Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance
Abstract
:1. Introduction
2. Experimental
2.1. Material Synthesis
2.2. Characterization Methods
2.3. Cell Assemble and Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Deng, S.; Wang, H.; Liu, J.; Yan, H. Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nanomicro Lett. 2017, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Xie, X.; Wei, X.; Zhang, X.; Zhang, J.; Huang, Y.; Li, Q. A New Strategy to Stabilize Capacity and Insight into the Interface Behavior in Electrochemical Reaction of LiNi0.5Mn1.5O4/Graphite System for High-Voltage Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 33274–33287. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Xu, H.; Zhang, H.; Tang, Y.; Cui, G. Electrolyte Therapy for Improving the Performance of LiNi0.5Mn1.5O4 Cathodes Assembled Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 21368–21385. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, X.; Chart, Y.; Tang, P.; Bae, J.G.; Narayanan, S.; Lee, J.H.; Potter, R.J.; Sun, Y.; Pasta, M. LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries. Nano Lett. 2022, 22, 7477–7483. [Google Scholar] [CrossRef]
- Spence, S.L.; Hu, A.; Jiang, M.; Xu, Z.; Yang, Z.; Rahman, M.M.; Li, L.; Chu, Y.S.; Xiao, X.; Huang, X.; et al. Mapping Lattice Distortions in LiNi0.5Mn1.5O4 Cathode Materials. ACS Energy Lett. 2022, 7, 690–695. [Google Scholar] [CrossRef]
- Zhang, Q.; Mei, J.; Wang, X.; Tang, F.; Fan, W.; Lu, W. High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim. Acta 2014, 143, 265–271. [Google Scholar] [CrossRef]
- Kocak, T.; Wu, L.; Ugur, A.; Shen, L.; De Giorgio, F.; Kunduraci, M.; Zhang, X. Effect of doping amount on capacity retention and electrolyte decomposition of LiNi0.5Mn1.5O4-based cathode at high temperature. J. Solid State Chem. 2022, 310, 123006. [Google Scholar] [CrossRef]
- Zhou, H.; Xiao, D.; Yin, C.; Yang, Z.; Xiao, K.; Li, J. Enhanced performance of the electrolytes based on sulfolane and lithium difluoro(oxalate)borate with enhanced interfacial stability for LiNi0.5Mn1.5O4 cathode. J. Electroanal. Chem. 2018, 808, 293–302. [Google Scholar] [CrossRef]
- Park, S.B.; Eom, W.S.; Cho, W.I.; Jang, H. Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J. Power Sources 2006, 159, 679–684. [Google Scholar] [CrossRef]
- Liu, M.-H.; Huang, H.-T.; Lin, C.-M.; Chen, J.-M.; Liao, S.-C. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim. Acta 2014, 120, 133–139. [Google Scholar] [CrossRef]
- Shin, D.W.; Bridges, C.A.; Huq, A.; Paranthaman, M.P.; Manthiram, A. Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 3720–3731. [Google Scholar] [CrossRef]
- Tian, T.; Lu, L.L.; Yin, Y.C.; Tan, Y.H.; Zhang, T.W.; Li, F.; Yao, H.B. Trace Doping of Multiple Elements Enables Stable Cycling of High Areal Capacity LiNi0.5Mn1.5O4 Cathode. Small 2022, 18, e2106898. [Google Scholar] [CrossRef] [PubMed]
- Chladil, L.; Kunický, D.; Kazda, T.; Vanýsek, P.; Čech, O.; Bača, P. In-situ XRD study of a Chromium doped LiNi0.5Mn1.5O4 cathode for Li-ion battery. J. Energy Stor. 2021, 41, 102907. [Google Scholar] [CrossRef]
- Liang, G.; Peterson, V.K.; Wu, Z.; Zhang, S.; Hao, J.; Lu, C.Z.; Chuang, C.H.; Lee, J.F.; Liu, J.; Leniec, G.; et al. Crystallographic-Site-Specific Structural Engineering Enables Extraordinary Electrochemical Performance of High-Voltage LiNi0.5Mn1.5O4 Spinel Cathodes for Lithium-Ion Batteries. Adv. Mater. 2021, 33, e2101413. [Google Scholar] [CrossRef]
