Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Diffraction
2.2. Raman Characterization
2.3. Defocused Micro-SORS
2.4. Step-Like System Assembly
2.5. Electrode–Aperture System Assembly
3. Results
3.1. Constituent Characterization
3.2. Investigation into Defocused Micro-SORS Applicability Using a Step-Like System
3.2.1. Raman Spectra of the Step-Like System Constituents
3.2.2. Defocused Micro-SORS of Assembled Step-Like System
- The signal from the lithium surface (measurement 7) could be observed through the lithium carbonate artificial SEI (measurement 8), and through both the PEO/LiTFSI membrane and artificial SEI (measurement 9). However, this signal could not be observed through the LTO cathode (measurement 10).
- The artificial SEI signal (measurement 4) could be observed through the PEO/LiTFSI membrane (measurement 5), but not the LTO cathode (measurement 6).
- The PEO/LiTFSI membrane (measurement 2) itself could not be observed through the LTO cathode (measurement 3), as the associated visible PEO and LiTFSI peaks are from the catholyte, and no significant additional contribution from the membrane could be detected.
3.3. Investigation into Micro-SORS Applicability Using an Electrode–Aperture System
- As in conventional Raman cells used for in situ measurements, it was possible to measure the LTO cathode through the mesh current collector.
- Additionally, the solid electrolyte could be easily detected through the electrode aperture, implying that this approach would be appropriate for detecting the electrolyte and subsequent layers within a conventional configuration.
- Finally, a signal at ca. 1850 cm−1 observed for the bare lithium metal could also be detected in the lithium metal spectrum obtained through the solid electrolyte (this band may be attributed to the stretching mode for a C≡C group within residual surface Li2C2) [60]. This demonstrates that it is possible to use the electrode–aperture configuration to nondestructively investigate layers beneath the solid electrolyte.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, L.; Liu, Y.; Wei, H.; Yan, C.; He, Z.; Li, Y.; Zheng, J. Boosting Cell Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Material via Structure Design. J. Energy Chem. 2021, 55, 114–123. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; He, Z.; Li, Y.; Mao, J.; Dai, K.; Yan, C.; Zheng, J. An Advance Review of Solid-State Battery: Challenges, Progress and Prospects. Sustain. Mater. Technol. 2021, 29, e00297. [Google Scholar] [CrossRef]
- Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mat. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J.; Guo, F.; Wu, Y.A.; Rong, Y.; Kou, R.; Xiao, X.; et al. Approaching the Capacity Limit of Lithium Cobalt Oxide in Lithium Ion Batteries via Lanthanum and Aluminium Doping. Nat. Energy 2018, 3, 936–943. [Google Scholar] [CrossRef]
- Pasta, M.; Armstrong, D.; Brown, Z.L.; Bu, J.; Castell, M.R.; Chen, P.; Cocks, A.; Corr, S.A.; Cussen, E.J.; Darnbrough, E.; et al. 2020 Roadmap on Solid-State Batteries. J. Phys. Energy 2020, 2, 032008. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Wang, M.J.; Choudhury, R.; Sakamoto, J. Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density. Joule 2019, 3, 2165–2178. [Google Scholar] [CrossRef]
- Yang, M.; Mo, Y. Interfacial Defect of Lithium Metal in Solid-State Batteries. Angew. Chem. 2021, 133, 21664–21671. [Google Scholar] [CrossRef]
- Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G.O.; Marrow, J.; Bruce, P.G. Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells. Nat. Mater. 2019, 18, 1105–1111. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. [Google Scholar] [CrossRef] [Green Version]
