A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter
Abstract
:1. Introduction
2. Proposed Equalizer
2.1. Circuit Structure
2.2. Operation Principle
2.3. Mathematical Model
3. Simulation Comparison with Conventional Equalizers
4. Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.; Choi, Y.; Kang, B. Active Charge Equalizer of Li-Ion Battery Cells Using Double Energy Carriers. Energies 2019, 12, 2290. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, C.; Kim, J.; Moon, G. A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2014, 61, 3989–3999. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E.; Fong, Y.C.; Xue, X.; Lin, J. Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing Systems and Their Balancing Exploration. IEEE Trans. Power Electron. 2017, 32, 4444–4454. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Cui, Y.; Zou, J.; Yang, S. A Multi-Winding Transformer Cell-to-Cell Active Equalization Method for Lithium-Ion Batteries with Reduced Number of Driving Circuits. IEEE Trans. Power Electron. 2016, 31, 4916–4929. [Google Scholar] [CrossRef]
- Shang, Y.; Xia, B.; Zhang, C.; Cui, N.; Yang, J.; Mi, C.C. An Automatic Equalizer Based on Forward–Flyback Converter for Series-Connected Battery Strings. IEEE Trans. Ind. Electron. 2017, 64, 5380–5391. [Google Scholar] [CrossRef]
- Shang, Y.; Cui, N.; Zhang, C. An Optimized Any-Cell-to-Any-Cell Equalizer Based on Coupled Half-Bridge Converters for Series-Connected Battery Strings. IEEE Trans. Power Electron. 2019, 34, 8831–8841. [Google Scholar] [CrossRef]
- Aiello, O. Electromagnetic Susceptibility of Battery Management Systems’ ICs for Electric Vehicles: Experimental Study. Electronics 2020, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Cervera, A.; Peretz, M.M.; Ben-Yaakov, S. A Generic and Unified Global-Gyrator Model of Switched-Resonator Converters. IEEE Trans. Power Electron. 2017, 32, 8945–8952. [Google Scholar] [CrossRef]
- Ye, Y.; Eric Cheng, K.W.; Liu, J.; Xu, C. A Family of Dual-Phase-Combined Zero-Current Switching Switched-Capacitor Converters. IEEE Trans. Power Electron. 2014, 29, 4209–4218. [Google Scholar] [CrossRef]
- Farzan Moghaddam, A.; Van den Bossche, A. An Efficient Equalizing Method for Lithium-Ion Batteries Based on Coupled Inductor Balancing. Electronics 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. Battery equalization active methods. J. Power Sources 2014, 246, 934–949. [Google Scholar] [CrossRef]
- Uno, M.; Kukita, A. Double-Switch Equalizer Using Parallel- or Series-Parallel-Resonant Inverter and Voltage Multiplier for Series-Connected Supercapacitors. IEEE Trans. Power Electron. 2014, 29, 812–828. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, C.; Zheng, Y.; Gao, H.; Huang, P.; Zhou, L. A Novel Composite Equalizer Based on an Additional Cell for Series-Connected Lithium-Ion Cells. Electronics 2018, 7, 366. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Cheng, K.W.E. An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings. Energies 2016, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Pham, V.; Duong, V.; Choi, W. A Low Cost and Fast Cell-to-Cell Balancing Circuit for Lithium-Ion Battery Strings. Electronics 2020, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.; Lee, K.; Ku, N.; Hyun, D.; Kim, R. A Modularized Equalization Method Based on Magnetizing Energy for a SeriesConnected Lithium-Ion Battery String. IEEE Trans. Power Electron. 2014, 29, 1791–1799. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.; Choi, Y.; Kang, B. Modularized Design of Active Charge Equalizer for Li-Ion Battery Pack. IEEE Trans. Ind. Electron. 2018, 65, 8697–8706. [Google Scholar] [CrossRef]
