Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrolyte Chemicals
2.2. Electrode Materials and Preparation
2.3. Electrochemical Methods
2.4. Material Characterisation
3. Results and Discussion
3.1. SEM Characterisation
3.2. Electrochemical Characterisation
3.2.1. Electrochemically Active Surface Area
3.2.2. Electrochemical Performance
3.2.3. Effect of Electrolyte Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DECC. Towards a Smart Energy System; DECC: West Bay, UK, 2015.
- Beardsall, J.C.; Gould, C.A.; Al-Tai, M. Energy storage systems: A review of the technology and its application in power systems. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.; Li, X.; Ponce De León, C.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Ponce de León, C.; Frías-Ferrer, A.; González-García, J.; Szánto, D.A.; Walsh, F.C. Redox flow cells for energy conversion. J. Power Sources 2006, 160, 716–732. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.L.; Weber, A.Z. Advanced Redox-Flow Batteries: A Perspective. J. Electrochem. Soc. 2016, 163, A5064–A5067. [Google Scholar] [CrossRef]
- Munaiah, Y.; Dheenadayalan, S.; Ragupathy, P.; Pillai, V.K. High Performance Carbon Nanotube Based Electrodes for Zinc Bromine Redox Flow Batteries. ECS J. Solid State Sci. Technol. 2013, 2, M3182–M3186. [Google Scholar] [CrossRef]
- Amit, L.; Naar, D.; Gloukhovski, R.; la O’, G.J.; Suss, M.E. A Single-Flow Battery with Multiphase Flow. ChemSusChem 2021, 14, 1068–1073. [Google Scholar] [CrossRef]
- Yeo, R.S.; Chin, D.-T. A Hydrogen-Bromine Cell for Energy Storage Applications. J. Electrochem. Soc. 1980, 127, 549–555. [Google Scholar] [CrossRef]
- Cho, K.T.; Ridgway, P.; Weber, A.Z.; Haussener, S.; Battaglia, V.; Srinivasan, V. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage. J. Electrochem. Soc. 2012, 159, A1806–A1815. [Google Scholar] [CrossRef]
- Lin, G.; Chong, P.Y.; Yarlagadda, V.; Nguyen, T.V.; Wycisk, R.J.; Pintauro, P.N.; Bates, M.; Mukerjee, S.; Tucker, M.C.; Weber, A.Z. Advanced Hydrogen-Bromine Flow Batteries with Improved Efficiency, Durability and Cost. J. Electrochem. Soc. 2016, 163, A5049–A5056. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Lin, G.; Chong, P.Y.; Van Nguyen, T. High Surface Area Carbon Electrodes for Bromine Reactions in H2-Br2 Fuel Cells. J. Electrochem. Soc. 2016, 163, A5126–A5133. [Google Scholar] [CrossRef] [Green Version]
- Popat, Y.; Trudgeon, D.; Zhang, C.; Walsh, F.C.; Connor, P.; Li, X. Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries. Chempluschem 2022, 87, e202100441. [Google Scholar] [CrossRef] [PubMed]
- Braff, W.A.; Bazant, M.Z.; Buie, C.R. Membrane-less hydrogen bromine flow battery. Nat. Commun. 2013, 4, 2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, M.C.; Cho, K.T.; Weber, A.Z.; Lin, G.; Van Nguyen, T. Optimization of electrode characteristics for the Br2/H2 redox flow cell. J. Appl. Electrochem. 2015, 45, 11–19. [Google Scholar] [CrossRef]
- Singh, N.; McFarland, E.W. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery. J. Power Sources 2015, 288, 187–198. [Google Scholar] [CrossRef]
- Hugo, Y.A.; Kout, W.; Dalessi, G.; Forner-Cuenca, A.; Borneman, Z.; Nijmeijer, K. Techno-economic analysis of a kilo-watt scale hydrogen-bromine flow battery system for sustainable energy storage. Processes 2020, 8, 1492. [Google Scholar] [CrossRef]