- Orue, A.; Arrese-Igor, M.; Cid, R.; Júdez, X.; Gómez, N.; López del Amo, J.M.; Manalastas, W.; Srinivasan, M.; Rojviriya, C.; Armand, M.; et al. Enhancing the Polymer Electrolyte–Li Metal Interface on High-Voltage Solid-State Batteries with Li-Based Additives Inspired by the Surface Chemistry of Li7La3Zr2O12. J. Mater. Chem. A 2022, 10, 2352–2361. [Google Scholar] [CrossRef]
- Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries. Chem. Rev. 2010, 110, 1278–1319. [Google Scholar] [CrossRef]
- Tripathi, A.M.; Su, W.-N.; Hwang, B.J. In Situ Analytical Techniques for Battery Interface Analysis. Chem. Soc. Rev. 2018, 47, 736–851. [Google Scholar] [CrossRef]
- Flores, E.; Novák, P.; Berg, E.J. In Situ and Operando Raman Spectroscopy of Layered Transition Metal Oxides for Li-Ion Battery Cathodes. Front. Energy Res. 2018, 6, 82. [Google Scholar] [CrossRef]
- Flores, E.; Novák, P.; Aschauer, U.; Berg, E.J. Cation Ordering and Redox Chemistry of Layered Ni-Rich LixNi1–2yCoyMnyO2: An Operando Raman Spectroscopy Study. Chem. Mater. 2020, 32, 186–194. [Google Scholar] [CrossRef]
- Jehnichen, P.; Korte, C. Operando Raman Spectroscopy Measurements of a High-Voltage Cathode Material for Lithium-Ion Batteries. Anal. Chem. 2019, 91, 8054–8061. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Kuwata, N.; Okawa, T.; Dorai, A.; Kamishima, O.; Kawamura, J. In Situ Raman Spectroscopy of Li CoO2 Cathode in Li/Li3PO4/LiCoO2 All-Solid-State Thin-Film Lithium Battery. Solid State Ion. 2019, 335, 7–14. [Google Scholar] [CrossRef]
- Otoyama, M.; Ito, Y.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Reaction Uniformity Visualized by Raman Imaging in the Composite Electrode Layers of All-Solid-State Lithium Batteries. Phys. Chem. Chem. Phys. 2020, 22, 13271–13276. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Lee, J.Z.; Banerjee, A.; Meng, Y.S. In Situ and Operando Probing of Solid–Solid Interfaces in Electrochemical Devices. MRS Bull. 2018, 43, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Long, D.A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules; Wiley: New York, NY, USA, 2002; ISBN 978-0-471-49028-9. [Google Scholar]
- Ferraro, J.R.; Nakamoto, K.; Brown, C.W. Introductory Raman Spectroscopy, 2nd ed.; Academic Press: Boston, MA, USA, 2003; ISBN 978-0-12-254105-6. [Google Scholar]
- Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 21. [Google Scholar] [CrossRef]
- Mosca, S.; Dey, P.; Salimi, M.; Gardner, B.; Palombo, F.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy-How Deep? Anal. Chem. 2021, 93, 6755–6762. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Chao, K.; Dhakal, S.; Qin, J.; Kim, M.S.; Peng, Y.; Schmidt, W.F. Depth of Penetration of a 785 nm Wavelength Laser in Food Powders. In Proceedings of the Sensing for Agriculture and Food Quality and Safety VII, Baltimore, MD, USA, 20–24 April 2015; Volume 9488, pp. 111–119. [Google Scholar]
- Sekar, S.K.V.; Mosca, S.; Farina, A.; Martelli, F.; Taroni, P.; Valentini, G.; Cubeddu, R.; Pifferi, A. Frequency Offset Raman Spectroscopy (FORS) for Depth Probing of Diffusive Media. Opt. Express OE 2017, 25, 4585–4597. [Google Scholar] [CrossRef] [Green Version]
- Mosca, S.; Lanka, P.; Stone, N.; Sekar, S.K.V.; Matousek, P.; Valentini, G.; Pifferi, A. Optical Characterization of Porcine Tissues from Various Organs in the 650–1100 Nm Range Using Time-Domain Diffuse Spectroscopy. Biomed. Opt. Express 2020, 11, 1697–1706. [Google Scholar] [CrossRef]
- Mosca, S.; Dey, P.; Salimi, M.; Gardner, B.; Palombo, F.; Stone, N.; Matousek, P. Estimating the Reduced Scattering Coefficient of Turbid Media Using Spatially Offset Raman Spectroscopy. Anal. Chem. 2021, 93, 3386–3392. [Google Scholar] [CrossRef]