- Gao, M.; Qu, J.; Lan, H.; Wu, Q.; Lin, H.; Dong, Z.; Zhang, W. An Active and Passive Hybrid Battery Equalization Strategy Used in Group and between Groups. Electronics 2020, 9, 1744. [Google Scholar] [CrossRef]
- Lai, X.; Qiao, D.; Zheng, Y.; Ouyang, M.; Han, X.; Zhou, L. A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications. J. Clean. Prod. 2019, 213, 776–791. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, C.; Cui, N.; Guerrero, J.M. A Cell-to-Cell Battery Equalizer with Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter. IEEE Trans. Power Electron. 2015, 30, 3731–3747. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Kang, L.; Lu, C.; Linghu, J.; Lin, H.; Hu, B. An Enhanced Multicell-to-Multicell Battery Equalizer Based on Bipolar-Resonant LC Converter. Electronics 2021, 10, 293. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Gao, Y.; Guo, Q. Recognition of battery aging variations for LiFePO4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches. J. Power Sources 2017, 360, 180–188. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E. Analysis and Design of Zero-Current Switching Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery/Supercapacitor. IEEE Trans. Veh. Technol. 2018, 67, 948–955. [Google Scholar] [CrossRef]
- Yuanmao, Y.; Cheng, K.W.E.; Yeung, Y.P.B. Zero-Current Switching Switched-Capacitor Zero-Voltage-Gap Automatic Equalization System for Series Battery String. IEEE Trans. Power Electron. 2012, 27, 3234–3242. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, Q.; Cui, N.; Zhang, C. A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings. Energies 2017, 10, 206. [Google Scholar] [CrossRef]
- Phung, T.H.; Collet, A.; Crebier, J. An Optimized Topology for Next-to-Next Balancing of Series-Connected Lithium-ion Cells. IEEE Trans. Power Electron. 2014, 29, 4603–4613. [Google Scholar] [CrossRef]
- Lee, K.-M.; Chung, Y.-C.; Sung, C.-H.; Kang, B. Active Cell Balancing of Li-Ion Batteries Using LC Series Resonant Circuit. IEEE Trans. Ind. Electron. 2015, 62, 5491–5501. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.; Park, J.; Moon, G.; Yoon, M. A New Buck-Boost Type Battery Equalizer. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2019; pp. 1246–1250. [Google Scholar]
- Speltino, C.; Stefanopoulou, A.; Fiengo, G. Cell Equalization in Battery Stacks through State of Charge Estimation Polling. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 5050–5055. [Google Scholar]
- Einhorn, M.; Guertlschmid, W.; Blochberger, T.; Kumpusch, R.; Permann, R.; Conte, F.V.; Kral, C.; Fleig, J. A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell. IEEE Trans. Veh. Technol. 2011, 60, 4227–4237. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Liang, T.-J.; Chen, S.-M.O.; Horng, W.-Y.; Chung, Y.-Y. A Novel High-Efficiency Compact-Size Low-Cost Balancing Method for Series-Connected Battery Applications. IEEE Trans. Power Electron. 2013, 28, 5927–5939. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, Q.; Cui, N.; Duan, B.; Zhou, Z.; Zhang, C. Multicell-to-Multicell Equalizers Based on Matrix and Half-Bridge LC Converters for Series-Connected Battery Strings. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1755–1766. [Google Scholar] [CrossRef]