- Karaeyvaz, M.C.; Duman, B.; Fıçıcılar, B. An alternative HCMS carbon catalyst in bromine reduction reaction for hydrogen-bromine flow batteries. Int. J. Hydrogen Energy 2021, 46, 29512–29522. [Google Scholar] [CrossRef]
- Suss, M.E.; Conforti, K.; Gilson, L.; Buie, C.R.; Bazant, M.Z. Membraneless flow battery leveraging flow-through heterogeneous porous media for improved power density and reduced crossover. RSC Adv. 2016, 6, 100209–100213. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.T.; Tucker, M.C.; Ding, M.; Ridgway, P.; Battaglia, V.S.; Srinivasan, V.; Weber, A.Z. Cyclic performance analysis of hydrogen/bromine flow batteries for grid-scale energy storage. Chempluschem 2015, 80, 402–411. [Google Scholar] [CrossRef]
- Cho, K.T.; Albertus, P.; Battaglia, V.; Kojic, A.; Srinivasan, V.; Weber, A.Z. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage. Energy Technol. 2013, 1, 596–608. [Google Scholar] [CrossRef]
- Popat, Y.; Trudgeon, D.P.; Li, X.; Connor, P.; Asokan, A.; Suss, M.E. Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery. Batteries 2022, 8, 166. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.G.; Wang, X.; Yu, H.; Liu, S.; Yi, B. The characterization of graphite felt electrode with surface modification for H2/Br2 fuel cell. J. Power Sources 2013, 242, 15–22. [Google Scholar] [CrossRef]
- Javed, M.S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S.S.A.; Han, W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. Small 2022, 18, 2201989. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Lin, G.; Chong, P.Y.; Van Nguyen, T. High Active Surface Area and Durable Multi-Wall Carbon Nanotube-Based Electrodes for the Bromine Reactions in H2-Br2 Fuel Cells. J. Electrochem. Soc. 2016, 163, A5134–A5143. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.S.; Shaheen, N.; Hussain, S.; Li, J.; Shah, S.S.A.; Abbas, Y.; Ahmad, M.A.; Raza, R.; Mai, W. An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A 2019, 7, 946–957. [Google Scholar] [CrossRef]
- Youssry, M.; Kamand, F.Z.; Magzoub, M.I.; Nasser, M.S. Aqueous dispersions of carbon black and its hybrid with carbon nanofibers. RSC Adv. 2018, 8, 32119–32131. [Google Scholar] [CrossRef] [Green Version]
- Sigma-Aldrich Graphene Nanoplatelets. Available online: https://www.sigmaaldrich.com/GB/en/product/aldrich/900407 (accessed on 2 September 2022).
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Connor, P.; Schuch, J.; Kaiser, B.; Jaegermann, W. The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Z. Phys. Chem. 2020, 234, 979–994. [Google Scholar] [CrossRef] [Green Version]
- Cabot Corporation PBX51 Performance Carbon for VRLA Batteries. 2012. Available online: https://www.cabotcorp.com/search/?query=pbx51 (accessed on 2 September 2022).
- Bard, A.; Faulkner, L. Kinetics of Electrode Reactions. In Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons Inc.: New York, NY, USA, 2001; pp. 87–136. [Google Scholar]
- Wu, X.; Liu, S.; Wang, N.; Peng, S.; He, Z. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 2012, 78, 475–482. [Google Scholar] [CrossRef]
- Xue, F.Q.; Wang, Y.L.; Wang, W.H.; Wang, X.D. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim. Acta 2008, 53, 6636–6642. [Google Scholar] [CrossRef]