- Eliasson, C.; Matousek, P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy. Anal. Chem. 2007, 79, 1696–1701. [Google Scholar] [CrossRef]
- Matousek, P.; Parker, A.W. Non-Invasive Probing of Pharmaceutical Capsules Using Transmission Raman Spectroscopy. J. Raman Spectrosc. 2007, 38, 563–567. [Google Scholar] [CrossRef]
- Eliasson, C.; Macleod, N.A.; Matousek, P. Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy. Anal. Chem. 2007, 79, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Cowcher, D.P.; Ashton, L.; O’Hagan, S.; Goodacre, R. Illuminating Disease and Enlightening Biomedicine: Raman Spectroscopy as a Diagnostic Tool. Analyst 2013, 138, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Chao, K.; Kim, M.S. Nondestructive Evaluation of Internal Maturity of Tomatoes Using Spatially Offset Raman Spectroscopy. Postharvest Biol. Technol. 2012, 71, 21–31. [Google Scholar] [CrossRef]
- Conti, C.; Botteon, A.; Colombo, C.; Pinna, D.; Realini, M.; Matousek, P. Advances in Raman Spectroscopy for the Non-Destructive Subsurface Analysis of Artworks: Micro-SORS. J. Cult. Herit. 2020, 43, 319–328. [Google Scholar] [CrossRef]
- Botteon, A.; Yiming, J.; Prati, S.; Sciutto, G.; Realini, M.; Colombo, C.; Castiglioni, C.; Matousek, P.; Conti, C. Non-Invasive Characterisation of Molecular Diffusion of Agent into Turbid Matrix Using Micro-SORS. Talanta 2020, 218, 121078. [Google Scholar] [CrossRef]
- Tournié, A.; Fleischer, K.; Bukreeva, I.; Palermo, F.; Perino, M.; Cedola, A.; Andraud, C.; Ranocchia, G. Ancient Greek Text Concealed on the Back of Unrolled Papyrus Revealed through Shortwave-Infrared Hyperspectral Imaging. Sci. Adv. 2019, 5, eaav8936. [Google Scholar] [CrossRef] [Green Version]
- Orue Mendizabal, A.; Gomez, N.; Aguesse, F.; López-Aranguren, P. Designing Spinel Li4Ti5O12 Electrode as Anode Material for Poly(Ethylene)Oxide-Based Solid-State Batteries. Materials 2021, 14, 1213. [Google Scholar] [CrossRef]
- Brooker, M.H.; Bates, J.B. Raman and Infrared Spectral Studies of Anhydrous Li2CO3 and Na2CO3. J. Chem. Phys. 1971, 54, 4788–4796. [Google Scholar] [CrossRef]
- Kohara, S.; Koura, N.; Idemoto, Y.; Takahashi, S.; Saboungi, M.-L.; Curtiss, L.A. The Structure of LiKCO3 Studied by Ab Initio Calculations and Raman Spectroscopy. J. Phys. Chem. Solids 1998, 59, 1477–1485. [Google Scholar] [CrossRef]
- Koura, N.; Kohara, S.; Takeuchi, K.; Takahashi, S.; Curtiss, L.A.; Grimsditch, M.; Saboungi, M.-L. Alkali Carbonates: Raman Spectroscopy, Ab Initio Calculations, and Structure. J. Mol. Struct. 1996, 382, 163–169. [Google Scholar] [CrossRef]
- Midouni, A.; Houchati, M.I.; Selmi, W.; Jaouadi, M.; Yahya, M.; Hamzaoui, A.H. Investigation of Pr0.2Ce0.8O2-Δ@Li2CO3 Nanocomposite Electrolytes as Intermediate Temperature Ionic Conductors: A Thermal, Structural, and Morphological Insight. J. Solid State Electrochem. 2019, 23, 2465–2475. [Google Scholar] [CrossRef]
- Stowe, A.C.; Smyrl, N. Raman Spectroscopy of Lithium Hydride Corrosion: Selection of Appropriate Excitation Wavelength to Minimize Fluorescence. Vib. Spectrosc. 2012, 60, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.; Lüty, F. Raman Scattering, Defect Luminescence, and Phonon Spectra of 7LiH, 6LiH, and 7LiD Crystals. Phys. Rev. B 1983, 28, 3415–3421. [Google Scholar] [CrossRef]
- Hase, Y.; Pagotto Yoshida, I.V. The Raman Active Vibrational Modes and Isotopic Effects of Four Isotopically Substituted Lithium Hydroxides. Chem. Phys. Lett. 1979, 65, 46–49. [Google Scholar] [CrossRef]
- Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Polymer Electrolytes and Interfaces in Solid-State Lithium Metal Batteries. Mater. Today 2021, 51, 449–474. [Google Scholar] [CrossRef]