- Feng, F.; Liang, C.; Fang, H.; Yang, B.; Ma, W.; Dai, Y. Chloride-promoted formation of octahedral LiNi0.5Mn1.5O4 crystal with greatly enhanced electrochemical performance. Ceram. Intern. 2016, 42, 9038–9045. [Google Scholar] [CrossRef]
- Yi, T.-F.; Li, Y.-M.; Li, X.-Y.; Pan, J.-J.; Zhang, Q.; Zhu, Y.-R. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci. Bull. 2017, 62, 1004–1010. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Huang, Z.; Guo, C.; Chernova, N.A.; Upreti, S.; Whittingham, M.S. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl. Mater. Interfaces 2013, 5, 10227–10232. [Google Scholar] [CrossRef]
- Nakayama, M.; O, M.; Kajihara, M. Experimental Observation on Solid-State Reactive Diffusion between Sn–Ag Alloys and Ni. Mater. Tran. 2017, 58, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, R.-Z.; Zhang, B.; Skurikhina, O.; Balaz, P.; Araullo-Peters, V.; Reece, M.J. The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high entropy ceramics. Corr. Sci. 2020, 176, 109019. [Google Scholar] [CrossRef]
- Beke, D.L.; Erdélyi, G. On the diffusion in high-entropy alloys. Mater. Lett. 2016, 164, 111–113. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Zhang, X.; Cheng, F.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fdm). Nano Res. 2013, 6, 679–687. [Google Scholar] [CrossRef]
- Yin, C.; Zhou, H.; Yang, Z.; Li, J. Synthesis and Electrochemical Properties of LiNi0.5Mn1.5O4 for Li-Ion Batteries by the Metal-Organic Framework Method. ACS Appl. Mater. Interfaces 2018, 10, 13625–13634. [Google Scholar] [CrossRef]
- Song, J.; Shin, D.W.; Lu, Y.; Amos, C.D.; Manthiram, A.; Goodenough, J.B. Role of Oxygen Vacancies on the Performance of Li[Ni0.5–xMn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 3101–3109. [Google Scholar] [CrossRef]
- Spence, S.L.; Xu, Z.; Sainio, S.; Nordlund, D.; Lin, F. Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4-delta: Exploring the Influence of LiCl-KCl Molten Salt Flux Composition and Synthesis Temperature. Inorg. Chem. 2020, 59, 10591–10603. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Lee, J.-H.; Kim, B.-K.; Shin, H.; Kim, J.; Park, S. Nano-interface engineering in all-solid-state lithium metal batteries: Tailoring exposed crystal facets of epitaxially grown LiNi0.5Mn1.5O4 films. Nano Energy 2021, 79, 105480. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Zhang, X.; Ling, P.; Xu, K.; He, L.; Su, S.; Wang, Y.; Hu, S.; Xiang, J. Chemical imaging of coal in micro-scale with Raman mapping technology. Fuel 2020, 264, 116826. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Xia, X.; Zhu, Z.; Chen, L.; Chen, Z. Recent Advances in Multifunctional Graphitic Nanocapsules for Raman Detection, Imaging, and Therapy. Small Methods 2020, 4, 1900440. [Google Scholar] [CrossRef]
- Dauth, A.; Love, J.A. Synthesis and reactivity of 2-azametallacyclobutanes. Dalton Trans. 2012, 41, 7782–7791. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Xiao, X.; Cheng, Y.T.; Liang, C.; Dudney, N.J. Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 13732–13735. [Google Scholar] [CrossRef]
- Feng, X.; Shen, C.; Fang, X.; Chen, C. Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. J. Alloys Comp. 2011, 509, 3623. [Google Scholar] [CrossRef]