- Küttinger, M.; Wlodarczyk, J.K.; Daubner, D.; Fischer, P.; Tübke, J. High energy density electrolytes for H2/Br2redox flow batteries, their polybromide composition and influence on battery cycling limits. RSC Adv. 2021, 11, 5218–5229. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. Handbook of Chemistry and Physics, 97th ed.; CRC Press: London, UK, 2017. [Google Scholar]
- Duranti, M.; Macchi, E.G.; Crema, L. Equilibrium Properties of a Bromine-Bromide Electrolyte for Flow Batteries. J. Electrochem. Soc. 2020, 167, 100523. [Google Scholar] [CrossRef]
Electrode | Anodic | Cathodic | Cdl (µF) | RF | ECSA (cm2) | Specific Surface Area (m2 g−1) | ||
---|---|---|---|---|---|---|---|---|
Cdl (µF) | R2 | Cdl (µF) | R2 | |||||
BMA5 | 2.91 | 0.998 | 2.96 | 0.998 | 2.94 | 1.00 | 0.100 | - |
HCB1071 | 8.43 | 0.999 | 8.10 | 0.999 | 8.27 | 2.82 | 0.282 | 0.025 |
HCB1071 CB | 91.0 | 0.998 | 91.6 | 0.998 | 91.3 | 31.1 | 3.11 | 0.268 |
HCB1071 GnP | 69.7 | 0.999 | 69.0 | 0.999 | 69.35 | 23.6 | 2.36 | 0.203 |
29AA | 8.18 | 0.999 | 8.04 | 0.999 | 8.11 | 2.76 | 0.276 | 0.069 |
29AA CB | 84.2 | 0.998 | 83.5 | 0.998 | 83.85 | 28.6 | 2.86 | 0.660 |
29AA GnP | 62.6 | 0.999 | 62.6 | 0.999 | 62.60 | 21.3 | 2.13 | 0.492 |
Electrode | j @ ƞ = ±400 mV | ƞ @ j = ±500 mA cm−2 | Ered/Eoxi | ||
---|---|---|---|---|---|
joxi (mA cm−2) | jred (mA cm−2) | ƞoxi (mV) | ƞred (mV) | ||
29AA | 684 | −599 | 300 | −317 | 0.397 |
29AA CB | 981 | −830 | 198 | −194 | 0.578 |
29AA GnP | 1161 | −1120 | 172 | −169 | 0.639 |
HCB1071 | 680 | −625 | 283 | −311 | 0.393 |
HCB1071 CB | 975 | −934 | 195 | −193 | 0.580 |
HCB1071 GnP | 1146 | −1140 | 174 | −174 | 0.640 |
Electrode | Rct | i0 | k0 |
---|---|---|---|
(Ω cm2) | (mA cm−2) | (10−6 cm s−1) | |
29AA CB | 10.80 | 1.19 | 6.16 |
29AA GnP | 6.99 | 1.84 | 9.52 |
HCB1071 CB | 11.72 | 1.10 | 5.68 |
HCB1071 GnP | 7.70 | 1.67 | 8.64 |
Electrode | j @ ƞ = ±400 mV | 500 mA cm−2 | 1 A cm−2 | 1.5 A cm−2 | ||||
---|---|---|---|---|---|---|---|---|
joxi (mA cm−2) | jred (mA cm−2) | ƞoxi (mV) | ƞred (mV) | ƞoxi (mV) | ƞred (mV) | ƞoxi (mV) | ƞred (mV) | |
CB 3 M HBr/1 M Br2 | 1280 | −1296 | 145 | −165 | 308 | −324 | 476 | −506 |
GnP 3 M HBr/1 M Br2 | 1360 | −1366 | 145 | −151 | 295 | −303 | 453 | −463 |
CB 4.5 M HBr/1.5 M Br2 | 1454 | −1467 | 142 | −136 | 286 | −277 | 433 | −422 |
GnP 4.5 M HBr/1.5 M Br2 | 1429 | −1442 | 142 | −142 | 289 | −287 | 435 | −427 |
CB 6 M HBr/2 M Br2 | 1575 | −1581 | 124 | −121 | 246 | −229 | 364 | −343 |
GnP 6 M HBr/2 M Br2 | 1539 | −1527 | 141 | −129 | 271 | −259 | 408 | −377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trudgeon, D.P.; Li, X. Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery. Batteries 2022, 8, 276. https://doi.org/10.3390/batteries8120276
Trudgeon DP, Li X. Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery. Batteries. 2022; 8(12):276. https://doi.org/10.3390/batteries8120276
Chicago/Turabian StyleTrudgeon, David P., and Xiaohong Li. 2022. "Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery" Batteries 8, no. 12: 276. https://doi.org/10.3390/batteries8120276
APA StyleTrudgeon, D. P., & Li, X. (2022). Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery. Batteries, 8(12), 276. https://doi.org/10.3390/batteries8120276