455, 140539. [Google Scholar] [CrossRef]
- Shi, J.; Hou, Y.; Liu, Z.; Zheng, Y.; Wen, L.; Su, J.; Li, L.; Liu, N.; Zhang, Z.; Gao, Y. The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 2022, 91, 106651. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Li, J.; Yuan, Z.; Li, D.; Wang, L.; Han, W. Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties. Chem. Eng. J. 2022, 430, 132992. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Z.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D.; Chen, B.; Wei, W.; Chen, X.; Liu, Z.; et al. Sulfonic-Group-Grafted Ti3C2Tx MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano 2021, 15, 9065–9075. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021, 5, 2993–3005. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al. Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano 2021, 15, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
Etching Method | Surface Terminals | Ref. | |
---|---|---|---|
Fluorine-containing etching | HF | -F, -OH, -O | [14] |
HCl+LiF/NaF/KF | -F, -OH, -O, -Cl | [30,31] | |
NH4HF2 | [33] | ||
LiF+NaF+KF | -F, -OH, -O | [34] | |
Fluorine-free etching | NaOH | -OH, -O | [42] |
Electrochemistry (NH4Cl+TMAOH) | -OH, -O | [43] | |
Intercalation-alloying-expansion-micro-explosion | -OH, -O | [44] | |
Lewis acid molten salt | -O, -NH, -S, -Cl, -Se, -Br, -Te | [46,47] | |
Non-etching method | CVD | / | [48,49] |
Name | Sheet Resistance, Ω sq−1 | Resistivity, Ω m | Ref. |
---|---|---|---|
Ti2C | 339 | 0.068 | [18] |
TiNbC | 171 | 0.052 | |
Ti3CNx | 125 | 0.037 | |
Ta4C3 | 104 | 0.021 | |
Ti3C2 | 22 | 0.005 | |
Mo1.33C | / | 0.033 | [20] |
Mo2C | / | 0.6 | |
graphene | 350 | / | [74] |
Application | Material | Cycling Performance | Rate Performance Capacity (mAh g−1) [Overpotential of Zn Deposition (mV)] | Ref. | ||
---|---|---|---|---|---|---|
Current Density (A g−1) | Capacity Retention (mAh g−1) | CycleNumber | ||||
Anode * | Ti3C2Tx@Zn | 1 | 1 | 300h | ∼83 at 1 mA cm−2 | [125] |
MGA@Zn | 10 | 1 | 1050h | ∼64 at 10 mA cm−2 | [126] | |
Ti3C2Tx@Zn | 1 | 0.5 | 200h | 30 at 1 mA cm−2 | [128] | |
MZn | 0.2 | 0.2 | 800h | 112 at 5 mA cm−2 | [130] | |
Ti3C2Cl2@Zn | 2 | 1 | 840h | 103 at 10 mA cm−2 | [131] | |
S/Ti3C2Tx@ZnS@Zn | 0.5 | 0.5 | 1600h | 142 at 10 mA cm−2 | [133] | |
MX/CS | 1 | 1 | 2100h | ~300 at 10 mA cm−2 | [134] | |
Ti3C2Tx@Sb-300 | 0.5 | 0.5 | 1000h | ~300 at 10 mA cm−2 | [135] | |
Ti3C2Tx additive | 2 | 1 | 1180 | ~160 at 4 mA cm−2 | [138] | |
Ti3C2Tx-g-PMA | 0.1 | 0.1 | 1200h | / | [139] | |
NHVO@Ti3C2Tx | 500 | 331.8 | 500 | 135.1 at 5 A g1 | [136] | |
Ti3C2Tx-TiS2 | 125.7 | 129.6 | / | 97.5 at 1.2566 A g1 | [137] | |
MXene-based composites | 3D Ti3C2Tx@MnO2 | 0.5 | 237 | 2000 | 202.2 at 2 A g−1 | [100] |
MnOx@Ti3C2Tx | 5 | 50 | 400 | ~35 at 10 A g−1 | [150] | |
ZMO@Ti3C2Tx | 1 | 159.5 | 5000 | 84.5 at 4 A g−1 | [151] | |
K-V2C@MnO2 | 10 | 119.2 | 10,000 | 87.7 at 15 A g−1 | [152] | |
V2O5·nH2O/Ti3C2Tx | 0.1 | 223 | 50 | 225 at 2 A g−1 | [153] | |
H2V3O8/MXene | 5 | 159.3 | 5600 | 73.1 at 20 A g−1 | [155] | |
VO2/Ti3C2Tx | 2 | 126.6 | 7000 | 94.05 at 5 A g−1 | [156] | |
VPMX | 10 | ∼99.5% | 5000 | 243.6 at 5 A g−1 | [157] | |
V2CTx | 10 | 202 | 16,000 | 141.8 at 20 A g−1 | [158] | |
VOx/V2CTx | 30 | 283.7 | 2000 | 358 at 30 A g−1 | [159] | |
V2O5@V2C | 4 | 252.3 | 2000 | 290 at 4 A g−1 | [160] | |
Derivative V2O5 | 2 | 279 | 3500 | 250.4 at 8 A g−1 | [161] | |
V2Ox@V2CTx | 1 | 87.74 | 200 | 84 at 2 A g−1 | [162] | |
VO2@V2COx | 5 | 327 | 1500 | 327 at 5 A g−1 | [95] | |
VC-ZVO | 10 | 223.9 | 8000 | 184.3 at 20 A g−1 | [163] | |
MVO@VC | 10 | 287.6 | 25,000 | 235.5 at 22 A g−1 | [164] | |
V2AlC | 5 | 240 | 1500 | 97.5 at 64 A g−1 | [166] | |
1 T-MoS2/Ti3C2 | 1 | 177 | 3000 | 105.2 at 10 A g−1 | [167] | |
MoO3−x/Ti3C2Tx | 4 | 51.65 | 1600 | 110.6 at 4 A g−1 | [168] | |
VSe2@V2CTx | 2 | 158.1 | 600 | 132.7 at 2 A g−1 | [97] | |
CNMV | 0.2 | 322.7 | 100 | 51.4 at 5 A g−1 | [169] | |
S-Ti3C2Tx/PANI | 15 | 103 | 5000 | 160 at 15 A g−1 | [170] | |
Redox cathode | Nb2CTx | 1 | 121 | 1800 | 77 at 6 A g−1 | [171] |
Ti3C2Br2 | 4 | 80% | 1000 | 67.2 at 15 A g−1 | [172] | |
Ti3C2I2 | 4 | 80% | 700 | 101 at 15 A g−1 | [172] | |
Classic cathode material | MnO2 | 0.5 | ~75 | 2000 | 125.4 at 2 A g−1 | [100] |
V2O5·nH2O | 0.1 | 142 | 50 | 2 at 2 A g−1 | [153] | |
1 T-MoS2 | 1 | ~100 | 1000 | 78.5 at 10 A g−1 | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Pan, Z.; Chen, H.; Pu, X.; Chen, Z. MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries 2023, 9, 174. https://doi.org/10.3390/batteries9030174
Wang C, Pan Z, Chen H, Pu X, Chen Z. MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries. 2023; 9(3):174. https://doi.org/10.3390/batteries9030174
Chicago/Turabian StyleWang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu, and Zhongxue Chen. 2023. "MXene-Based Materials for Multivalent Metal-Ion Batteries" Batteries 9, no. 3: 174. https://doi.org/10.3390/batteries9030174
APA StyleWang, C., Pan, Z., Chen, H., Pu, X., & Chen, Z. (2023). MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries, 9(3), 174. https://doi.org/10.3390/batteries9030174