- Chong, J.; Xun, S.; Song, X.; Liu, G.; Battaglia, V.S. Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries. Nano Energy 2013, 2, 283–293. [Google Scholar] [CrossRef]
- Liu, G.; Kong, X.; Sun, H.; Wang, B.; Yi, Z.; Wang, Q. A facile template method to synthesize significantly improved LiNi0.5Mn1.5O4 using corn stalk as a bio-template. Electrochim. Acta 2014, 141, 141–148. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, F.; Zhang, K.; Liang, Y.; Yang, S.; Liang, J.; Chen, J. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Adv. 2012, 2, 5669. [Google Scholar] [CrossRef]
- Sun, H.; Hu, A.; Spence, S.; Kuai, C.; Hou, D.; Mu, L.; Liu, J.; Li, L.; Sun, C.; Sainio, S.; et al. Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High-Voltage LiNi0.5Mn1.5O4 Spinel Cathode Materials. Adv. Funct. Mater. 2022, 32, 2112279. [Google Scholar] [CrossRef]
- Feng, X.; Zou, H.; Xiang, H.; Guo, X.; Zhou, T.; Wu, Y.; Xu, W.; Yan, P.; Wang, C.; Zhang, J.; et al. Ultrathin Li4Ti5O12 Nanosheets as Anode Materials for Lithium and Sodium Storage. ACS Appl. Mater. Interfaces 2016, 8, 16718. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liang, F.; Jin, J.; Chowdari, B.V.R.; Yang, J.; Wen, Z. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Engin. J. 2020, 389, 124403. [Google Scholar] [CrossRef]
- Yang, H.; Fu, C.; Sun, Y.; Wang, L.; Liu, T. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon 2020, 158, 102–109. [Google Scholar] [CrossRef]
- Li, F.; Ma, J.; Lin, J.; Zhang, X.; Yu, H.; Yang, G. Exploring the origin of electrochemical performance of Cr-doped LiNi0.5Mn1.5O4. Phys. Chem. Chem. Phys. 2020, 22, 3831–3838. [Google Scholar] [CrossRef]
- Gu, Y.-J.; Li, Y.; Chen, Y.-B.; Liu, H.-Q. Comparison of Li/Ni antisite defects in Fd-3m and P4332 nanostructured LiNi0.5Mn1.5O4 electrode for Li-ion batteries. Electrochim. Acta 2016, 213, 368–374. [Google Scholar] [CrossRef]
- Nazario-Naveda, R.; Rojas-Flores, S.; Juárez-Cortijo, L.; Gallozzo-Cardenas, M.; Díaz, F.N.; Angelats-Silva, L.; Benites, S.M. Effect of x on the Electrochemical Performance of Two-Layered Cathode Materials xLi2MnO3–(1−x)LiNi0.5Mn0.5O2. Batteries 2022, 8, 63. [Google Scholar] [CrossRef]
- Qiao, Y.Q.; Tu, J.P.; Wang, X.L.; Gu, C.D. The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries. J. Power Sources 2012, 199, 287–292. [Google Scholar] [CrossRef]
After 3 Cycles at 0.1 C | After 100 Cycles at 1 C | |||||
---|---|---|---|---|---|---|
Samples | Re (Ω) | Rf (Ω) | Rct (Ω) | Re (Ω) | Rf (Ω) | Rct (Ω) |
LNMO | 1.5 | - | 77.7 | 1.2 | 80.1 | 79.0 |
T-LNMO | 1.6 | - | 40.3 | 0.9 | 79.0 | 49.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Zuo, S.; Zhang, X.; Feng, X. Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance. Batteries 2023, 9, 91. https://doi.org/10.3390/batteries9020091
Wu W, Zuo S, Zhang X, Feng X. Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance. Batteries. 2023; 9(2):91. https://doi.org/10.3390/batteries9020091
Chicago/Turabian StyleWu, Wentao, Shuai Zuo, Xu Zhang, and Xuyong Feng. 2023. "Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance" Batteries 9, no. 2: 91. https://doi.org/10.3390/batteries9020091
APA StyleWu, W., Zuo, S., Zhang, X., & Feng, X. (2023). Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance. Batteries, 9(2), 91. https://doi.org/10.3390/batteries9020091