Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of LiNi0.8Co0.1Mn0.1O2 (NCM811)
2.2. Material Characterization Method
2.3. Coin Cell Fabrication Method of ASSLBs
2.4. Electrochemical Characterization Method
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Zeng, Z.; Cheng, J.; Li, Y.; Zhang, H.; Li, D.; Liu, H.; Ji, F.; Sun, Q.; Ci, L. Composite Cathode for All-Solid-State Lithium Batteries: Progress and Perspective. Mater. Today Phys. 2023, 32, 101009. [Google Scholar] [CrossRef]
- Castelvecchi, D.; Stoye, E. World-Changing Batteries win Nobel. Nature 2019, 574, 308. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A Review of Composite Solid-State Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring Inorganic–Polymer Composites for the Mass Production of Solid-State Batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver–Carbon Composite Anodes. Nat. Energy 2020, 5, 299–308. [Google Scholar] [CrossRef]
- Peng, L.; Yu, C.; Cheng, S.; Xie, J. Halogen-Rich Lithium Argyrodite Solid-State Electrolytes: A Review. Batter. Supercaps 2023, 6, e202200553. [Google Scholar] [CrossRef]
- Park, C.; Lee, S.; Kim, K.; Kim, M.; Choi, S.; Shin, D. Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries. J. Electrochem. Soc. 2019, 166, A5318. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131. [Google Scholar] [CrossRef]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Review on Composite Solid Electrolytes for Solid-State Lithium-Ion Batteries. Mater. Today Sustain. 2023, 21, 100316. [Google Scholar] [CrossRef]
- Al-Salih, H.; Houache, M.S.E.; Baranova, E.A.; Abu-Lebdeh, Y.J.A.E.; Research, S. Composite Cathodes for Solid-State Lithium Batteries: “Catholytes” the Underrated Giants. Adv. Sustain. Syst. 2022, 3, 2200032. [Google Scholar] [CrossRef]
- Phattharasupakun, N.; Bunyanidhi, P.; Chiochan, P.; Chanlek, N.; Sawangphruk, M. Effect of Charging Protocols on Electrochemical Performance and Failure Mechanism of Commercial Level Ni-rich NMC811 Thick Electrode. Electrochem. Commun. 2022, 139, 107309. [Google Scholar] [CrossRef]
- Zhang, W.; Leichtweiß, T.; Culver, S.P.; Koerver, R.; Das, D.; Weber, D.A.; Zeier, W.G.; Janek, J. The Detrimental Effects of Carbon Additives in Li10GeP2S12-Based Solid-State Batteries. ACS Appl. Mater. Interfaces 2017, 9, 35888–35896. [Google Scholar] [CrossRef] [PubMed]
- Embleton, T.J.; Yun, J.; Choi, J.H.; Kim, J.; Ko, K.; Kim, J.; Son, Y.; Oh, P. Lithium-enhanced functionalized carbon nanofibers as a mixed electronic/ionic conductor for sulfide all solid-state batteries. Appl. Surf. Sci. 2023, 610, 155490. [Google Scholar] [CrossRef]
- Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. Chem. Mater. 2016, 28, 2634–2640. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Wu, E.A.; Nguyen, H.; Chen, Z.; Marple, M.A.T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y.S. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Lett. 2019, 4, 2418–2427. [Google Scholar] [CrossRef]
- Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. Adv. Energy Mater. 2016, 6, 1501590. [Google Scholar] [CrossRef]
- Jalem, R.; Morishita, Y.; Okajima, T.; Takeda, H.; Kondo, Y.; Nakayama, M.; Kasuga, T. Experimental and First-Principles DFT Study on The Electrochemical Reactivity of Garnet-Type Solid Electrolytes with Carbon. J. Mater. Chem. A 2016, 4, 14371–14379. [Google Scholar] [CrossRef]
- Randau, S.; Walther, F.; Neumann, A.; Schneider, Y.; Negi, R.S.; Mogwitz, B.; Sann, J.; Becker-Steinberger, K.; Danner, T.; Hein, S.; et al. On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. Chem. Mater. 2021, 33, 1380–1393. [Google Scholar] [CrossRef]
- Deng, S.; Sun, Y.; Li, X.; Ren, Z.; Liang, J.; Doyle-Davis, K.; Liang, J.; Li, W.; Norouzi Banis, M.; Sun, Q.; et al. Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Lett. 2020, 5, 1243–1251. [Google Scholar] [CrossRef]