Equalizer | Initial Voltage #1 | Initial Voltage #2 | ||
---|---|---|---|---|
Time | Efficiency | Time | Efficiency | |
QRSCC [24] | 0.20640 s | 94.21% | 0.23240 s | 93.55% |
HBLCC [32] | 0.06448 s | 95.76% | 0.06877 s | 93.46% |
BRLCC [21] | 0.00835 s | 86.86% | 0.01064 s | 89.15% |
Proposed FBBRLCC | 0.00826 s | 86.23% | 0.01006 s | 88.68% |
Equalizer | Cell Capacity of Simulation | ||||
---|---|---|---|---|---|
0.001 F | 0.005 F | 0.01 F | 0.02 F | 0.05 F | |
QRSCC [24] | 0.02282 s | 0.11544 s | 0.20640 s | 0.46157 s | 1.15661 s |
HBLCC [32] | 0.00634 s | 0.03321 s | 0.06448 s | 0.13291 s | 0.33239 s |
BRLCC [21] | 0.00089 s | 0.00430 s | 0.00835 s | 0.01690 s | 0.04258 s |
Proposed FBBRLCC | 0.00088 s | 0.00419 s | 0.00826 s | 0.01568 s | 0.03934 s |
Equalizer | Cell Capacity of Simulation | ||||
---|---|---|---|---|---|
0.001 F | 0.005 F | 0.01 F | 0.02 F | 0.05 F | |
QRSCC [24] | 0.02323 s | 0.11571 s | 0.23240 s | 0.46367 s | 1.15756 s |
HBLCC [32] | 0.00681 s | 0.03360 s | 0.06877 s | 0.15016 s | 0.37573 s |
BRLCC [21] | 0.00108 s | 0.00531 s | 0.01064 s | 0.02051 s | 0.05334 s |
Proposed FBBRLCC | 0.00102 s | 0.00504 s | 0.01006 s | 0.01994 s | 0.05315 s |
Components | Parameters | |
---|---|---|
Inductor L | Ferrite inductance | 10 µH |
Capacitor C | CBB | 1 µF |
Switches | nMOSFET | IRF3205PBF |
Gate Drivers | MOSFET driver | 1EDI20N12AFXUMA1 |
Free-wheeling Diodes | Schottky diode | MBRS360BT3G |
Battery Pack | Lithium-ion battery | ICR18650-22F (2200 mAh) |
Mode | VBR/V | VBC/V | ILC (1) /A | ILC (2) /A | PR/W | PC/W | ηFBBRLCC/% | |||
---|---|---|---|---|---|---|---|---|---|---|
Exp. | Model | Exp. | Model | Error | ||||||
1-1 | 3.903 | 3.871 | 1.52 | 1.36 | 1.888 | 1.676 | 1.437 | 88.77 | 90.54 | −1.80 |
1-3 | 3.995 | 11.583 | 4.05 | 1.19 | 5.150 | 4.388 | 4.642 | 85.19 | 83.14 | −2.05 |
3-1 | 11.487 | 3.929 | 1.38 | 3.50 | 5.046 | 4.377 | 4.447 | 86.75 | 85.22 | 1.52 |
3-3 | 11.287 | 11.750 | 3.96 | 3.32 | 14.227 | 12.417 | 12.584 | 87.28 | 90.06 | −3.32 |
Equalizer | Component Number | Size | Efficiency | Speed | Type | ||||
---|---|---|---|---|---|---|---|---|---|
MOSFET | MOSFET Driver | Inductor | Capacitor | Diode | |||||
QRSCC [24] | 2n | 2n | n − 1 | n − 1 | 0 | Large | High | Slow | AC2C |
CI [26] | 4(n − 1) | 4(n − 1) | 2(n − 1) | 0 | 0 | Large | Medium | Slow | AC2C |
FBLCC [27] | 2n + 10 | n + 5 | 1 | 1 | 4 | Small | High | Medium | DC2C |
HBLCC [32] | 4n | 2n | 1 | 1 | 4 | Medium | High | Medium | MC2MC |
BRLCC [21] | 4(n + 1) | 2(n + 1) | 1 | 1 | 4 | Medium | High | Fast | MC2MC |
Proposed FBBRLCC | 2n + 10 | n + 5 | 1 | 1 | 4 | Small | High | Fast | MC2MC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Kang, L.; Xie, D.; Luo, X.; Lin, H. A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter. Batteries 2022, 8, 53. https://doi.org/10.3390/batteries8060053
Xu P, Kang L, Xie D, Luo X, Lin H. A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter. Batteries. 2022; 8(6):53. https://doi.org/10.3390/batteries8060053
Chicago/Turabian StyleXu, Peng, Longyun Kang, Di Xie, Xuan Luo, and Hongye Lin. 2022. "A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter" Batteries 8, no. 6: 53. https://doi.org/10.3390/batteries8060053
APA StyleXu, P., Kang, L., Xie, D., Luo, X., & Lin, H. (2022). A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter. Batteries, 8(6), 53. https://doi.org/10.3390/batteries8060053