- Lahiri, A.S.; Schubert, T.J.; Iliev, B.; Endres, F. LiTFSI in 1-Butyl-1-Methylpyrrolidinium Bis(Fluorosulfonyl)Amide: A Possible Electrolyte for Ionic Liquid Based Lithium Ion Batteries. Phys. Chem. Chem. Phys. 2015, 17, 11161–11164. [Google Scholar] [CrossRef] [Green Version]
- Suo, L.; Zheng, F.; Hu, Y.-S.; Chen, L. FT-Raman Spectroscopy Study of Solvent-in-Salt Electrolytes. Chin. Phys. B 2016, 25, 016101. [Google Scholar] [CrossRef]
- Liu, T.; Danten, Y.; Grondin, J.; Vilar, R. Solvation of AgTFSI in 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide Ionic Liquid Investigated by Vibrational Spectroscopy and DFT Calculations. J. Raman Spectrosc. 2016, 47, 449–456. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Gaabour, L.H. Raman, Morphology and Electrical Behavior of Nanocomposites Based on PEO/PVDF with Multi-Walled Carbon Nanotubes. Results Phys. 2015, 5, 105–110. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, J.; Yu, X.; Zhang, Y.; Zhang, Y.; Jiang, X.; Wang, S.; Wang, Q.; Dong, P. Enhance the Electrochemical Performance of Li4Ti5O12 with Co Doping via a Facile Mechanical Activation Strategy. J. Mater. Sci. Mater. Electron. 2019, 30, 5866–5873. [Google Scholar] [CrossRef]
- Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. J. Phys. Chem. C 2011, 115, 16220–16227. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, W.; Wang, Z.; Li, X.; Xiong, X.; Guo, H.; Wang, Z.; Wu, F. Synthesis and Characterization of Li4Ti5O12/Graphene Composite as Anode Material with Enhanced Electrochemical Performance. Ionics 2013, 19, 717–723. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, F.; Zhao, W.; Liu, Z.; Wan, D. Synthesis of Graphene-Supported Li4Ti5O12 Nanosheets for High Rate Battery Application. J. Mater. Chem. 2012, 22, 11257–11260. [Google Scholar] [CrossRef]
- Mulder, G.; Omar, N.; Pauwels, S.; Leemans, F.; Verbrugge, B.; De Nijs, W.; Van den Bossche, P.; Six, D.; Van Mierlo, J. Enhanced Test Methods to Characterise Automotive Battery Cells. J. Power Sources 2011, 196, 10079–10087. [Google Scholar] [CrossRef]
- Naudin, C.; Bruneel, J.L.; Chami, M.; Desbat, B.; Grondin, J.; Lassègues, J.C.; Servant, L. Characterization of the Lithium Surface by Infrared and Raman Spectroscopies. J. Power Sources 2003, 124, 518–525. [Google Scholar] [CrossRef]
Component | Raman Band Position (cm−1) | Assignation | Ref. |
---|---|---|---|
Li2CO3 | 1090 | C–O bond symmetric stretching | [43,44,45,46] |
LiOH | 287 297 328 | Li–O stretching | [47,48,49,50] |
LiTFSI | 745 | S–N–S stretching | [51,52,53] |
PEO | 845 862 | Hydroxyl end groups | [54] |
PEO | 1241 | Disordered or amorphous portions of the polymer chain | [54] |
LTO | 233 | Bending vibration of O–Ti–O | [55,56,57,58] |
LTO | 400–420 | Stretching–bending vibrations of Li–O bonds in LiO4 | [55,56,57,58] |
LTO | 663 | Vibration of Ti–O bond in TiO6 octahedra | [55,56,57,58,59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaime-Barquero, E.; Zhang, Y.; Drewett, N.E.; López-Aranguren, P.; Zulueta, E.; Bekaert, E. Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System. Batteries 2023, 9, 20. https://doi.org/10.3390/batteries9010020
Jaime-Barquero E, Zhang Y, Drewett NE, López-Aranguren P, Zulueta E, Bekaert E. Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System. Batteries. 2023; 9(1):20. https://doi.org/10.3390/batteries9010020
Chicago/Turabian StyleJaime-Barquero, Edurne, Yan Zhang, Nicholas E. Drewett, Pedro López-Aranguren, Ekaitz Zulueta, and Emilie Bekaert. 2023. "Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System" Batteries 9, no. 1: 20. https://doi.org/10.3390/batteries9010020
APA StyleJaime-Barquero, E., Zhang, Y., Drewett, N. E., López-Aranguren, P., Zulueta, E., & Bekaert, E. (2023). Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System. Batteries, 9(1), 20. https://doi.org/10.3390/batteries9010020