- Noh, S.; Nichols, W.T.; Cho, M.; Shin, D. Importance of Mixing Protocol for Enhanced Performance of Composite Cathodes in All-Solid-State Batteries Using Sulfide Solid Electrolyte. J. Electroceram. 2018, 40, 293–299. [Google Scholar] [CrossRef]
- Lee, N.; Lee, J.; Lee, T.; Oh, J.; Hwang, I.; Seo, G.; Kim, H.; Choi, J.W. Interfaces, Rationally Designed Solution-Processible Conductive Carbon Additive Coating for Sulfide-based All-Solid-State Batteries. J. Am. Chem. Soc. 2023, 15, 34931–34940. [Google Scholar]
- Choi, J.H.; Choi, S.; Embleton, T.J.; Ko, K.; Saqib, K.S.; Ali, J.; Jo, M.; Hwang, J.; Park, S.; Kim, M.; et al. The Effect of Conductive Additive Morphology and Crystallinity on the Electrochemical Performance of Ni-Rich Cathodes for Sulfide All-Solid-State Lithium-Ion Batteries. Nanomaterials 2023, 13, 3065. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Wang, Z.; Chang, Y.; Yin, W.; Xu, Z.; Zeng, Y.; Yan, G.; Wang, J. Multi-scale boron penetration toward stabilizing nickel-rich cathode. Fundam. Res. 2023, 3, 618–626. [Google Scholar] [CrossRef]
- Yen, Y.-J.; Chung, S.-H. Lithium–sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. J. Mater. Chem. 2023, 11, 4519–4526. [Google Scholar] [CrossRef]
- Strauss, F.; Teo, J.H.; Maibach, J.; Kim, A.Y.; Mazilkin, A.; Janek, J.; Brezesinski, T. Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS Appl. Mater. Interfaces 2020, 12, 57146–57154. [Google Scholar] [CrossRef]
- Ito, S.; Fujiki, S.; Yamada, T.; Aihara, Y.; Park, Y.; Kim, T.Y.; Baek, S.-W.; Lee, J.-M.; Doo, S.; Machida, N. A Rocking Chair Type All-Solid-State Lithium Ion Battery Adopting Li2O–ZrO2 Coated LiNi0.8Co0.15Al0.05O2 and a Sulfide Based Electrolyte. J. Power Sources 2014, 248, 943–950. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Yang, J.; Wang, J.; Yao, L.; Yao, X.; Cui, P.; Xu, X. Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium Anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. ACS Appl. Mater. Interfaces 2018, 10, 2556–2565. [Google Scholar] [CrossRef]
- Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Takahashi, M. Slurry Mixing for Fabricating Silicon-Composite Electrodes in All-Solid-State Batteries with High Areal Capacity and Cycling Stability. J. Power Sources 2018, 402, 506–512. [Google Scholar] [CrossRef]
- Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power Sources 2018, 393, 75–82. [Google Scholar] [CrossRef]
Sample | Charge Capacity (mAh/g) | Discharge Capacity (mAh/g) | ICE (%) | Discharge Capacity @ 1st (mAh/g) | Discharge Capacity @ 50th (mAh/g) | Capacity Retention @ 50th (%) |
---|---|---|---|---|---|---|
CB-composite | 187.4 | 110.2 | 58.8 | 61.4 | 16.7 | 27.1 |
CNF-composite | 225.9 | 194.7 | 86.2 | 164.5 | 129.6 | 78.8 |
Sample | Rbulk (Ω) | RGB (Ω) | RCT (Ω) | |
---|---|---|---|---|
CB-composite | After formation | 36.5 | 59.1 | 648.1 |
After 50th cycle | 71.8 | 152.4 | 800.5 | |
CNF-composite | After formation | 37.2 | 19.8 | 302.5 |
After 50th cycle | 41.9 | 35.0 | 428.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.H.; Choi, S.; Embleton, T.J.; Ko, K.; Saqib, K.S.; Jo, M.; Hwang, J.; Park, S.; Son, Y.; Oh, P. Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries. Batteries 2023, 9, 590. https://doi.org/10.3390/batteries9120590
Choi JH, Choi S, Embleton TJ, Ko K, Saqib KS, Jo M, Hwang J, Park S, Son Y, Oh P. Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries. Batteries. 2023; 9(12):590. https://doi.org/10.3390/batteries9120590
Chicago/Turabian StyleChoi, Jae Hong, Sumyeong Choi, Tom James Embleton, Kyungmok Ko, Kashif Saleem Saqib, Mina Jo, Junhyeok Hwang, Sungwoo Park, Yoonkook Son, and Pilgun Oh. 2023. "Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries" Batteries 9, no. 12: 590. https://doi.org/10.3390/batteries9120590
APA StyleChoi, J. H., Choi, S., Embleton, T. J., Ko, K., Saqib, K. S., Jo, M., Hwang, J., Park, S., Son, Y., & Oh, P. (2023). Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries. Batteries, 9(12), 590. https://doi.org/10.3390/batteries9120590